Relating Causal and Probabilistic Approaches to Contextuality

Supplementary Material

Matt Jones (mcj@colorado.edu)

University of Colorado Boulder

Proof of Proposition 1 For each c, extend μ_c to a probability measure $\mu^{(c)}$ on $\prod_{q \in \mathcal{Q}} \mathcal{O}_q$, for example by choosing an arbitrary distribution for each observable $q \not\prec c$ and then taking the product measure. Identify the set of possible values for Λ (i.e., the space of hidden states) with the Cartesian product $\prod_{c \in \mathcal{C}} (\prod_{q \in \mathcal{Q}} \mathcal{O}_q)$, and let μ_Λ be the product measure on this space obtained from the measures $\{\mu^{(c)} : c \in \mathcal{C}\}$. Finally, define $F_q(\lambda, c) = \lambda_{c,q}$. For any c, the conditional distribution $\Pr[\{F_q : q \prec c\} | C = c]$ is equal to the distribution obtained from μ_Λ by projecting $\prod_{c' \in \mathcal{C}} (\prod_{q \in \mathcal{Q}} \mathcal{O}_q) \rightarrow \prod_{q \prec c} \mathcal{O}_q$ (taking copy c from the outside product and marginalizing over all $q \not\prec c$ in the inside product), which by construction is μ_c .

Proof of Proposition 2 Sufficiency: Noncontextuality of M implies there exists a distribution μ over all the observables such that its projection to the observables within each context c equals the distribution μ_c . Define a context-free model with Λ ranging over $\prod_{q \in Q} \mathcal{O}_q$ with probability measure $\mu_{\Lambda} = \mu$, and with $F_q(\lambda) = \lambda_q$ for every q and λ . Then the joint distribution $\Pr[\{F_q : q \in Q\}]$ equals μ , and thus for any context c, the distribution $\Pr[\{F_q : q \prec c\}]$ equals μ_c .

Necessity: If \mathcal{M} is a context-free model for M, then μ_c is the same distribution as $\Pr[\{F_q : q \prec c\} | C = c]$, which in turn is the same as $\Pr[\{F_q : q \prec c\}]$ because the F_q do not depend on C. Therefore μ_c equals the projection of $\Pr[\{F_q : q \in \mathcal{Q}\}]$ to $\prod_{q \prec c} \mathcal{O}_q$ for all c, implying M is noncontextual.

Proof of Proposition 3 In any context-free model for M_q , F_q is independent of C, implying $\Pr[F_q|C=c] = \Pr[F_q]$ (as distributions on \mathcal{O}_q) for all c. Therefore M_q^c has the same distribution for all c, implying consistent connectedness. Conversely, if M is consistently connected then for each q we can define the probability measure μ_q on \mathcal{O}_q that is the distribution shared by all M_q^c . A model of M_q is then trivially constructed by letting Λ range over \mathcal{O}_q with distribution μ_q and taking $F_q(\lambda) = \lambda$ for all $\lambda \in \mathcal{O}_q$.

General Definition of Aligned Canonical Models and Hidden Influences Given an observable q with arbitrary outcome space \mathcal{O}_q and two contexts $c, c' \succ q$, a canonical causal model \mathcal{M} is said to have hidden direct influences with respect to $\{q, c, c'\}$ when there exists a measurable set $E \subset \mathcal{O}_q$ such that $\Pr[\{\lambda : F_q(\lambda, c) \in E\}] > 0$, $\Pr[\{\lambda : F_q(\lambda, c') \in E\}] > 0$, and for every measurable subset $E' \subset E$, either $\Pr[\{\lambda : F_q(\lambda, c) \in E', F_q(\lambda, c') \notin E'\}] > 0$ and $\Pr[\{\lambda : F_q(\lambda, c) \notin E', F_q(\lambda, c') \in E'\}] > 0$, or else $\Pr[\{\lambda : F_q(\lambda, c) \in E'\}] = \Pr[\{\lambda : F_q(\lambda, c') \notin E'\}] > 0$ and $\Pr[\{\lambda : F_q(\lambda, c) \notin E', F_q(\lambda, c') \in E'\}] > 0$, or else $\Pr[\{\lambda : F_q(\lambda, c) \in E'\}] = \Pr[\{\lambda : F_q(\lambda, c') \notin E'\}] = 0$. A model is aligned if it has no hidden direct influences for any q, c, c'. This definition is equivalent to Definition 9 in the main text when \mathcal{O}_q is discrete, as can be seen by identifying E with $\{v\}$.

