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Supplemental Appendix
Hepatitis C virus modeled as an indirectly-transmitted infection

highlights the centrality of injection drug equipment in disease dynamics

•

THE HEPATITIS C VIRUS WAIT MODEL

Additional notes on the structure of the model
Here we provide justification for two terms in the model that would benefit from elaboration: (a) the rate of new infection
of susceptible individuals, βS Ni

Ni+Nu
, and (b) the rate of new infection of clean needles, α(IE + IL) Nu

Ni+Nu
; other terms in

the model are fairly generic.

For (a), let us call the per capita injection rate γ, and the probability that a needle sheds enough of a viral load to render a
host infected δ. Then, γS represents the daily rate that susceptible hosts are injecting drugs. In our model, we homogenize
the populations of needles and hosts by assuming that the likelihood of injecting with an infected needle is in proportion to
the fraction of infected needles in circulation Ni

Ni+Nu
. Thus, the rate at which susceptible hosts inject with infected needles

is γS Ni

Ni+Nu
. Lastly, the fraction of these injections where enough of a viral load renders the host infected is δ, and so the

total rate of new host infections due to infected needles is given by γδS Ni

Ni+Nu
. For simplicity, in our model, we set γδ =

β.

For (b) (the rate of new infection of clean needles via infected hosts) we suppose that the rate at which needles are infected
is proportional to the number of infected individuals and is scaled by the daily rate of injections per capita, γ. The product,
γ(IE + IL) represents the average number of injections per day by all infected individuals. We assume that the fraction of
these injection events with uninfected needles is given (approximately) by the fraction of uninfected needles in circulation,
Nu

Ni+Nu
, so γ(IE + IL) × Nu

Ni+Nu
represents the rate of injections with the potential to infect a needle. The fraction, call

it ζ, of these injection events that shed enough of a viral load to render a needle infected scales this rate, giving γζ(IE +
IL) Nu

Ni+Nu
. For simplicity, we set γζ = α.

Note that this approach homogenizes the populations of needles and hosts in the sense that it assumes everyone in the popu-
lation of people who inject drugs (PWID) exchanges with the same environmental reservoirs—the infected and uninfected
needle populations. We assume homogeneity, although in a setting with severely skewed distributions of needles among
users’ collections or in communities with wildly varying sharing practices, this approximation will be a poor one.

Analytic calculation of R0

Below, we provide the T and Σ matrices used to calculate R0. In this text, we follow the lines of [1], which establishes an
algorithm for calculating R0 as the maximum eigenvalue—also called the spectral radius—of the matrix −T ·Σ−1. This ma-
trix is sometimes cited as the Next Generation Matrix, however, as Diekmann et. al. (2009) [1] point out, this matrix may
actually be larger than the true next generation matrix. Nevertheless, the maximum eigenvalue of −T · Σ−1 will be the same



as that of the true next generation matrix. The steps to construct T and Σ are outlined in [1]. Essentially T + Σ = J , where
J is the Jacobian of the infected subsystem—comprised of the infected compartments of the ODE system; IE , IL, and Ni,
in this case—calculated at the disease free equilibrium (DFE). T refers to terms in the Jacobian related to the transmission
of new disease in the system, i.e. the conversion of uninfected compartments to infected ones. Σ therefore contains all other
terms in the Jacobian. For the HCV system, one finds the following.

T =

0 0
βku
µ

πS
πN

0 0 0
α α 0



Σ =

−(ω + τ + µ+ φ) 0 0
ω −(µ+ τ) 0
0 0 −(ε+ ki)



From this one can construct −T · Σ−1:

−T · Σ−1 =


0 0

βkuπS
µ(ε+ ki)πN

0 0 0
α(µ+ τ + ω)

(µ+ τ + φ+ ω)(µ+ τ)

α

µ+ τ
0



From this, one can calculate the maximum eigenvalue of −T · Σ−1. One finds,

R0 =

√
αβkuπS(µ+ τ + ω)

πNµ(µ+ τ)(µ+ τ + φ+ ω)(ε+ ki)

The reproductive ratio is generally interpreted as the average number of secondary infections per capita caused by infected
hosts in the time that these hosts have the infection, when the system is near the disease-free equilibrium (DFE). In the
context of the WAIT modelling scheme, the interpretation of the reproductive ratio may be modified somewhat as the spread
of infection is mediated through interactions between living hosts and an environmental intermediate. In this framework,
does the R0 value represent the number of new infections within the environment or within the population of living hosts?
It will turn out that the R0 value in the WAIT framework represents a kind of average of both of these interpretations, or
more precisely, a geometric mean of the two. To put this concretely, we look at the HCV R0 formula from a perspective
that illuminates its nature as a geometric mean.

