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1 Parameter estimation
To obtain appropriate values for the parameters listed in Table 1, we require estimates for
all dimensional quantities in (3.1), (3.3) and (3.5). In lieu of an accurate experimental
measurement, we will assume that the thin-film parameter ε = 0.1. This is the same value
used in the extensional flow model of Ward and King [1], and signifies that the biofilm
thickness is an order of magnitude smaller than its radius. Accordingly, we also assume
the initial biofilm height is H0 = 0.1.

The experimental design also enables us to estimate several parameters. For example,
the mean initial biofilm radius across the thirteen experiments in Tam et al. [2] was
Rb = 2.875 mm. The radius of the medium on which the biofilms were grown was 41.5 mm
[3], giving R = 14.4. We use the physical properties of glucose to estimate parameters
related to the nutrients. Using the same method as Tam et al. [2], we estimate the
diffusion coefficient of glucose in agar to be Ds = 4.01× 10−2 mm2 ·min−1 [4, 5]. For
the mass transfer coefficient of nutrients within the biofilm, we cite Vicente et al. [6],
who estimate the mass transfer coefficient of glucose in a yeast (S. cerevisiae) floc to be
Q = 2.92× 10−3 mm ·min−1. Stewart [7] conducted a review of experimental measurements
of diffusivity in biofilms of different bacterial and fungal species. They found that the
average effective diffusivity of glucose in a microbial biofilm was 0.24Daq, where Daq =
4.04× 10−2 mm2 ·min−1 is the diffusivity of glucose in water [5]. Thus, a suitable estimate
is Db = 9.70× 10−3 mm2 ·min−1. This is of the same order of magnitude as an estimate
for colony of S. cerevisiae, which Vicente et al. [6] give as Db = 6.6× 10−3 mm2 ·min−1.

The cell production rate ψn and nutrient consumption rate η are chosen to minimise
the sum of squared differences between numerical solutions and the experimental data.
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2 Thin-film extensional flow

We found that the combination of ψn = 12.1 mm2 · g−1 ·min−1 and η = 3.7× 10−3 min−1

produced a local minimum in the error, and therefore we adopted these as our parameter
estimates. At the same time, we estimate the ECM production rate ψm using the
experimental observation that extracellular material occupies approximately 10% of mature
S. cerevisiae mats by volume, and therefore assume Ψm = 1/9. This is now sufficient to
determine representative values for all of the dimensionless parameters in Table 1.

2 Numerical method

As mentioned in §4 (a), before solving the 1D radial model numerically, we apply the
change of variables (4.1) to map both the biofilm and unoccupied Petri dish domains to
the unit interval. The governing equations to solve then become
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where gso denotes the nutrient concentration in the region of the substratum that is not
occupied by the biofilm. Under the change of variables (4.1), the initial conditions are

S(0) = 1, h(ξ, 0) = H0
(
1− ξ2

)
, φ̄n(ξ, 0) = 1,

gs(ξ, 0) = gso(ξo, 0) = 1, gb(ξ, 0) = 0,
(ESM–2.2)

the boundary conditions become

∂h

∂ξ

∣∣∣∣∣
(0,t)

= 0, ∂φ̄n

∂ξ

∣∣∣∣∣
(0,t)

= 0, ∂gs

∂ξ

∣∣∣∣∣
(0,t)

= 0, ∂gb

∂ξ

∣∣∣∣∣
(0,t)

= 0, ur(0, t) = 0,

∂gso
∂ξo

∣∣∣∣∣
(1,t)

= 0, ∂gb

∂ξ

∣∣∣∣∣
(1,t)

= 0,

4
S

∂ur

∂ξ

∣∣∣∣∣
(1,t)

+ 2ur(1, t)
S

= 2 (1 + Ψm) φ̄n(1, t)gb(1, t)−
γ∗

S2
∂

∂ξ

(
ξ
∂h

∂ξ

)∣∣∣∣∣
(1,t)

,

(ESM–2.3)

and we must also satisfy the continuity conditions
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Producing a numerical solution to the 1D axisymmetric extensional flow model then
requires solving the system (ESM–2.1), subject to (ESM–2.2)–(ESM–2.4), on ξ ∈ [0, 1],
ξo ∈ [0, 1], and t ∈ [0, T ].

We solve the model on equispaced grids in time and space. For the time domain, we
denote the discrete grid points by tk = (k−1)∆t, for k = 1, . . . , Nt, where ∆t = T/(Nt−1).
For both the biofilm and outer Petri dish domains, we define ξj = (j − 1)∆ξ and
ξoj = (j − 1)∆ξo for j = 1, . . . , Nξ, where ∆ξ = 1/(Nξ − 1) and ∆ξo = 1/(Nξo − 1), to
represent the discrete grid points. After prescribing the initial conditions, we first solve
(ESM–2.1f) to determine the initial fluid velocity. Following this, at each time step we
solve the equations in the order listed in (ESM–2.1), until the final time tNt = T is reached.

