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1. Additional Validation 

Drugs and mechanical stress 

Wu and colleagues [1] tested their model against data characterizing the effects of several drugs and 

mechanical stress on ASL thickness. Even though the focus of our work was quite different, we tested 

our model against these data. Table S1, which is adapted from Wu et al. [1], summarizes the drugs and 

their effects. Table S2 outlines the different perturbations and the corresponding simulation conditions 

applied to replicate them. The results of simulations with Model A are presented in Figure S1 and for 

Model B in Figure S2.  

 

Table S1. Drugs used to validate the model of Wu et al. [1].  

Drug  
 

Description Simulation conditions 

Apyrase Enzyme that rapidly catalyzes ATP into AMP. Increase of PI(4,5)P2 by 50%. Increase of ASL 
influx that is dependent of CFTR (V5) by 
50%. Decrease ASL influx that is 
independent of CFTR (V4) by 37.5%. 

Bumetanide Inhibitor of CL secretion (affecting both CaCC 
and CFTR). 

Decrease ASL influx that is independent of 
CFTR (V4) by 37.5% and set the ASL influx 
that is dependent of CFTR (V5) to zero. 

8-SPT 8 (p-sulfophenyl) theophylline; an ADO 
receptor antagonist. 

ASL influx that is dependent of CFTR (V5) 
decreased by 50%. 

Nystatin Ionophore that significantly increases Na+ 
absorption rate through membrane, bypassing 
ENaC. 

Increase the ASL outflux that is independent 
of ENaC (V7) by 100%. 

Aprotinin ENaC inhibiting protein, decreasing Na 
absorption. 

Decrease ENaC influx (V1) to 10%. 

Trypsin ENaC activating protein, increasing Na 
absorption. 

Increase the ENaC influx (V1) by 100%. 

DIDS 4,4-diisothiocyanostilbene-2,2-disulfonic acid; 
CaCC antagonist. 

Decrease ASL influx that is independent of 
CFTR (V4) by 37.5%. 

CFTRinh172 CFTR antagonist. ASL influx that is dependent of CFTR (V5) to 
zero. 
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Table S2. Perturbations and corresponding simulation conditions applied to replicate them. 

Perturbation 
 

Description Simulation conditions Data 
origin 

NL 

Data 
origin 

CF 

CSS Cyclic shear stress. Increases ATP in the 
ASL. ATP increase activates the P2Y2 
receptors that activate PLC, which in 
turn cleaves PI(4,5)P2 into IP3 and DAG. 
IP3 increases extracellular calcium that 
increases the action of CaCCs. DAG 
activates PKC that increases CFTR 
action. 

Reduction of PI(4,5)P2 to 50%. Increase 
of CFTR dependent ASL influx (V5) by 
50%. Increase of CFTR-independent ASL 
influx (V4) by 37.5%. 

[2] [2] 

CSS + 
CFTR_inh172 

CFTR antagonist that inhibits CFTR. 
Cyclic shear stress decreases PI(4,5)P2 
and activates CaCCs. 

Reduction of PI(4,5)P2 to 50%. Set CFTR-
dependent ASL influx (V5) to zero. 
Increase CFTR-independent ASL influx 
(V4) by 37.5%. 

[2] [2] 

CSS + 
CFTR_inh172 
+ DIDS 

Cyclic shear stress with CFTR and CaCC 
antagonist. PI(4,5)P2 is decreased. 

Reduction of PI(4,5)P2 to 50%. Set CFTR-
dependent ASL influx (V5) to zero. 
Decrease CFTR independent ASL influx 
(V4) by 37.5%. 

[2] [2] 

CSS + Apyrase Cyclic shear stress with a decrease in 
ATP and increase in ADO. We assume 
Apyrase metabolizes ATP fast enough 
to decrease it even under CSS. 

Increase of PI(4,5)P2 by 50%. Increase of 
CFTR-dependent ASL influx (V5) by 50% 
and decrease CFTR independent ASL 
influx (V4) by 37.5%. 

[2] [2] 

CSS + 8SPT Cyclic shear stress plus an ADO 
receptor antagonist. 

