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Supplementary Methods and Results 21 

Subjects and measures 22 
 23 

A random sampling procedure was used to reduced researcher bias during facial measurement. NS 24 
removed identifiable information from photographs and randomly selected a subset of subjects 25 
from each zoo with available facial photographs, which were subsequently measured by JSM and 26 
a research assistant, neither of whom took part in collection of the behavioral and psychometric 27 
data. As described in the main text, appropriate photos with neutral expressions and forward-facing 28 

orientation were subsequently selected and measured for these subjects. fWHRs were then paired 29 
back with the remaining individual data after these measurements were completed.  30 
 31 
Organizational effects of androgen exposure on behavior and facial morphology could plausibly 32 

occur from the prenatal period until sexual maturity. We therefore sought to focus our analysis on 33 
sexually mature bonobos. Previous research on captive bonobos suggests that the onset of puberty 34 

is likely to occur from approximately 6-10 years of age, with the sharpest increase in urinary 35 
testosterone around 8-9 years of age for males and an earlier but more gradual increase in females 36 
[1]. We therefore excluded three 7 year old subjects from our final dataset who we could not 37 

confidently classify as sexually mature. This resulted in a final sample of 38 individuals across 38 
five social groups.  Demographic data on the resultant sample is provided below (Table S1). 39 

 40 
Table S1. Sample demographics. 41 
 42 

Zoo n # Males # Females Average age 

(range) 

Apenheul 5 2 3 19.6 (13-34) 

Frankfurt 7 2 5 25.6 (11-62) 

Planckendael 5 3 2 17.4 (10-27) 

Twycross 8 3 5 22 (10-36) 

Wilhelma 7 2 5 28.1 (11-48) 

Wuppertal 6 3 3 28.3 (12-49) 

Footnote. Age in listed in years. 43 

 44 
In the 22 subjects with available body weight measures, moderate to strong associations were also 45 

observed between sex and weight (r Biserial = 0.82) and fWHR and weight (r = 0.36). In our full 46 
sample, fWHR and sex exhibit a similarly sized association (r Biserial = 0.36). While the relationship 47 
between sex and fWHR may be mediated by body weight, as suggested by our primary regression 48 
model (M1; see below), testosterone is also a known cause of individual differences in body size 49 

[2]. It therefore remains unclear whether organizational androgen effects may be a latent common 50 
cause of these associations. The statistically uncertain sex effect reported in the main text, after 51 
conditioning on body weight, should therefore be cautiously interpreted. 52 

 53 

Scatterplots of our raw data provide initial support for the association between fWHR and both 54 

affiliative and agonistic dominance (Fig S1), but also suggest that the strength of affiliative 55 
dominance in particular is enhanced by controlling for sex, age and body weight. Consistent with 56 
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this interpretation, a clearer affiliative dominance association is observed with fWHR residuals 57 

after controlling for these factors (Fig S2).  58 

 59 
Fig S1. Scatterplots of fWHR and the social dominance measures. 60 

 61 

 62 
 63 

Footnote. Datapoints are colored separately for females (green) and males (blue). Social dominance 64 
measures are shown on the original data scale. 65 
 66 

Fig S2. Scatterplots of fWHR residuals and the social dominance measures. 67 

 68 

 69 
 70 

Footnote. Social dominance measures are standardized to 2 SD. resfWHR = residual fWHR controlling 71 
for age, sex, and body weight. 72 

 73 
It is important to emphasize that our agonistic dominance measure was analyzed using within-74 

group deviations rather than absolute scores. By centering individual scores within zoos, we 75 
effectively accounted for differential opportunities for agonistic encounters across zoos. This is 76 
necessary because the raw David’s scores used as a measure of agonistic dominance are contingent 77 
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upon the sample size within each zoo. As further described below, we did not find support for 78 

further zoo-specific effects in a random slopes model (M11 below). 79 
 80 

Statistical Analysis 81 
 82 

We estimated Bayesian linear measurement error models for all analyses using the R package 83 
‘brms’ [3], which interfaces with the Stan statistical programming language [4]. As noted in the 84 
main text, we employed a fully Bayesian approach to statistical estimation and inference. 85 
Therefore, rather than relying upon null hypothesis tests and arbitrary designations of statistical 86 
significance, we used multiple sources of information to summarize and draw inferences from our 87 

posterior model estimates [5]. The R Code and dataset for this manuscript have been provided as 88 
additional supplementary material and can be used to replicate all analyses described below. 89 
 90 

