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Proof of Proposition 1 For each c, extend µc to a probability measure µ(c) on
Q

q2Q Oq , for
example by choosing an arbitrary distribution for each observable q ⌃ c and then taking the
product measure. Identify the set of possible values for ⇤ (i.e., the space of hidden states) with the
Cartesian product

Q
c2C

⇣Q
q2Q Oq

⌘
, and let µ⇤ be the product measure on this space obtained

from the measures
n
µ(c) : c2 C

o
. Finally, define Fq (�, c) = �c,q . For any c, the conditional

distribution Pr [{Fq : q� c}|C = c] is equal to the distribution obtained from µ⇤ by projecting
Q

c02C

⇣Q
q2Q Oq

⌘
!

Q
q�c Oq (taking copy c from the outside product and marginalizing over

all q ⌃ c in the inside product), which by construction is µc.

Proof of Proposition 2 Sufficiency: Noncontextuality of M implies there exists a distribution
µ over all the observables such that its projection to the observables within each context c

equals the distribution µc. Define a context-free model with ⇤ ranging over
Q

q2Q Oq with
probability measure µ⇤ = µ, and with Fq (�) = �q for every q and �. Then the joint distribution
Pr [{Fq : q 2Q}] equals µ, and thus for any context c, the distribution Pr [{Fq : q� c}] equals µc.

Necessity: If M is a context-free model for M , then µc is the same distribution as
Pr [{Fq : q� c}|C = c], which in turn is the same as Pr [{Fq : q� c}] because the Fq do not depend
on C. Therefore µc equals the projection of Pr [{Fq : q 2Q}] to

Q
q�c Oq for all c, implying M is

noncontextual.

Proof of Proposition 3 In any context-free model for Mq , Fq is independent of C, implying
Pr [Fq|C = c] = Pr [Fq] (as distributions on Oq) for all c. Therefore Mc

q has the same distribution
for all c, implying consistent connectedness. Conversely, if M is consistently connected then for
each q we can define the probability measure µq on Oq that is the distribution shared by all Mc

q .
A model of Mq is then trivially constructed by letting ⇤ range over Oq with distribution µq and
taking Fq (�) = � for all �2Oq .

General Definition of Aligned Canonical Models and Hidden Influences Given an observable
q with arbitrary outcome space Oq and two contexts c, c0 � q, a canonical causal model
M is said to have hidden direct influences with respect to

�
q, c, c0

 
when there exists a

measurable set E ⇢Oq such that Pr [{� : Fq (�, c)2E}]> 0, Pr
⇥�

� : Fq
�
�, c0

�
2E

 ⇤
> 0, and

for every measurable subset E0
⇢E, either Pr

⇥�
� : Fq (�, c)2E0, Fq

�
�, c0

�
/2E0 ⇤> 0 and

Pr
⇥�

� : Fq (�, c) /2E0, Fq
�
�, c0

�
2E0 ⇤> 0, or else Pr

⇥�
� : Fq (�, c)2E0 ⇤=Pr

⇥�
� : Fq

�
�, c0

�

2E0⇤ = 0. A model is aligned if it has no hidden direct influences for any q, c, c0. This definition
is equivalent to Definition 9 in the main text when Oq is discrete, as can be seen by identifying E

with {v}.

Proof of Theorem 1 Let M be a consistently connected measurement system. By Proposition 3,
for each q there exists a context-free model Mq for Mq . The model Mq satisfies �c,c0 (Fq) = 0

for all c, c0 � q, and it can be arbitrarily extended to a model for the full system. Therefore, M is
M-noncontextual iff there exists a model for M with all direct influences equal to zero.
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If there exists a context-free model for M , all direct influences in this model are zero and
therefore M is M-noncontextual. Conversely, assume M is M-noncontextual a let M be a model
for M with all direct influences equal to zero. For each q and contexts c, c0 � q, define Ecc0

q =
�
� : Fq (�, c) = Fq

�
�, c0

� 
. By assumption, Pr

h
Ecc0
q

i
= 1. Because Q and C are assumed to be

countable, Pr [E] = 1, where E =
T

q,c,c0:q�c,c0 E
cc0
q . Now define a new model M0 by restricting

the range of ⇤ and the domain of every Fq (in the first argument) to E. By construction, M0 is a
context-free model for M .