Reduction of PI(4,5)P2 to 50%. Decrease 
of CFTR-dependent ASL influx (V5) by 
50%. Increase CFTR independent ASL 
influx (V4) by 37.5%. 

[2] [2] 

CSS + 8SPT + 
Apyrase 

Cyclic shear stress plus an ADO 
receptor antagonist with a decrease in 
ATP and increase in ADO. 

Increase of PI(4,5)P2 by 50%. Decrease 
CFTR-dependent ASL influx (V5) by 50%. 
Increase CFTR-independent ASL influx 
(V4) by 37.5%. 

[2] [2] 

Bumetanide Inhibits CFTR and CaCC. Set CFTR-dependent ASL influx (V5) to 
zero. Decrease CFTR-independent ASL 
influx (V4) by 37.5%. 

[3] [4] 

Nystatin Ionophore that significantly increases 
Na absorption rate through membrane, 
bypassing ENaC. 

Increase the ENaC-independent ASL 
efflux (V7) by 200%. [3] [3] 

Trypsin + 
ADO300uM 

Trypsin increases the number of active 
ENaC channels. ADO increases the 
CFTR-dependent ASL influx. 

Increase the ENaC influx (V1) by 100%. 
Increase CFTR-dependent ASL influx (V5) 
by 50%. 

[3] [3] 

Aprotinin + 
ADO300uM 

Aprotinin decreases the number of 
active ENaC channels. ADO activates 
CFTR. 

Decrease ENaC influx (V1) to 10%. 
Increase CFTR-dependent ASL influx (V5) 
by 50%. 

[3] [3] 

Trypsin + 
ATP300uM 

Trypsin increases the number of active 
ENaC channels. ATP has an effect 
similar to cyclic shear stress. 

Increase the ENaC influx (V1) by 100%. 
Reduction of PI(4,5)P2 by 50%. Increase 
of CFTR-dependent ASL influx (V5) by 
50%. Increase CFTR-independent ASL 
influx (V4) by 37.5%. 

[3] [3] 

Aprotinin + 
ADO300uM 

Aprotinin decreases the number of 
active ENaC channels. ATP has an 
effect similar to cyclic shear stress. 

Decrease ENaC influx (V1) to 10%. 
Reduction of PI(4,5)P2 by 50%. Increase 
CFTR-dependent ASL influx (V5) by 50%. 
Increase CFTR-independent ASL influx 
(V4) by 37.5%. 

[3] [3] 
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Figure S1. Data and simulation results of mechanical stress and drug effects on ASL thickness in 
healthy (a) and CF (b) lungs (Model A). Adapted from Wu et al. [1]. Data are in black and model 
simulation results in blue. More information is presented in Tables S1 and S2.  

 

a 

b 
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Figure S2. Data and simulation results with of mechanical stress and drug effects on ASL thickness in 
healthy (a) and CF (b) lungs (Model B). Adapted from Wu et al. [1]. Data are presented in black and 
model simulation results in blue. More information is given in Tables S1 and S2. Compare these results 
to Figure S1 in the main text. 

a 

b 
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The perturbations corresponding to the addition of CSS and ATP are consistent with those used in 

Sections 3.2.4. and 3.2.5. In 3.2.4., we estimate a 50% increase in ATP and in CSS and confirm by 

comparisons with the CSS perturbation presented in Figure S1 that this perturbation would have the 

desired effect for this dataset. Consequently, the CSS perturbation for the HL dataset cannot be 

considered for model validation.  

As can be seen, only two of the eleven simulation results in the experiments on HL are within the 

confidence intervals and five out of twelve simulation results agreed with CF lungs experiments. The 

greatest discrepancies are the found in the Apyrase + CSS and 8SPT + CSS in HL and the Trypsin + 

ATP300μM and Apyrase + 8SPT + CSS perturbations in CF lungs. Apyrase perturbations also presented a 

poor fit in the model of Wu et al.  