Proof of Theorem 1 Let *M* be a consistently connected measurement system. By Proposition 3, for each *q* there exists a context-free model \mathcal{M}_q for M_q . The model \mathcal{M}_q satisfies $\Delta_{c,c'}(F_q) = 0$ for all $c, c' \succ q$, and it can be arbitrarily extended to a model for the full system. Therefore, *M* is M-noncontextual iff there exists a model for *M* with all direct influences equal to zero.

2

If there exists a context-free model for M, all direct influences in this model are zero and therefore M is M-noncontextual. Conversely, assume M is M-noncontextual a let \mathcal{M} be a model for M with all direct influences equal to zero. For each q and contexts $c, c' \succ q$, define $E_q^{cc'} = \{\lambda : F_q(\lambda, c) = F_q(\lambda, c')\}$. By assumption, $\Pr\left[E_q^{cc'}\right] = 1$. Because \mathcal{Q} and \mathcal{C} are assumed to be countable, $\Pr\left[E\right] = 1$, where $E = \bigcap_{q,c,c':q \prec c,c'} E_q^{cc'}$. Now define a new model \mathcal{M}' by restricting the range of Λ and the domain of every F_q (in the first argument) to E. By construction, \mathcal{M}' is a context-free model for M.

Proof of Theorem 2 Fix and q and $c, c \succ q$, and let μ^c and $\mu^{c'}$ respectively be the distributions of M_q^c and $M_q^{c'}$, as probability measures on \mathcal{O}_q . By the Hahn-Jordan decomposition theorem applied to the signed measure $\mu^c - \mu^{c'}$, there exist a partition of the outcome space $\mathcal{O}_q = \mathcal{O}_q^+ \sqcup \mathcal{O}_q^-$ and positive measures μ^+ and μ^- such that $\mu^+ (\mathcal{O}_q^-) = \mu^- (\mathcal{O}_q^+) = 0$ and $\mu^c - \mu^{c'} = \mu^+ - \mu^-$. Moreover, μ^+ and μ^- are unique. Define $\mu^0 = \mu^c - \mu^+ = \mu^{c'} - \mu^-$, which is necessarily a positive measure, and define $\alpha = \mu^0 (\mathcal{O}_q)$. We prove the following three statements:

- (i) The minimal direct influence across all models for *M* is given by $\min_{\mathcal{M}} \Delta_{c,c'}(F_q) = 1 \alpha$.
- (ii) If a model \mathcal{M} for M satisfies $\Delta_{c,c'}(F_q) = 1 \alpha$, then it contains no hidden influences with respect to $\{q, c, c'\}$.
- (iii) Conversely, if a model \mathcal{M} for M contains no hidden influences with respect to $\{q, c, c'\}$, then it satisfies $\Delta_{c,c'}(F_q) = 1 \alpha$.

Together, these three statements imply that any model M for M is aligned iff it minimizes all direct influences, which in turn implies the theorem.