We discretise the governing equations using a finite difference Crank–Nicolson scheme.
Where necessary, we linearise nonlinear terms using data from the previous time step. In
the equations for h and ur, we first expand relevant derivative terms using the product
rule before discretising the equations. At the interior grid points j = 2, . . . Nξ − 1, the
numerical scheme then reads
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where we approximate terms at the half time points using
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and so on. In (ESM–2.5f), Γkj denotes the discretised surface tension term, which we
discuss in detail later. In conjunction with appropriate boundary schemes, each equation
in (ESM–2.5) describes a linear system to solve for the variables at t = tk.

We need to take particular care at domain boundaries to prevent spurious oscillations
appearing in the solution. At ξ = 0 and ξo = 0, we obtained the best results by
substituting the boundary conditions into discretised forms of the equations (ESM–2.1c)
and (ESM–2.1e), using one-sided differences for first derivative terms and introducing
fictitious grid points for second derivative terms. For (ESM–2.1a), (ESM–2.1b), (ESM–
2.1d) and (ESM–2.1f) we apply the relevant boundary conditions explicitly. Although the
equations (ESM–2.1c) and (ESM–2.1e) are singular at ξ = 0, we can use L’Hôpital’s rule
to evaluate the relevant terms as ξ → 0. The boundary schemes are then

−3hk1 + 4hk2 − hk3
2∆ξ = 0, (ESM–2.7a)
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2∆ξ = 0, (ESM–2.7b)
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where a is the value of gs(S(t), t). At ξ = 1 and ξo = 1, we solve the equations (ESM–
2.1a), (ESM–2.1b) and (ESM–2.1d) directly, again using one-sided differences for first
derivatives and introducing fictitious grid points for second derivatives. We apply the
Dirichlet condition for gs, and as (ESM–2.1e) is singular as h→ 0, we impose the boundary
condition for gb directly using a one-sided difference. We also obtained best results by
applying the zero radial stress condition directly at ξ = 1. The boundary schemes are then
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where ΓkNξ is the contribution of surface tension to the no radial stress boundary condition
in (ESM–2.3).

For the surface tension terms, we expand the derivative terms and write
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To compute the first spatial derivative of h, we use standard sixth-order accurate finite
difference formulae. We then use the same scheme to compute the higher derivatives
sequentially, that is
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where we represent differentiation operators with the finite difference scheme. When
γ∗ 6= 0, we required a larger number of time steps to produce solutions without spurious
oscillations in the surface tension term. Therefore, all solutions involving surface tension
were computed with Nξ = 1001 and Nt = 2000001. The convergence analysis in §2.1
suggests that this will produce solutions that are accurate to approximately 0.4% relative
error.

A feature of our model is that finding the nutrient concentration in the substratum
requires solving both (ESM–2.1c) and (ESM–2.1d), and ensuring that the continuity
conditions (ESM–2.4) are satisfied. To do this, we first solve (ESM–2.1c) and (ESM–
2.1d), in both cases assuming the Dirichlet conditions gs(1, tk) = gso(0, tk) = a, with
a = gs(1, tk−1), as an initial guess. To ensure continuity of the derivative, we define and
compute

f(a) = 1
R− S

∂gso
∂ξo

∣∣∣∣∣
(0,t)
− 1
S

∂gs

∂ξ

∣∣∣∣∣
(1,t)

, (ESM–2.11)

for the initial guess of a, with both derivatives in (ESM–2.11) approximated using second-
order one-sided finite differences. We then use Newton’s method to drive f(a) to zero,
where we approximate the required derivative numerically using

df
da = f(a+ δ)− f(a)

δ
, (ESM–2.12)

for δ = 1× 10−6, and iterate until a is accurate to 1× 10−6. This procedure allows us to
solve for gs over the entire Petri dish domain at each time step.

2.1 Convergence of the numerical method

The numerical solutions in §4 (a) were computed using Nξ = 8001 grid points and
Nt = 160001 time steps, giving ∆ξ = 1.25 × 10−4 and ∆t ≈ 1 × 10−4. To verify that
this is sufficient to produce a converged solution, we repeated the computation using a
range of grid spacings and time step sizes. In each case, we computed the contact line
position at t = 15.9, which yielded the results shown in Figure 2.1. The numerical scheme
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(a) Numerical results for ∆t ≈ 1× 10−4,
and ∆ξ → 0.
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(b) Numerical results for ∆ξ = 1.25×10−4,
and ∆t→ 0.

Figure 2.1: Convergence of the numerical scheme for the axisymmetric extensional flow
model. At each data point, we plot the biofilm radius attained at the experimental time
t = T.

exhibits linear convergence with both grid spacing and time step size. By fitting a straight
line to the data in Figure 2.1 and extrapolating, we can estimate the numerical contact
line position in the zero grid spacing and time step limit. Doing so, we find that when
∆t ≈ 1× 10−4, the estimated contact line position as ∆ξ → 0 is S(T ) = 13.1752. When
∆ξ = 1.25× 10−4, the estimated contact line position as ∆t→ 0 is S(T ) = 13.1678. As
these are within approximately 0.05% of each other and the numerical value for the chosen
grid spacing and time step size, S(T ) = 13.1681, we conclude that our numerical solution
is sufficiently converged.
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