Despite the discrepancies, these comparisons should be considered a positive result. Many of the model 

results miss the confidence intervals only by a very small margin. This is a surprising result, because the 

model was not designed to study mechanical stress to the lung tissue.    
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2. Additional Figures 

 

Figure S3. Results from Model B corresponding to ENaC activity and ASL time courses in HL and CF. The 
plots display model results (lines) of perturbations, superimposed on time course data of ASL thickness 
(symbols), under HL (A) and CF (B) conditions [4–7].  Compare these results to Figure 3 in the main text, 
which show the results for Model A. 
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Figure S4. Effects of different SPLUNC1 levels in ASL and ENaC in Model B. Choi et al. [8] increased the 
ASL thickness to 25 μm with different SPLUNC1 concentrations and then measured the ASL thickness 
after 4h (black symbols). The blue line represents the model predictions for ASL thickness after 4h that 
correspond to Choi’s data. The cyan line shows model predictions for ASL thickness when the model has 
returned to the steady state. The green curve in the bottom plot represents the model simulation for 
ENaC numbers at steady state. Compare these results to Figure 4 in the main text. 
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Figure S5. Consequences of an alternative parameterization of Model B. Both plot exhibits a 
comparison between model results (bars) and Almaça’s data [9] of ENaC activity for different PI(4,5)P2 
levels (means and confidence intervals). Panel A: Values for PI(4,5)P2 were set in order for the first two 
bars (HL) to match the data. The validation consists of the two bars on the right, which correspond to 
the CF situations. Panel B: A reduction by 15% of basal PI(4,5)P2 levels causes the predictions of the 
model to fall inside the confidence intervals reported by Almaça et al. [9]. Compare these results to 
Figure 5 in the main text. 
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Figure S6. ASL thickness in the presence of varying concentrations of recombinant SPLUNC1 in Model 
B. For each plot, the SPLUNC1 concentration is altered to the indicated value and the initial ASL 
thickness. Dots are data from the study of Choi and colleagues [8]. Model simulations are represented as 
blue lines. Compare these results to Figure 6 in the main text. 
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Figure S7. Simulation of Denufosol addition to ASL with Model B. Denufosol is an agonist of the P2Y2 

subtype of purinergic receptors. The top figure represents the rate of Denufosol addition to ASL, where 
1 represents the initial amount of the agonist. The bottom figure presents the results of the simulations. 
Blue and red lines represent the results in HL and CF from the model, while light blue and pink symbols 
display the results from a model proposed by Sandefur and colleagues [10]. Compare these results to 
Figure 7 in the main text. 
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Figure S8. ASL thickness in the absence and presence of 300 μM of ATP on normal and CF HBEC’s, as 
predicted by Model B. Bars show the model simulation results, intervals are data from Choi et al [8].  
Compare these results to Figure 8 in the main text. 
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Figure S9. Sensitivity of ASL with respect to PI(4,5)P2 and ENaC in Model B. The trends in the top panel 
show the effects of different levels of PI(4,5)P2 on ASL thickness for HL and CF in Model B. The trends in 
the bottom panel show the effects of different numbers of ENaC channels on ASL thickness, also in HL 
and CF in Model B. In the bottom figure, ENaC numbers were changed by varying the ENaC influx in the 
system, V1. ENaC numbers were artificially inflated in order to reach stabilization of ASL thickness 
values; thus, the trends for high numbers are very unlikely to occur in vivo. Compare these results to 
Figure 9 in the main text. 
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3. Methods 

3.1   Mathematical framework  

The model of ENaC/ASL dynamics was designed within the framework of Biochemical Systems Theory 

(BST) [11–15], using ordinary differential equations (ODEs) in the format of a generalized mass action 

(GMA) system. In this approach, each ODE describes the dynamics of a dependent variable Xi, which is 

formulated stoichiometrically as a sum of all fluxes that are directly related to this variable; furthermore, 

each flux vj is formulated as a power-law function, as indicated in Eq. ( 1 ). 

1 1

1
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ij

a a
i
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f

j j i
i

dX
n v m v

dt

v X

 





 

 

 


 ( 1 )  

Each parameter γj represents the rate constant of the corresponding flux vj. The effect of each substrate 

Xi on the flux is modeled by a kinetic order fij. If a particular Xi does not affect the flux, its kinetic order is 

0, which effectively removes the Xi from the power-law term. Furthermore, if a kinetic order is not 

explicitly shown, it is equal to 1. ns and mp are the stoichiometric coefficients for influxes and effluxes. a 

denote the number of fluxes. b and c represent the number of dependent and independent variables, 

respectively.  

