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S1. Numerical methods

(a) Fisher-KPP model
We solve the Fisher-KPP equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (S1.1)

on 0≤ x≤ x∞, with x∞ chosen to be sufficiently large.
We discretise the domain with a uniform finite difference
mesh, with spacing ∆x. We approximate the spatial
derivatives in Equation (S1.1) using a central finite
difference approximation, and we integrate Equation
(S1.1) using an implicit Euler approximation, giving rise
to

uj+1
i − uji
∆t

=

(
uj+1
i−1 − 2uj+1

i + uj+1
i+1

∆x2

)
+ uj+1

i (1− uj+1
i ),

(S1.2)
for i= 2, . . . ,m− 1, where m= x∞/∆x+ 1 is the total
number of spatial nodes on the finite difference mesh,
and the index j represents the time index so that we
approximate u(x, t) by uji , where x= (i− 1)∆x and t=

j∆t.
For all numerical solutions of Equation (S1.1) we

enforce no-flux boundary conditions at x= 0 and x= x∞

uj+1
2 − uj+1

1 = 0, (S1.3)

uj+1
m − uj+1

m−1 = 0. (S1.4)

Together, Equations (S1.2)–(S1.4) form a nonlinear
system of algebraic equations that describe how to
approximate uj+1

i from uji for i= 1, . . . ,m.
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We use Newton-Raphson iteration to solve this non-linear system and we continue with the
iterations until the infinity norm of the difference between successive estimates of uj+1

i falls below
some small tolerance, ε. For all results presented we are always careful to choose ∆x, ∆t and ε so
that the numerical algorithm produces grid-independent results. To illustrate the accuracy of our
algorithm we present results in Figure S1 showing the evolution of the solution of Equation (S1.1)
evolving from an initial condition with compact support. Here we see that the solution rapidly
approaches a constant shape, constant speed travelling wave what moves with the minimum
wave speed, c= 2, as expected [1].

Figure S1. Numerical solutions of Equation (S1.1) with∆x= 1× 10−4,∆t= 1× 10−3, x∞ = 50 and ε= 1× 10−8.

For this example the initial condition is u(x, 0) = 0.5 for x≤ 1 and u(x, 0) = 0 for x> 1.

We have confidence in our numerical results in Figure S1 since we find that the results are grid-
independent. Furthermore, if we change the initial condition so that u(x, 0)∼ e−ax, as x→∞, we
find that c= 1/a+ a, for a> 1, as expected [1].
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(b) Fisher-Stefan equation
To obtain numerical solutions of the Fisher-Stefan problem,

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (S1.5)

for 0<x<L(t) and t > 0, we first use a boundary fixing transformation ξ = x/L(t) [2] so that we
have

∂u

∂t
=

1

L2(t)

∂2u

∂ξ2
+

ξ

L(t)

dL(t)
dt

∂u

∂ξ
+ u(1− u), (S1.6)

on the fixed domain 0< ξ < 1 and t > 0. Here L(t) is the length of the domain that we will discuss
later. To close the problem we must also transform the appropriate boundary conditions giving

∂u

∂ξ
= 0 at ξ = 0, (S1.7)

u= 0 at ξ = 1. (S1.8)

We spatially discretise Equations (S1.6)-(S1.8) with a uniform finite difference mesh, with
spacing∆ξ, approximating the spatial derivatives using a central finite difference approximation,
giving

uj+1
i − uji
∆t

=
1

(Lj)2

(
uj+1
i−1 − 2uj+1

i + uj+1
i+1

∆ξ2

)

+
ξ

Lj

(
Lj+1 − Lj

∆t

)(
uj+1
i+1 − u

j+1
i−1

2∆ξ

)
+ uj+1

i (1− uj+1
i ), (S1.9)

for i= 2, . . . ,m− 1, where m= 1/∆ξ + 1 is the total number of spatial nodes on the finite
difference mesh, and the index j represents the time index so that uji ≈ u(ξ, t), where
ξ = (i − 1)∆ ξ and t= j∆t.