Proof of Theorem 2 Fix and q and c, c� q, and let µc and µc0 respectively be the distributions of
Mc

q and Mc0
q , as probability measures on Oq . By the Hahn-Jordan decomposition theorem applied

to the signed measure µc
� µc0 , there exist a partition of the outcome space Oq =O

+
q tO

�
q

and positive measures µ+ and µ� such that µ+ �
O

�
q
�
= µ� �

O
+
q
�
= 0 and µc

� µc0 = µ+
� µ�.

Moreover, µ+ and µ� are unique. Define µ0 = µc
� µ+ = µc0

� µ�, which is necessarily a positive
measure, and define ↵= µ0 (Oq). We prove the following three statements:

(i) The minimal direct influence across all models for M is given by minM �c,c0 (Fq) = 1�

↵.
(ii) If a model M for M satisfies �c,c0 (Fq) = 1� ↵, then it contains no hidden influences

with respect to
�
q, c, c0

 
.

(iii) Conversely, if a model M for M contains no hidden influences with respect to
�
q, c, c0

 
,

then it satisfies �c,c0 (Fq) = 1� ↵ .

Together, these three statements imply that any model M for M is aligned iff it minimizes all
direct influences, which in turn implies the theorem.

Proof of Statement (i). Let M be any canonical model for M . The direct influence in M is
constrained by

�c,c0 (Fq)�Pr
hn

� : Fq (�, c)2O
+
q , Fq

�
�, c0

�
/2O

+
q

oi

�Pr
hn

� : Fq (�, c)2O
+
q

oi
� Pr

hn
� : Fq

�
�, c0

�
2O

+
q

oi

= µc
⇣
O

+
q

⌘
� µc0

⇣
O

+
q

⌘

= µ+
⇣
O

+
q

⌘
� µ�

⇣
O

+
q

⌘

= µ+ (Oq)

= µc (Oq)� µ0 (Oq)

= 1� ↵.

Therefore 1� ↵ is a lower bound for �c,c0 (Fq). To construct a model meeting this bound, let ⇤
range over Oq ⇥Oq and define Fq ((v1, v2) , c) = v1 and Fq

�
(v1, v2) , c

0�= v2 for all v1, v2 2Oq .
Let ⇡d :Oq !Oq ⇥Oq be the diagonal embedding ⇡d (v) = (v, v), and define the push-forward
measure µd = ⇡d

⇤
⇣
µ0
⌘

, so that µd (E) = µ0 ({v 2Oq : (v, v)2E}) for all measurable E ⇢Oq ⇥

Oq . Define a second measure µu on Oq ⇥Oq , generated by

µu (E1 ⇥ E2) =
µ+ (E1) · µ

� (E2)
1� ↵
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for all measurable E1, E2 ⇢Oq . Now define the distribution on ⇤ by Pr [⇤] = µd + µu. For any
measurable E ⇢Oq ,

Pr [Fq 2E|C = c] = µd (E ⇥Oq) + µu (E ⇥Oq)

= µ0 (E) +
µ+ (E) · µ� (Oq)

1� ↵

= µ0 (E) +
µ+ (E) ·

⇣
µc0(Oq)� µ0 (Oq)

⌘

1� ↵

= µc (E) .

A similar calculation shows Pr
⇥
Fq 2E

��C = c0
⇤
= µc0(E). Therefore M is a model for the

subsystem
n
Mc

q ,M
c0
q

o
, which can be arbitrarily extended to a model for the full system M . The

direct influence is given by

�c,c0 (Fq) = µd (Oq ⇥Oq)

=

⇣
µc (Oq)� µ0 (Oq)

⌘
·

⇣
µc0(Oq)� µ0 (Oq)

⌘

1� ↵

= 1� ↵.