 

3.2   Open-probability, Po, of ENAC 

For both models we determine Po of ENaC as a function of PI(4,5)P2 by fitting a sigmoidal (logistic) 

function to data published by Pochynyuk et al. (Table 2 and Figure S10) [16].  
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Figure S10. Open-probability function Po for ENaC. A logistic function (line) represents the effect of 

PI(4,5)P2 on Po well. Squares represent data points from Pochynyuk et al. [16].  

 

The resulting function (Eq. 2), in particular, predicts Po values close to 0 for very low levels of PI(4,5)P2 

and 1 for very high levels of PI(4,5)P2:  

   25.6 4 )0 (4 52 ,

0.96
(4,5)

1 786 e PI P
P P

e
PI

  

 

 ( 2 ) 

In reality, it is to be expected that the absence of PI(4,5)P2 will not completely shut down Po and that 

PI(4,5)P2 saturation will not permanently open every ENaC channel in the membrane. To account for 

these reality checks, we considered different bounds and found that the minimum and maximum 

observed Po’s (0.02 and 0.82, respectively) are still observed when PI(4,5)P2 tends toward 0 or 20,000, 

respectively. To create a function with this behavior, we added four points with ordinates equal to 0.02 

and abscissas equal to 1000, 2000, 3000 and 4000. We also added four points with ordinates equal to 

.82 and abscissas of 16000, 17000, 18000 and 19000. We allowed an additional term in the function to 

enable a lower asymptote greater than zero for low PI(4,5)P2 levels. The resulting function (Eq. 3) was 

used for both model variants. 
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Parameter values for the functions were obtained with the general optimization function (optim)  in R 

[17]. Initial values for the optimization where found with a TI-83 logistic regression.   

Use of an alternative CF specific ENaC open-probability function with a value of 0.6 for basal levels of 

PI(4,5)P2, as proposed in several reports [18–20], did not improve the comparison with PLC activation 

data (Figure 5), but compromised the adjustment to ASL thickness time courses in CF (Figure 3B). 

It is known that channels with different subunit stoichiometries may be present in the cell membrane 

[21] and that they could have different open-probability distributions. Given the lack of specific 

information and to avoid problems from overfitting, we only considered αβγ ENaC channels and 

assumed that any regulation that affects one of the subunits will affect the expression of the trimeric 

channel with the same magnitude [21].  

ENaC cleavage by furin and various extracellular proteases could possibly be regulatory mechanisms of 

ENaC’s Po [21–23]. SPLUNC1 may have a role in protecting ENaC from these proteases [24]. For 

simplicity, we did not consider these as part of the model but, given quantitative information, this role 

could certainly be introduced in future versions. Making the Po function dependent on the concentration 

of extracellular proteases as well could render the PI(4,5)P2 regulation more accurate in CF conditions. 

ENaC´s Po is also dependent on another phosphoinositide, PI(3,4,5)P3. We did not consider this 

regulation because we were interested in ENaC at the apical part of the plasma membrane of an 

epithelial cell, which is characterized by the absence or low levels of both PI(3,4,5)P3 and the enzyme 

responsible for its production, PI3KI [25].  

 

3.3   Parameter estimation 

The estimation of parameter values includes both steady-state data as well as dynamic information. If 

steady-state data were used exclusively, the model would clearly be non-identifiable. For example, 

parameters γ1, γ2 and γ3 are related through a set of steady-state equations (see Eqs. 5 and 6 below), so 

that different sets of parameter values would solve these equations and produce exactly the same 

steady-state values. However, constraining the parameter values with an estimated half-life of ENaC, 

unique parameter values are identified that fit the steady-state data and are consistent with the 
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temporal information. The use of dynamic information similarly constrains other parameter values as is 

demonstrated below. 

To calculate the value of SPLUNC1 we used the molecular mass 26713 Da, as it is listed in the database 

GENECARDS [26]. SPLUNC1 is present in epithelial airway secretions at concentrations of approximately 

10–250 µg/mL [27]. We choose 50 µg/mL because SPLUNC1 is usually present in small concentrations, 

but increases significantly upon infection by pathogenic microbes [28]. 