There are two modes of transmission of new infection in the HCV model. One is the infection of clean needles due to in-
jection by infected hosts, and the other is the infection of susceptible hosts due to injection by infected needles. These two
modes of transmission each have a reproductive ratio associated with them: the first would be the number of new infected
needles caused by a single infected host in a fully susceptible population of needles, in the average amount of time that a
host is infected. The second would be the number of new infections of susceptible hosts caused by a single infected nee-
dle in fully susceptible population of hosts, in the time that the needle is infected. The first of these two, which we will
denote by X , can be derived by considering the rate of transmission of infection to clean needles, per infected host. In the
dynamical equations, the total rate of the infection of needles is given by α(IE + IL) Nu

Ni+Nu
, hence the rate per infected

host is simply α Nu

Ni+Nu
. At the disease-free equilibrium, the fraction Nu

Ni+Nu
is unity since there are no infected needles in

the population. This leaves α as the per capita rate of new infection of needles. There are two infected compartments that
can contribute to new infection of needles, IE and IL, and a host enters the early-stage compartment first before potentially
progressing (with rate ω) to the late-stage. The number of new infections will be therefore be the sum of the infections of
needles caused by a host moving through both infected stages, and we will have to weight the number of infections from
the IL compartment by the fraction of the time a host progresses to this stage. The average time that a host spends in the
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IE compartment is 1/(µ+τ+φ+ω)—i.e. the reciprocal of the exit rate of that compartment. The average amount of time a
host spends in the IL compartment is 1/(µ + τ). Thus, since α represents the per capita rate of new infection of needles by
infected hosts, then α×1/(µ+τ+φ+ω) is the average number of new infections of needles by hosts in the IE compartment.
Whereas, α × 1/(µ + τ) is the number of new infections of needles caused by hosts in the IL compartment. The fraction
of the time a host progresses from IE to IL is given by ω/(µ + τ + φ + ω), since this represents the fraction of the rate
of exiting the IE compartment by exactly one of the four four possible ways; namely, by progressing to IL, as opposed to
death/cessation (µ), treatment (τ ), or spontaneous recovery (φ). Thus, the average number of needle infections caused by an
infected host is given by α

µ+τ+φ+ω + αω
(µ+τ)(µ+τ+φ+ω) . The first term represents the rate of new infections of needles caused

by hosts in the IE compartment, multiplied by the time spent in that compartment, and the second is the same but for the
IL compartment, and is scaled by the fraction of time hosts progress to the IL stage. Simplifying somewhat, X is given by
X = α(µ+τ+ω)

(µ+τ)(µ+τ+φ+ω) .

Note that we use the reciprocal of the rate terms as the average time spent in a compartment. That is, if the average time an
agent spends within a compartment, such as IE , is 5 days, for example, then one would expect 1/5 of the compartment to
leave daily. This is because one expects that on any day, 1/5 of the compartment’s population is comprised of agents who
entered the set 5 days ago, 1/5 is comprised of those who entered 4 days ago, and so on—here the assumption is that the
time spent in a compartment, as well as the entrance rate into the compartment, each exhibit little variance over time. So,
the average time within a compartment is the reciprocal of the exit rate—where the exit rate is taken as a proportion of the
total population, as opposed to an absolute rate of change in the population size.

The other reproductive ratio Y can be derived similarly by considering the rate of new host infections due to infected nee-
dles: βS Ni

Ni+Nu
. First, in the disease free equilibrium the value for S∗ is given by πS/µ. Second, near the disease-free

equilibrium Ni << Nu and hence we can approximate the fraction: Ni

Ni+Nu
= Ni

Nu

1
Ni
Nu

+1
≈ Ni

Nu
(1 − Ni

Nu
) ≈ Ni

Nu
, neglecting

the
(
Ni

Nu

)2
term. The result is that near the DFE, the rate term βS Ni

Ni+Nu
can be expressed as β

(
πN

µ

)
Ni

Nu
. The DFE value

for Nu—the uninfected needles—is given by πN/ku, which is easily verified by inspection of the Nu dynamical equation.
Thus, inserting this into the above rate, and considering the rate per infected needle Ni, one is left with β