 91 
We examined the association between fWHR and measures of affiliative and agonistic dominance, 92 
while accounting for error in the measurement of fWHR across photos. In addition to these 93 
covariates, we also included fixed effects for years of age and sex in all models. We found that 94 

inclusion of random zoo-specific intercepts did not account for a meaningful degree of variance in 95 

fWHR (�̃�2 = 0.03 [MAD = 0.04]) and reduced the efficiency of MCMC model convergence. We 96 
therefore excluded this term from our statistical models. 97 

 98 
Our first  model (M0) excluded information on body weight to assess potential sexual dimorphism 99 
in fWHR irrespective of body size. We therefore estimated the following formal model structure 100 

conditional on the average fWHR measurement for subject i using Hamiltonian Markov Chain 101 
Monte Carlo.  102 

 103 

Model 0 (M0). Main effects without body weight covariate. 104 

 105 
 106 

fWHREST,𝑖 ~ Normal(𝜇𝑖, 𝜎) 107 

𝜇𝑖 = 𝛼 + 𝛽AssR + 𝛽wgDS + 𝛽Age + 𝛽Sex 108 

fWHROBS,𝑖 ~ Normal(fWHREST,𝑖, fWHRSD,𝑖) 109 

𝛼, 𝛽~Normal(0,2) 110 

𝜎~Half − Cauchy(0,2) 111 

Here, the expected subject-specific fWHR 𝜇𝑖 is represented as a function of the population-level 112 

intercept 𝛼 and population-level/fixed effects 𝛽 for Assertiveness scores of affiliative dominance 113 

(AssR), within-group David’s scores of agonistic dominance (wgDS), age, and sex. We account 114 
for measurement error in fWHR measurements by parameterizing observed fWHR measurements 115 

fWHROBS,𝑖 as arising from a normal distribution characterized by unknown mean parameter 116 

fWHREST,𝑖 and the standard deviation fWHRSD,𝑖 of fWHR measurements for each subject. This 117 

structure effectively accounts for uncertainty in our response variable while estimating the 118 
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regression parameters, and vice versa [5]. The expected measurement error for subjects with 119 

multiple photographs was assigned to 3 subjects with single photographs. Please note that we 120 

simplify specification of model priors to represent shared priors over fixed effects (𝛼, 𝛽) and 121 

residual and effects (𝜎). We also suppress observed covariate values to ease interpretation, so that 122 

terms such as 𝛽AssR implicitly denote 𝛽AssRAssR𝑖. 123 

 124 
For our primary analysis (M1), we then included body weight as an additional covariate to assess 125 
whether links between fWHR, sex, and social dominance were independent of body size. Recent 126 
body weight measures were only available for a subset of our sample, and we therefore used a 127 
Bayesian imputation procedure to avoid an appreciable loss of information and statistical power. 128 

We used an inclusive predictive model for estimating unmeasured body weights, incorporating all 129 
main effect terms in the primary regression model, so as to reduce systematic error and better 130 
approximate data missing completely at random (MCAR) [6]. We therefore estimated the 131 

following model conditional on our dataset 132 
 133 
 134 

Model 1 (M1). Main effects with body weight covariate. 135 
 136 

 137 
fWHREST,𝑖 ~ Normal(𝜇𝑖, 𝜎) 138 

𝜇𝑖 = 𝛼 + 𝛽AssR + 𝛽wgDS + 𝛽Age + 𝛽Sex + 𝛽Weight 139 

fWHROBS,𝑖 ~ Normal(fWHREST,𝑖, fWHRSD,𝑖) 140 

Weight𝑖 ~ Normal(𝜈𝑖, 𝜎Weight) 141 

𝜈𝑖 = 𝛼Weight + 𝛾AssR_𝜈 + 𝛾wgDS_𝜈 + 𝛾Age_𝜈 + 𝛾Sex_𝜈 + 𝛾fWHR_𝜈 142 

𝛼, 𝛽, 𝛾~Normal(0,2) 143 

𝜎~Half − Cauchy(0,2) 144 

Here, missing values for body weight are imputed using the regression function defined for the 145 

subject-specific expectation 𝜈𝑖, with random predictive uncertainty 𝜎Weight. Fixed effect terms in 146 

this predictive imputation model are noted by 𝛾, rather than the 𝛽 notation for fixed effects in the 147 
main fWHR model, to aid interpretation. 148 