Values for the three parameters in the differential equation for ENaC were obtained by solving the 

corresponding steady-state equations using steady-state values of ENaC and ASL in HL and CF lungs from 

the literature (Table 2). The resulting two steady-state equations are not sufficient to solve for the 

values of the three parameters uniquely. To obtain a unique solution, we used information about the 

half-life of ENaC in HL (Table 2). Some of the ENaC half-life values in the literature appear to be very 

high, which could be due to the fact that they were measured in oocytes that were cultured in low 

temperatures, which is known to increase the half-life of ENaC [29]. A consequence of adopting high 

half-life values is that the transition from HL to CF will take a substantial amount of time. For example, 

with an ENaC half-life of 80 minutes, our model estimates that a subject would need more than a month 

to proceed from a HL-like to a CF-like steady state. With a shorter half-life of 20 minutes, this process 

will take only 14 days. This lower number is in accordance with the literature; for instance, Stoltz and 

colleagues [30] report that loss of CFTR does not directly increase activity of ENaC at the onset of 

disease. Thus, based on the range of estimates documented in the literature, we considered an ENaC 

half-life of t1/2 = 40 minutes in HL conditions. Assuming that ENaC degradation is well modeled by an 

exponential decay, we were able to calculate the overall rate of ENaC degradation γ (Eq. 4) from three 

equations (Eq. 5) that uniquely determine the values of γ1, γ2 and γ3 
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A similar approach was followed to determine the parameters for  model variant B (Eq. 6). In this model 

variant, ENaC effluxes are divided by the PI(4,5)P2 concentration to reflect that PI(4,5)P2 protects ENaC 

from ubiquitination. 
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The differential equation for ASL has four parameters. Similar to the case of ENaC, we used steady-state 

equations for ASL under HL and CF conditions. This system of two equations (Eq. 7) allowed us to 

express γ4 and γ7 parameter as functions of γ5 and γ6.  

4 5 6 2 7
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To estimate the remaining two parameters γ5 and γ6 , we adjusted their values to reproduce observed 

ASL dynamics data in HL and data from SPLUNC1 dose response experiences (Table 2), starting from 
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initial guesses of γ5 = 1e-2 and γ6 = 4e-4 molecules-1min-1 and gradually fitting the model to the data. The 

local Nelder-Mead optimizer identified the best solution as γ5 = 1.77e-2 and γ6 = 3.9e-4 molecules-1min-1. 

The four parameters associated with the differential equation for ASL are equal for both model variants. 

The complete list of model parameter values is presented in Table 1.  

 

3.4 Model conditions for experiments simulation presented in Figures 3 to 9  

For the simulations presented in Figures 3A and S3A, no alterations were made to the models except for 

each initial value of the ASL height, which was altered to match the initial ASL height of the experiments. 

The initial values were 22.59, 29.96, 24.28 and 31.17 m for the data sets that can be found in the 

following references [4–7]. 

For the results in Figures 3B and S3B, the models were set to simulate CF by setting SPLUNC1 and the 

rate constant γ5 to zero. As in the previous case, the only alteration made to the model’s parameters 

were each initial value of the ASL height. The initial values were 31.28, 25.99, 35.01 m and these data 

sets can be found in the same references [4–7].  

As indicated in Figures 4 and S4, Choi and colleagues [8] conducted a dose response analysis of SPLUNC1 

on ASL height 4h after a 25 μm increase in ASL thickness. We tested different values for SPLUNC1, 

altered the initial ASL thickness to 25 μm, and ran the simulation for 5,000 minutes, registering the ASL 

thickness at 4h and at the end of the simulation. We also registered ENaC numbers at the end of the 

simulation. 

For the results in Figures 5A and S5A, ENaC activity was measured in four situations. First, at basal 

conditions (PI(4,5)P2 = 10,000 molecules/μm2, SPLUNC = 7890 molecules/μm2, γ5 = 2.39e-2 μmmin-1). 