(
πN

µ

)(
ku
πN

)
as

the rate of new host infections caused by infected needles per infected needle. As in the prior argument, the average lifetime
a needle spends infected is given simply by the reciprocal of the exit rate for agents in the set. In this case, the exit rate
of infected needles is given by ε—the virus decay rate—and by ki—the infected needle discard rate. Hence, the average
lifetime for an infected needle is given by 1/(ε + ki). Thus, Y is given by β

(
πN

µ

)(
ku
πN

)
× 1/(ε + ki) = βπNku

µ(ε+ki)πN
. One

will notice that the equation above for R0 can be written as

R0 =

√
α(µ+ τ + ω)

(µ+ τ)(µ+ τ + φ+ ω)
×

√
βkuπS

µ(ε+ ki)πN
=
√
XY

In other words, the R0 can be viewed as the geometric mean of the two quantities X and Y discussed above.

The dynamics of needles
Our model allows us to distinguish between the discard rates of infected and uninfected needles. However, while it may be
that interventions such as needle-exchange programs are capable of increasing the infected needle discard rate above that
of the uninfected needles, in many circumstances, the distinction between the two might be more difficult to disentangle.
Thus, in many cases there may not be a discernible distinction between ku and ki, in which case these rates are effectively
equal—we will denote this universal discard rate by k (= ku = ki).

Our model presents a somewhat counter-intuitive dynamic when ku = ki: Since the infection rate of needles relies on the
proportion of uninfected needles in a population, reducing the proportion of clean needles in the population can actually ex-
acerbate an infection. Namely, increasing the discard rate of all needles will, in particular, reduce the number of uninfected
needles in the population and—due to asymmetries in how infected and uninfected needles are treated in the model—can
actually lead to an increase in the proportion of infected needles in the population, increasing the probability that a user
will become infected. Asymmetries between infected and uninfected needles include (1) uninfected needles are fueled by a
constant source, πN , whereas infected needles are fueled only by contact with a varying infected source, and (2) infected
needles can flow back to the uninfected compartment in proportion to the number of needles infected at that instant, effec-
tively augmenting the discard rate of infected needles, ki, with the additional term ε. In this way, there is a kind of biasing
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towards the flow of needles into the uninfected compartment. That is, the uninfected compartment receives a constant flux
from the πN term along with an additional flux from viral decay of infected needles, ε. The infected compartment, however,
will take losses from the viral decay and can only gain from infected needle use. This is only a heuristic description, but it
motivates how changes in the needle discard rate, though equal for both compartments, may have differing impacts on their
dynamics, and in particular on their steady-state values. We examine the mathematical details of this behavior below.

A public health interpretation of this would simply be removing all needles from the PWID community (through law en-
forcement, for example) without a proportional increase in safe, clean needles (as supplied in clean-injection sites or needle-
exchange programs), potentially intensifying the local HCV epidemic as a result. Figure S1(C) shows the steady state frac-
tion of infected needles in a population of PWID, as a function of this universal discard rate k. Notice that for the parame-
ters chosen in our model, the proportion of infected needles increases when the discard rate k is increased.

In such circumstances, the disease burden and value of R0 are both increased. In Figure 4b in the main text, we demon-
strate how changing ku and ki can modify the value of R0. We find that increasing ku while moving along a constant value
of ki has the effect of increasing the R0 value. Whereas, increasing ki while moving along a constant value of ku reduces
R0. That is, removing more uninfected needles while keeping the same infected needle discard rate can harm a population
of PWID, and doing the opposite helps the population. One can also see that increasing ku and ki simultaneously along the
diagonal line—where ku = ki—will increase R0. This suggests that if a distinction between infected and uninfected needles
cannot be determined (as is often the case), then adding clean needles to a population has a larger impact on disease burden
than flatly removing all needles.

Equilibrium values of the infected needles

Fig. S1: (a) represents the number of uninfected needles, Nu, as a function of the discard rate, k. (b) shows the same but
for Ni, the number of infected needles in the population. The vertical dashed line shows the value of k where dN∗

i /dk = 0
(k ≈ 0.10). (c) shows the fraction of infected needles in the population across the fractional discard rate k, i.e. it shows the
value of Ni/(Nu + Ni) at equilibrium as a function of k. Note, that these are endemic equilibria, whereas the disease-free
equilibrium will occur when the infection fully clears from the population of PWIDs, and the population of infected needles
accordingly goes to zero.