 149 
Cohen’s f2 [7] were calculated as suggested by Selya and colleagues [8] to provide a standardized 150 
metric of local effect size 151 

𝑓2 =
𝑅𝐴𝐵
2 − 𝑅𝐴

2

1 − 𝑅𝐴𝐵
2  152 

Here 𝑅𝐴𝐵
2  is the variance explained by a model containing the parameter of interest B, and 𝑅𝐴

2 is 153 

the variance explained by a model of all other parameters A excluding B. An estimated 𝑓2 can be 154 

negative as the sampled posterior of 𝑅𝐴𝐵
2  may be smaller than 𝑅𝐴

2. For ease of interpretation, we 155 
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report negative values as 0 to denote that no support was found for a relative increase in the 156 

explanatory power of the model. 157 

 158 
Additional interaction effect models. 159 
 160 
For comparison with previous research on capuchins, we also estimated additional interaction 161 
models with sex-specific effects for affiliative (M2; see R Code for further details) and agonistic 162 

dominance (M3), as well as an interaction between these dominance measures (M4). Given that 163 
associations between personality and dominance rank have been found to vary across the lifespan 164 
[e.g., 9], we also fit supplementary exploratory models estimating interactions between age and 165 
affiliative (M5) and agonistic dominance (M6), as well as age by sex interactions with affiliative 166 
(M7) and agonistic dominance (M8). No clear interaction effects were observed across models. In 167 

addition to the absence of sex-specific interactions reported in the main text, we also did not find 168 

support for age interaction effects with affiliative (𝛽 = 0.03 [0.37], 90% CI [-0.57, 0.66], p>0 = 169 

0.54, 𝑓2̃ = 0) or agonistic dominance (𝛽 = 0.01 [0.35], 90% CI [-0.57, 0.58], p<0 = 0.51, 𝑓2̃ = 0). 170 

Sex-specific age interactions were also not present for affiliative (𝛽 = 0.14 [0.88], 90% CI [-1.28, 171 

1.60], p>0 = 0.56, 𝑓2̃= 0) or agonistic dominance (𝛽 = -0.20 [0.94], 90% CI [-1.75, 1.20], p>0 = 172 

0.59, 𝑓2̃ = 0). 173 

 174 
It is possible that such age by sex interactions for social dominance are non-linear across the 175 

lifespan, particularly for male bonobos. We therefore further explored non-linear sex by age 176 
interactions for affiliative (M9) and agonistic dominance (M10) using tensor product smoothing 177 
[10]. Given the difficulty of directly interpreting non-linear regression coefficients, we used the 178 

Watanabe-Akaike information criterion (WAIC) to conduct a fully Bayesian model comparison 179 
[11] between the main effects model (M1) and these more complex non-linear interaction models. 180 

As with other information criteria such as AIC or BIC, smaller values indicate greater relative 181 
model quality and expected predictive validity, such that WAIC Model A  – WAIC Model B  ≤ -2 182 

provides minimal support for selection of the more complex Model A. Consistent with the 183 
aforementioned results, we found that allowing for non-linear interaction effects did not 184 

meaningfully enhance the quality of our models and their expected predictive validity (WAICM9 – 185 
WAICM1 = 4.87 [SE = 9.33]; WAICM10 – WAICM1 = 5.85 [SE = 6.47]).  186 
 187 
Finally, although we used within-zoo centering on David’s scores, thus controlling for differential 188 

opportunities for agonistic encounters among zoos, it is possible that other unmeasured zoo-189 
specific effects could still confound our main results. We therefore also estimated a supplementary 190 
model (M11) examining whether random zoo-specific slopes between social dominance and 191 
fWHR enhanced model quality. In support of our main effects model (M1), we found that adding 192 
parameters for zoo-specific slopes reduced the expected predictive validity of our model 193 

(WAICM11 – WAICM1 = 4.89 [SE = 2.26]). 194 
 195 

Our data therefore do not provide support for more complex relationships between social 196 
dominance and fWHR than are described in our main effects model. For these reasons, we relied 197 
on M1 for drawing statistical inferences. Nonetheless, it is important to emphasize that our data 198 
provide only modest statistical power for detecting interaction and random slope effects, which 199 
would be more effectively examined in larger samples. 200 
 201 
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