Proof of Statement (ii). Assume M has hidden influences with respect to
�
q, c, c0

 
, and let

E be as given above in the General Definition of Hidden Influences. Define E+ =E \O
+
q

and E� =E \O
�
q . Because Pr [{� : Fq (�, c)2E}]> 0 and Pr

⇥�
� : Fq

�
�, c0

�
2E

 ⇤
> 0, it cannot

be that Pr
⇥�

� : Fq (�, c)2E+ ⇤=Pr
⇥�

� : Fq
�
�, c0

�
2E+ ⇤= 0 and Pr

⇥�
� : Fq (�, c)2E� ⇤=

Pr
⇥�

� : Fq
�
�, c0

�
2E� ⇤= 0. Without loss of generality, assume the former equality,

Pr
⇥�

� : Fq (�, c)2E+ ⇤=Pr
⇥�

� : Fq
�
�, c0

�
2E+ ⇤= 0, is false. Then the definition of hidden

influences implies Pr
⇥�

� : Fq (�, c) /2E+, Fq
�
�, c0

�
2E+ ⇤> 0. Because E+

⇢O
+
q , the sets�

� : Fq (�, c)2O
+
q , Fq

�
�, c0

�
/2O

+
q
 

and
�
� : Fq (�, c) /2E+, Fq

�
�, c0

�
2E+ are disjoint, so

we can bound the direct influence as �c,c0 (Fq)�Pr
⇥�

� : Fq (�, c)2O
+
q , Fq

�
�, c0

�
/2O

+
q
 ⇤

+

Pr
⇥�

� : Fq (�, c) /2E+, Fq
�
�, c0

�
2E+ ⇤. The proof of Statement 1 shows the former of these

probabilities is at least 1� ↵, and therefore we have �c,c0 (Fq)> 1� ↵. Thus we have shown
any model with hidden influences cannot satisfy �c,c0 (Fq) = 1� ↵.

Proof of Statement (iii). We first prove that Pr
⇥�

� : Fq (�, c) /2E,Fq
�
�, c0

�
2E

 ⇤
= 0 for any

measurable E ⇢O
+
q . To see this, assume the contrary, that Pr

⇥�
� : Fq (�, c) /2E,Fq

�
�, c0

�
2E

 ⇤
=

" with "> 0 for some E ⇢O
+
q . Using alignment of M, the probability " can be squeezed

into successively smaller subsets of E so as to produce a contradiction. Specifically,
define a property S with S

�
E0� being the statement that E0 is a measurable subset

of E with Pr
⇥�

� : Fq (�, c) /2E,Fq
�
�, c0

�
2E \ E0 ⇤= 0. Note that S is preserved under

countable intersection and that S
�
E0� implies Pr

⇥�
� : Fq (�, c) /2E,Fq

�
�, c0

�
2E0 ⇤= ". If we

define � = inf
�
Pr

⇥�
� : Fq (�, c)2E0 ⇤ : S

�
E0� , then the countable intersection property just

stated implies there exists a set E0 ⇢E meeting this bound: Pr [{� : Fq (�, c)2E0}] = � and
Pr

⇥�
� : Fq (�, c) /2E,Fq

�
�, c0

�
2E0

 ⇤
= ". If � > 0, then alignment of M implies there are no

hidden influences within E0; that is, there exists E1 ⇢E0 such that Pr [{� : Fq (�, c)2E1}]>

0 or Pr
⇥�

� : Fq
�
�, c0

�
2E1

 ⇤
> 0, and also Pr

⇥�
� : Fq (�, c) /2E1, Fq

�
�, c0

�
2E1

 ⇤
= 0 or

Pr
⇥�

� : Fq (�, c)2E1, Fq
�
�, c0

�
/2E1

 ⇤
= 0. Because E1 ⇢O

+
q , Pr [{� : Fq (�, c)2E1}]�Pr [{� :

