Supplementary Materials to paper
Generalized Fock space and contextuality
by Sergey Rashkovskiy, Andrei Khrennikov
published in Philosophical Transactions A
DOI: 10.1098/rsta.2019.0096
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[bookmark: _GoBack]3. Arbitrary operators in Fock space
An arbitrary operator  (27) can be expressed in terms of the operator .
In fact, according to (5) and (6) one obtains , or, taking into account (14), . This expression can be rewritten in the form , where  is the arbitrary constant. Then, assuming , one obtains . Using such a representation of the operator , we fix the form of the function . Moreover, the function  can be arbitrary. Note that in this way, one can express only one of the set of operators of type (27) defined in the space . All other operators of type (27) in the same space  with a fixed function  can also be expressed in terms of the raising and lowering operators, but this connection will be more complex and can be represented as a function , where  is some function that can be represented as a power series by its arguments.
We consider here a particular case: the representation of the operators  (28) through rising and lowering operators. We assume that the eigenvalues of the operator  can be written as a function of the integer : . In addition, we assume that the function  can be expanded in a power series
					(A1)
Define the Fock space (up to an arbitrary function ) by fixing the function  in the form . Then the operator of integer (20) defines the basis of the space , which are its eigenvectors:
						(A2)
Obviously,
					(A3)
where ; .
Thus, the basis  is also eigenvectors (eigenfunctions) of the operators , while the parameters  are their corresponding eigenvalues.
Taking into account (A1) and (A3), any operator (27) can be represented in this space as
				(A4)
which is easily verified by substituting (A4) into (27) by appealing to (A3) and (A1). Relation (A4) can be considered as a formal decomposition into a power series of an operator function
					(A5)
which is the representation of the operator  through the operator of integer (20).

4. Vector representation of random observables
Taking into account (30), (1) and (28), the mean value of the parameter  in the random process under consideration can be represented as . From (31) it follows that , where ; . By definition, . Taking into account (1), (3), (4) and (6), one can write . The mean value of a certain function , which depends on the parameter , in the considered random process is determined by the relation  . Using a power series , one obtains . This expression can be rewritten in the form . As usual, we can introduce the formal operator . Then, one obtains .
Thus, any statistical characteristic of the random process  can be calculated (at least formally) using the dual vectors (29) and the operator  (31).

5. Fock space and contextuality
As for example, consider the superposition of states in the Doi-Peliti probability space (48). Suppose there are two non-correlated processes  and  which are realized with probabilities  and , where .  We assume that the phases of probabilities for these processes are equal . We can introduce the vectors
  
and 
 
which describe the whole process. Note that in this case we can formally redefine the vectors : . This means that we can consider .
It is easy to verify that  and . Indeed,
 
 
Thus, we see that in the Doi-Peliti probability space, see rule (48), for processes such that the phase parameters  are equal; there is no interference of probabilities. This means that such a representation of the random processes does not take into account contextuality.