Second, a decrease in PI(4,5)P2 was found to match the data from Almaça (PI(4,5)P2 = 9,200 

molecules/μm2, SPLUNC = 7,890 molecules/μm2, γ5 = 2.39e-2 μmmin-1). Third, the models were set to 

simulate CF conditions with the basal level of PI(4,5)P2 (PI(4,5)P2 = 10,000 molecules/μm2, SPLUNC = 0 

molecules/μm2, γ5 = 0 μmmin-1). Forth, in CF the same decrease in PI(4,5)P2 was used as previously 

(PI(4,5)P2 = 9,200 molecules/μm2, SPLUNC = 0 molecules/μm2, γ5 = 0 μmmin-1). In Figures 5B and S5B, 

the same perturbations were used as in panel A but the reduction of PI(4,5)P2 in the second and fourth 

columns is more severe (PI(4,5)P2 = 8,500 molecules/μm2).  
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To gauge how the model would simulate time courses of ASL thickness with different concentrations of 

SPLUNC1, we altered the values of SPLUNC1 to 0.1, 10, 25 and 100 μM (60, 6,022, 15,055 and 60,221 

molecules per μm3 (Figures 6 and S6). We also altered the initial ASL thickness to match each 

experiment. Specifically, to calculate SPLUNC1 values for the simulations, we multiplied the numbers of 

molecules per μm3 by the corresponding ASL thickness. The ASL thicknesses for the different 

experiments were 22.17, 23.29 25.11 and 19.93 μm respectively. The numbers of SPLUNC1 molecules in 

each experiment were simulated as 1,334.98, 140,235.87, 377,969.59 and 1,200,216.87. All other 

parameters of the model remained unaltered.  

For Figures 7 and S7, we simulated Denufosol addition with our model to compare our results to 

Sandefur’s simulations [10]. To this end, we decreased PI(4,5)P2 and increased CFTR-dependent 

secretions in the same proportion as the concentration of the agonist: For instance, with a Denufosol 

concentration 60% above the initial value, PI(4,5)P2 is reduced to 60% and CFTR influx is increased by 

60%. The CFTR-independent influx to ASL is also increased by the action of the agonist but only with half 

the magnitude. For example, if the Denufosol concentration is 60% above the initial value, the CFTR-

independent influx is increased by 30%. We used the values for HL to find the perturbations, and the 

validation was done for the CF values. When assessing the results of these simulations, one should recall 

that our model was not designed for this purpose but to test the relationships between ASL, SPLUNC1, 

PI(4,5)P2 and ENaC, and therefore required more, somewhat indirect perturbations to assess the action 

of Denufosol.  

For the results in Figures 8 and S8, we simulated the addition of ATP as we did before for comparisons 

with the data of Sandefur and colleagues [10], namely by decreasing PI(4,5)P2 by 50%, increasing the 

CFTR-dependent influx to ASL by 50% and increasing the CFTR-independent influx to ASL by 37.5%.  

The simulation details associated with Figures S1 and S2 are presented in Tables S1 and S2. 

3.5   Sensitivity analysis 

Local sensitivity analysis was implemented as described in Chen et al. [31]. Briefly, parameter 

sensitivities were assessed numerically by increasing each parameter, one at a time, by 1% and 

computing the new steady state of the system. When the relative change in the steady-state value of a 

dependent variable is higher than 1% (or lower than -1%) the sensitivity indicates that a change in the 

parameter value is amplified in the steady-state value of the dependent variable. Smaller sensitivities 

indicate attenuation of a perturbation. 
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3.6 Model Implementation 

The model was implemented in the programming language R v3.1.0 [17] together with the package 

deSolve [32]. We used the ODE integration function with the LSODA method.  

Our model assumes that both ENaC and CFTR activities influence ASL height. In fact, decreased ASL 

height is the main CF phenotype in our model. The model furthermore takes into account that CF is 

caused by a loss of CFTR function and that this loss leads to ENaC increased activity. The model 

implements the regulation of ENaC by CFTR through SPLUNC1, but simulation results will also hold if this 

regulation is exerted through a different molecular mechanism. The regulatory structure suggests that 

our model is in accordance with the requirements for explaining CF mentioned by the reviewer. As our 

model is able to replicate a considerable set of experimental data in CF and healthy conditions, we are 

quite confident that our model results support that increased ENaC permeability together with loss of 

CFTR regulation are able to explain CF. 
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