<u>Proof of Statement (i)</u>. Let \mathcal{M} be any canonical model for M. The direct influence in \mathcal{M} is constrained by

$$\begin{split} \Delta_{c,c'} \left(F_q \right) &\geq \Pr\left[\left\{ \lambda : F_q \left(\lambda, c \right) \in \mathcal{O}_q^+, F_q \left(\lambda, c' \right) \notin \mathcal{O}_q^+ \right\} \right] \\ &\geq \Pr\left[\left\{ \lambda : F_q \left(\lambda, c \right) \in \mathcal{O}_q^+ \right\} \right] - \Pr\left[\left\{ \lambda : F_q \left(\lambda, c' \right) \in \mathcal{O}_q^+ \right\} \right] \\ &= \mu^c \left(\mathcal{O}_q^+ \right) - \mu^{c'} \left(\mathcal{O}_q^+ \right) \\ &= \mu^+ \left(\mathcal{O}_q^+ \right) - \mu^- \left(\mathcal{O}_q^+ \right) \\ &= \mu^+ \left(\mathcal{O}_q \right) \\ &= \mu^c \left(\mathcal{O}_q \right) - \mu^0 \left(\mathcal{O}_q \right) \\ &= 1 - \alpha. \end{split}$$

Therefore $1 - \alpha$ is a lower bound for $\Delta_{c,c'}(F_q)$. To construct a model meeting this bound, let Λ range over $\mathcal{O}_q \times \mathcal{O}_q$ and define $F_q((v_1, v_2), c) = v_1$ and $F_q((v_1, v_2), c') = v_2$ for all $v_1, v_2 \in \mathcal{O}_q$. Let $\pi^d : \mathcal{O}_q \to \mathcal{O}_q \times \mathcal{O}_q$ be the diagonal embedding $\pi^d(v) = (v, v)$, and define the push-forward measure $\mu^d = \pi^d_*(\mu^0)$, so that $\mu^d(E) = \mu^0(\{v \in \mathcal{O}_q : (v, v) \in E\})$ for all measurable $E \subset \mathcal{O}_q \times \mathcal{O}_q$. Define a second measure μ^u on $\mathcal{O}_q \times \mathcal{O}_q$, generated by

$$\mu^{u} (E_{1} \times E_{2}) = \frac{\mu^{+} (E_{1}) \cdot \mu^{-} (E_{2})}{1 - \alpha}$$

for all measurable $E_1, E_2 \subset \mathcal{O}_q$. Now define the distribution on Λ by $\Pr[\Lambda] = \mu^d + \mu^u$. For any measurable $E \subset \mathcal{O}_q$,

$$\Pr[F_q \in E | C = c] = \mu^d (E \times \mathcal{O}_q) + \mu^u (E \times \mathcal{O}_q)$$
$$= \mu^0 (E) + \frac{\mu^+ (E) \cdot \mu^- (\mathcal{O}_q)}{1 - \alpha}$$
$$= \mu^0 (E) + \frac{\mu^+ (E) \cdot \left(\mu^{c'}(\mathcal{O}_q) - \mu^0 (\mathcal{O}_q)\right)}{1 - \alpha}$$
$$= \mu^c (E) .$$

A similar calculation shows $\Pr[F_q \in E | C = c'] = \mu^{c'}(E)$. Therefore \mathcal{M} is a model for the subsystem $\{M_q^c, M_q^{c'}\}$, which can be arbitrarily extended to a model for the full system M. The direct influence is given by