Fq
�
�, c0

�
2E1

 ⇤
, which implies that the former relation in each of the two disjunctions just given

holds: Pr [{� : Fq (�, c)2E1}]> 0 and Pr
⇥�

� : Fq (�, c) /2E1, Fq
�
�, c0

�
2E1

 ⇤
= 0. This in turn

implies S (E0 \ E1) and Pr [{� : Fq (�, c)2E0 \ E1}]< �, contradicting the definition of �. On
the other hand, if � = 0 then Pr [{� : Fq (�, c)2E0}]<Pr

⇥�
� : Fq

�
�, c0

�
2E0

 ⇤
, contradicting the

fact that E0 ⇢O
+
q . Therefore the supposed set E ⇢O

+
q with Pr

⇥�
� : Fq (�, c) /2E,Fq

�
�, c0

�
2E

 ⇤

> 0 cannot exist.
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Next, let (En)n2N be a countable basis for O
+
q , using the assumption that Oq is second-

countable. Take any v1 2Oq and v2 2O
+
q with v1 6= v2. Because Oq is Hausdorff, there exists

be an open neighborhood N of v2 not containing v1. Because (En)n2N is a basis for O
+
q ,

there exists some Em with v2 2Em ⇢N \O
+
q and hence also v1 /2Em. This shows that�

� : Fq
�
�, c0

�
2O

+
q , Fq (�, c) 6= Fq

�
�, c0

� 
is a subset of

S
n

�
� : Fq (�, c) /2En, Fq

�
�, c0

�
2En

 
.

Therefore

Pr
hn

� : Fq
�
�, c0

�
2O

+
q , Fq (�, c) 6= Fq

�
�, c0

�oi


X

n

Pr
⇥�

� : Fq (�, c) /2En, Fq
�
�, c0

�
2En

 ⇤

= 0,

which in turn implies

Pr
hn

� : Fq (�, c) = Fq
�
�, c0

�
2O

+
q

oi
=Pr

hn
� : Fq

�
�, c0

�
2O

+
q

oi

= µ0
⇣
O

+
q

⌘
.

A parallel argument shows Pr
⇥�

� : Fq (�, c) = Fq
�
�, c0

�
2O

�
q
 ⇤

= µ0 �
O

�
q
�
. Therefore the total

direct influence in M for q, c, c0 is given by

�c,c0 (Fq) = 1� Pr
⇥�

� : Fq (�, c) = Fq
�
�, c0

� ⇤

= 1� Pr
hn

� : Fq (�, c) = Fq
�
�, c0

�
2O

+
q

oi
� Pr

hn
� : Fq (�, c) = Fq

�
�, c0

�
2O

�
q

oi

= 1� µ0
⇣
O

+
q

⌘
� µ0

⇣
O

�
q

⌘

= 1� ↵.

General Definition of Aligned Partitioned Models and Hidden Signals Given an observer k,
an observable q 2Qk with arbitrary outcome space Oq , and contexts c and c0 with ck = c0k = q, a
partitioned model M̃ is said to have hidden signals with respect to

�
k, c, c0

 
when there exists

a measurable set E ⇢Oq such that Pr
hn

� : F̃k (�, c)2E
oi

> 0, Pr
hn

� : F̃k
�
�, c0

�
2E

oi
> 0,

and for every measurable subset E0
⇢E, either Pr

hn
� : F̃k (�, c)2E0, F̃k

�
�, c0

�
/2E0

oi
> 0 and

Pr
hn

� : F̃k (�, c) /2E0, F̃k
�
�, c0

�
2E0

oi
> 0, or else Pr

hn
� : F̃k (�, c)2E0

oi
=Pr

hn
� : F̃k

�
�, c0

�

2E0 ⇤= 0. A partitioned model is aligned if it has no hidden signals for any k, c, c0. This
definition is equivalent to Definition 14 in the main text when Oq is discrete for all q 2Qk, as
can be seen by identifying E with {v}.