By setting the model equations to zero, one can determine the equilibrium or steady state values of the agents as a function
of the parameters in the model. In doing so, we can demonstrate more quantitatively how the proportion of infected and un-
infected needles is affected by modifying the discard rate of needles. In Fig. S1 (a) and (b) we plot the equilibrium values
for Nu and Ni as a function of k (where k = ku = ki).

One will notice that the equilibrium value of Nu is a monotonically decreasing function of k (at least for k between 0 and
1), whereas Ni actually increases with k first before gradually decreasing. That is, whereas the steady state value of unin-
fected needles always decreases when the universal discard rate k is increased, the steady state value of the infected needles
actually has the potential to rise if k is increased from a sufficiently small value. This is consistent with a prior point about
the effects of flatly discarding needles, without regard to their infected or uninfected status: it can increase the proportion
of infected needles in a population and thus fuel the epidemic. Fig. S1(C) shows the fraction of infected needles in the
population, and although one finds that the absolute number of infected needles in equilibrium will subside beyond a certain
value of k (in our case this is around k = 0.10), we find that the fraction of infected needles is a monotonically increasing
function of k. That is, for the parameters chosen, discarding needles universally will increase the likelihood of encountering
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an infected needle in the population of PWIDs. We emphasize that this insight was only possible because the needle reser-
voir (the environment) was modelled separately, a central feature of WAIT.

Below, we provide the results of our analytic calculation of the equilibrium values of the needle populations, N∗
i and N∗

u ,
as a function of k. We find that both populations can be expressed in a similar form,

N∗
i (k) =

xi + yik

k(A+Bk)
, N∗

u(k) =
xu + yuk

k(A+Bk)

where the parameters xi, yi, xu, yu, A,B (given explicitly below) are independent of k and which are functions of the other
parameters in the model.

xi = −εµπ2
N (µ+ τ)(µ+ τ + φ+ ω)

yi = αβπSπN (µ+ τ + ω)− µπ2
N (µ+ τ)(µ+ τ + φ+ ω)

xu = επ2
N (µ+ τ)(β(µ+ τ + ω) + µ(µ+ τ + φ+ ω))

yu = π2
N (µ+ τ)(β(µ+ τ + ω) + µ(µ+ τ + φ+ ω))

A = βεπN (µ+ τ)(µ+ τ + ω)

B = β(µ+ τ + ω)(απS + (µ+ τ)πN )

Given the similar form that the infected and uninfected needle populations have at equilibrium we can calculate their deriva-
tives with respect to k simultaneously. Using N , x, and y to refer generically to one of the needle populations at equilib-
rium and its corresponding coefficients in the equilibrium formula, one finds that.

dN

dk
=

d

dk

(
x+ yk

k(A+Bk)

)
= − (A+ 2Bk)x

k2(A+Bk)2
− By

(A+Bk)2

from this it follows that dN/dk = 0 when −(A+ 2Bk)x = Byk2 or that,

k± =
−Bx±

√
(Bx)2 −ABxy
By

For the parameters chosen in the model, we find that both k+ and k− are negative when (x, y) = (xu, yu) and when (x, y) =
(xi, yi) only k+ gives a positive value, namely k+ ≈ 0.1032. This result can be seen in figure S1, where one will notice
that dNu/dk < 0 for all values of k, whereas dNi/dk = 0 at k ≈ 0.1032. k+ represents a threshold value for the dis-
card rate of needles. Above this value, the total number of infected needles at equilibrium can be decreased if k were to
be increased, and below this value, raising k will only increase the total number of infected needles at equilibrium. This
result is counter-intuitive but it can be understood by considering the fact that increasing k means that more needles of all
types are removed from the system in a given amount of time. In particular, if this leads to a sufficient reduction of the
uninfected needles in circulation then, since infection rates depend on the fraction of both types of needles in the model,
it is possible to reduce the fraction of uninfected needles in the population, thereby increasing the fraction of infected nee-
dles and increasing the infection rates among hosts. This would in turn lead to a higher total number of infected needles in
equilibrium. We also find that for the parameters chosen, the fraction of infected needles at equilibrium is monotonically
increasing with k, at least for the range of k considered in this paper (Figure S1 (c)).