Discretising Equations (S1.7)-(S1.8) leads to

uj+1
2 − uj+1

1 = 0, (S1.10)

uj+1
m = 0. (S1.11)

We use Newton-Raphson iteration to solve the non-linear system defined by Equations (S1.9)-
(S1.11) and we continue with the iterations until the infinity norm of the difference between
successive estimates of uj+1

i falls below some small tolerance, ε. As the Newton-Raphson iterates
converge we also update the L(t) by considering the Stefan boundary condition

dL(t)
dt

=−κ∂u
∂x
, at x=L(t). (S1.12)

To incorporate the Stefan boundary condition into our numerical method we must transform the
boundary condition to the fixed domain,

dL(t)
dt

=− κ

L(t)

∂u

∂ξ
, at ξ = 1, (S1.13)

and we then discretise Equation (S1.13) allowing us to update L(t+∆t) as the Newton-Raphson
iterates converge

Lj+1 =Lj − ∆tκ

Lj

(
uj+1
m − uj+1

m−1
∆ξ

)
. (S1.14)

To demonstrate the accuracy of our numerical method to solve the Fisher-Stefan problem we
consider a closely related, but simplified problem, that has an exact solution [3]. We consider

∂u

∂t
=
∂2u

∂x2
, (S1.15)
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on 0<x<L(t) for t > 0, with a moving boundary at L(t). The boundary conditions are given by

∂u

∂x
=−et at x= 0, (S1.16)

u= 0 at x=L(t), (S1.17)

with the Stefan condition is
dL(t)

dt
=−∂u

∂x
at x=L(t), (S1.18)

With L(0) = 0, the exact solution to this moving boundary problem is

u(x, t) =−e(t−x) − 1, (S1.19)

on 0<x< t, for 0< t< 1. Therefore, by setting λ̃= 0, κ= 1 and changing the boundary condition
from ∂u/∂x= 0 at x= 0 to ∂u/∂x=−et at x= 0, our numerical scheme ought to approximate
the exact solution, Equation (S1.19). Since the initial condition for the exact solution has L(0) =
0, we make progress by evaluating the exact solution at t= τ < 1 and we use this solution as
the initial condition from which the numerical solution can be evaluated for t > τ . Results in
Figure S2 compare numerical solutions and this exact solution with τ = 0.2. This exercise gives us
confidence in our numerical solution of the moving boundary problem since the numerical and
exact solutions in Figure S2 are indistinguishable at this scale.

Figure S2. Comparison of numerical and exact solutions for the simplified moving boundary problem. Numerical

solutions are obtained with ∆ξ= 1× 10−4, ∆t= 1× 10−3 and ε= 1× 10−8. The numerical solutions (blue solid)

are superimposed on the exact solutions (yellow dashed) and solutions are shown at t= 0.2, 0.4 and 0.8, with the arrow

showing the direction of increasing t.
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(c) Numerical estimate of c
In this work we solve both the Fisher-KPP and the Fisher-Stefan models and use the time-

dependent solutions to provide an estimate of the travelling wave speed, c. To obtain this estimate
we specify a contour value, u(x, t) = u∗. At the end of each time step in we use linear interpolation
to estimate x∗ such that u(x∗, t) = u∗. Therefore, at the end of each time step we have estimates
of both x∗(t+∆t) and x∗(t), allowing us to estimate the speed at which the contour moves

c=
x∗(t+∆t)− x∗(t)

∆t
. (S1.20)

We find that evaluating Equation (S1.20) at each time step leads to a time series of estimates of c,
and we find that these estimates asymptote to some positive constant value as t→∞ for those
problems that support a travelling wave solution. For all results presented we set u∗ = 0.5, but
we find that our estimates of c obtained using this approach are not particularly sensitive to our
choice of u∗ [4].

(d) Construction of the phase planes
The dynamical system that defines the phase plane for travelling wave solutions of the Fisher-

KPP and Fisher-Stefan models is given by

dU
dz

= V, (S1.21)

dV
dz

=−cV − U(1− U). (S1.22)

Using the chain rule, Equations (S1.21)-(S1.22) can be written equivalently as

dV
dU

=
−cV − U(1− U)

dV
, (S1.23)

where V = V (U).
When we construct phase planes in the main document we use a combination of exact and

computational techniques. The locations of equilibrium points and boundary conditions are
plotted on the phase plane using exact mathematical expressions for their location. The flow,
defined exactly by Equations (S1.21)-(S1.22), is plotted using the quiver function in MATLAB [7].
To estimate the trajectories in the phase plane we integrate Equations (S1.21)-(S1.22) numerically
using the ODE45 function in MATLAB [6]. When we compute the phase plane trajectories we set
the tolerance to 1× 10−4 in ODE45 and we choose the initial condition using information from
the linear analysis nearby the (1, 0) equilibrium point to ensure that the initial condition is close
to the heteroclinic orbit.
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