Proof of Proposition 4 If M is noncontextual, then Proposition 2 implies there exists a context-
free canonical model M for M . The corresponding partitioned model M̃ is easily seen to be a
model for M with no signaling. Conversely, if there is a partitioned model M̃ for M that has no
signaling, the corresponding canonical model M is context-free, and Proposition 2 then implies
M is noncontextual.

Proof of Theorem 3 Let M̃ be any partitioned model for M , with M the corresponding
canonical model. As observed in the main text, direct influence in M and signaling in M̃ exactly
correspond, in that �̃c,c0

⇣
F̃k

⌘
=�c,c0 (Fq) whenever ck = c0k = q. Therefore M̃ minimizes all

signaling iff M minimizes all direct influences. The theorem then follows from the definition
of M-noncontextuality, as the existence of such an M.

Proof of Theorem 4 If M̃ is an aligned partitioned model for M , then the corresponding
canonical model M is also aligned, implying M is M-noncontextual by Theorem 2. Conversely, if
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M is M-noncontextual, there exists an aligned canonical model M for M by Theorem 2, and the
corresponding partitioned model M̃ is also aligned.

Proof of Proposition 5 First part: Let (⌦,⌃, P ) be the sample space for the jointly distributed
random variables composing T , such that each T c

q is a function ⌦!Oq . Define M by letting ⇤

range over ⌦ with distribution P and defining each Fq by Fq (�, c) = T c
q (�) for c� q and choosing

arbitrary values for Fq (�, c) for c⌥ q (for all �2⌦). Then for any context c and measurable
subsets Vq ⇢Oq ,

Pr [8q� c (Fq 2 Vq)|C = c] = Pr [{� : 8q� c (Fq (�, c)2 Vq)}]

= Pr
⇥�

� : 8q� c
�
T c
q (�)2 Vq

� ⇤

=Pr
⇥
8q� c

�
T c
q 2 Vq

�⇤

=Pr
⇥
8q� c

�
Mc

q 2 Vq
�⇤

.

Therefore M is a model for M . For any q and c, c0 � q, the claimed equality holds:

�c,c0 (Fq) = Pr
⇥�

� : Fq (�, c) 6= Fq
�
�, c0

� ⇤

=Pr
hn

� : T c
q (�) 6= T c0

q (�)
oi

=Pr
h
T c
q 6= T c0

q

i
.

Second part: Given M= (⇤, C, {Fq}), let ⌦ = {�} be the range of ⇤ with P =Pr [⇤] the
associated probability measure on ⌦ and ⌃ the sigma-algebra of measurable sets of values for ⇤.
Then (⌦,⌃, P ) defines a sample space. For each q and c� q, define a random variable T c

q on this
sample space by T c

q (�) = Fq (�, c). Then derivations similar to those above show that T =
�
T c
q
 

is a coupling for M and that �c,c0 (Fq) = Pr
h
T c
q 6= T c0

q

i
for all q and c, c0 � q.

Proof of Theorem 5 If M is M-noncontextual, then there exists a canonical causal model M for
M that simultaneously minimizes all direct influences. The corresponding coupling T provided
by Proposition 5 minimizes Pr

h
T c
q 6= T c0

q

i
for all q and c, c0 � q. Therefore Tq is multimaximal for

all q, implying M is CbD-noncontextual. Conversely, if M is CbD-noncontextual then there exists
a coupling T for M such that Tq is multimaximal for all q, implying Pr

h
T c
q 6= T c0

q

i
is minimal

for all c, c0 � q. The corresponding canonical model M provided by Proposition 5 minimizes
�c,c0 (Fq) for all q and c, c0 � q, implying M is M-noncontextual.

Proof of Theorem 6 The theorem follows directly from Theorems 2 and 5: CbD-contextuality is
equivalent to M-contextuality, which is equivalent to the non-existence of an aligned model.
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