If we examine the infected needle fraction more closely, we can quantify the extent to which increasing k will increase
the fraction of infected needles at equilibrium. We will use n∗i to refer to the infected needle fraction at equilibrium, viz.
n∗i (k) = N∗

i /(N
∗
i +N∗

u).
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n∗i (k) =

xi+yik
k(A+Bk)

xi+yik
k(A+Bk) + xu+yuk

k(A+Bk)

=
xi + yik

(xi + xu) + (yi + yu)k

assuming that k(A+Bk) 6= 0. For simplicity, we will set x = xi+xu and y = yi+yu. In order to determine how increasing
the discard rate k can increase the infected needle fraction, we calculate dn∗i /dk.

dn∗i
dk

=
yix− yxi
(x+ yk)2

Suppose dn∗i /dk > 0, then this is equivalent to the following constraint,

yix− yxi > 0.

Using the definitions given above for xi, yi, x, and y, one can identify a simple expression for yix− yxi:

αβεπ3
NπS(µ+ τ)(µ+ τ + ω)(β(µ+ τ + ω) + µ(µ+ τ + φ+ ω))

One notices that the above expression trivially satisfies the inequality since all parameters in the model are positive. This
indicates that our model predicts that the fraction of infected needles will increase with k regardless of the other parameters
in the model, so long as they remain positive.

R0 Sensitivity
We employ a sensitivity analysis for two purposes: (i) to establish that model dynamics do not rely on the particular values
of any one parameter and (ii) that the sensitivity of the dynamics is shared fairly evenly among the parameters. This is
an indication that when the phenomenon of interest are modelled in this manner, one can expect that the dynamics of the
infection are also shared fairly evenly among the parameters.

Fig. S2: R0 Tornado: A tornado diagram for parameters in the R0 formula. Black bars indicate the value of R0 when the
associated parameter is decreased by 10% from the value chosen in the model. White bars indicate the value of R0 when
the associated parameter is increased by 10%.

Fig. S2 demonstrates how the value of R0 shares its dependence evenly among most of the parameters. We calculated the
Partial Rank Correlation Coefficient (PRCC) with respect to the value of R0, for each of the parameters in the R0 formula
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(Figure 6 in the main text). The calculation followed the lines given in Blower and Dowlatabadi (1994) [2], and we will
briefly recapitulate the calculation here.

There are 11 parameters in the R0 formula (equation 14 in the main text). Using Latin Hypercube Sampling (LHS), 100
samples of the 12 parameters were taken. Each sample of 12 parameters was used to calculate a value of R0. Then, the
resulting R0 values and parameters were ranked according to their value among the 100 samples. That is, the R0 value
and the 12 parameters in each sample were assigned numbers 1–100 depending on how they ranked compared to other
samples. This results in 12 vectors, and one additional one for R0, of length 100, whose entries are just some ordering of
the whole numbers between 1 and 100—we will call them rank vectors. Then, between any two of the 12 rank vectors and
one additional rank vector for R0 we can calculate the generic correlation coefficient for the 100 samples. If we arrange
the parameters, indexing them 1 through 11, and the R0 value, giving it the index 12, into a list of variables, then we can
construct the correlation coefficients Cij , between the ith and jth variable, into a symmetric matrix C.

Cij =

∑100
k=1(rik − µ)(rjk − µ)√∑100

k=1(rik − µ)2
∑100
k=1(rjk − µ)2

rik in the equation above is the rank of the ith variable (recall that R0 is included in the variables) in the kth sample, and
µ = (1 + 100)/2 = 50.5 is the average rank. Thus, for i and j between 1 and 11, Cij is the correlation coefficient between
the ith and jth parameter, and for i between 1 and 11, Ci,12 (= C12,i) are the rank-correlations between the ith parameter
and the value of R0. Note, that the diagonal values of C are all one. Next, we construct the matrix B, which is simply the
matrix inverse of C, i.e. B = C−1. Lastly, the PRCC value for the ith parameter is constructed from the matrix elements of
B according to the following formula,

PRCCi =
−Bi,n+1√
BiiBn+1,n+1

where n = 11—the number of parameters in the R0 formula. This entire calculation was repeated 50 times, with 50 sets
of 100 LHS samples. The values shown in the PRCC calculation (Main text, Figure 3) show the average over these 50
iterations, with the standard deviations as error bars.
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