$$\Delta_{c,c'}(F_q) = \mu^d \left(\mathcal{O}_q \times \mathcal{O}_q\right)$$
$$= \frac{\left(\mu^c \left(\mathcal{O}_q\right) - \mu^0 \left(\mathcal{O}_q\right)\right) \cdot \left(\mu^{c'}\left(\mathcal{O}_q\right) - \mu^0 \left(\mathcal{O}_q\right)\right)}{1 - \alpha}$$
$$= 1 - \alpha.$$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Proof of Statement (ii).} \mbox{Assume \mathcal{M} has hidden influences with respect to $\{q,c,c'$, and let E be as given above in the General Definition of Hidden Influences. Define $E^+ = E \cap \mathcal{O}_q^+$ and $E^- = E \cap \mathcal{O}_q^-$. Because $\Pr[\{\lambda: F_q(\lambda,c) \in E\}] > 0$ and $\Pr[\{\lambda: F_q(\lambda,c') \in E\}] > 0$, it cannot be that $\Pr[\{\lambda: F_q(\lambda,c) \in E^+\}] = \Pr[\{\lambda: F_q(\lambda,c') \in E^+\}] = 0$ and $\Pr[\{\lambda: F_q(\lambda,c) \in E^-\}] = 0$. Without loss of generality, assume the former equality, $\Pr[\{\lambda: F_q(\lambda,c) \in E^+\}] = 0$. Without loss of generality, assume the former equality, $\Pr[\{\lambda: F_q(\lambda,c) \in E^+\}] = \Pr[\{\lambda: F_q(\lambda,c') \in E^+\}] = 0$, is false. Then the definition of hidden influences implies $\Pr[\{\lambda: F_q(\lambda,c) \notin E^+, F_q(\lambda,c') \in E^+\}] = 0$. Because $E^+ \subset \mathcal{O}_q^+$, the sets $\{\lambda: F_q(\lambda,c) \in \mathcal{O}_q^+, F_q(\lambda,c') \notin \mathcal{O}_q^+\}$ and $\{\lambda: F_q(\lambda,c) \notin E^+, F_q(\lambda,c') \in E^+\}$ are disjoint, so we can bound the direct influence as $\Delta_{c,c'}(F_q) \ge \Pr[\{\lambda: F_q(\lambda,c) \in \mathcal{O}_q^+, F_q(\lambda,c') \notin \mathcal{O}_q^+\}]$. The proof of Statement 1 shows the former of these probabilities is at least $1 - \alpha$, and therefore we have $\Delta_{c,c'}(F_q) > 1 - \alpha$. Thus we have shown any model with hidden influences cannot satisfy $\Delta_{c,c'}(F_q) = 1 - \alpha$.} \end{array}$

Proof of Statement (iii). We first prove that $\Pr\left[\left\{\lambda: F_q(\lambda, c) \notin E, F_q(\lambda, c') \in E\right\}\right] = 0$ for any measurable $E \subset \mathcal{O}_q^+$. To see this, assume the contrary, that $\Pr\left[\left\{\lambda : F_q(\lambda, c) \notin E, F_q(\lambda, c') \in E\right\}\right] =$ ε with $\varepsilon > 0$ for some $E \subset \mathcal{O}_q^+$. Using alignment of \mathcal{M} , the probability ε can be squeezed into successively smaller subsets of E so as to produce a contradiction. Specifically, define a property S with S(E') being the statement that E' is a measurable subset of E with $\Pr\left[\left\{\lambda: F_q(\lambda, c) \notin E, F_q(\lambda, c') \in E \setminus E'\right\}\right] = 0$. Note that S is preserved under countable intersection and that S(E') implies $\Pr\left[\left\{\lambda: F_q(\lambda, c) \notin E, F_q(\lambda, c') \in E'\right\}\right] = \varepsilon$. If we define $\beta = \inf \{ \Pr [\{\lambda : F_q(\lambda, c) \in E'\}] : S(E') \}$, then the countable intersection property just stated implies there exists a set $E_0 \subset E$ meeting this bound: $\Pr[\{\lambda : F_q(\lambda, c) \in E_0\}] = \beta$ and $\Pr\left[\left\{\lambda: F_q(\lambda, c) \notin E, F_q(\lambda, c') \in E_0\right\}\right] = \varepsilon. \text{ If } \beta > 0, \text{ then alignment of } \mathcal{M} \text{ implies there are no}$ hidden influences within E_0 ; that is, there exists $E_1 \subset E_0$ such that $\Pr[\{\lambda : F_q(\lambda, c) \in E_1\}] >$ 0 or $\Pr\left[\left\{\lambda: F_q\left(\lambda, c'\right) \in E_1\right\}\right] > 0$, and also $\Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \notin E_1, F_q\left(\lambda, c'\right) \in E_1\right\}\right] = 0$ or $\Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1, F_q\left(\lambda, c'\right) \notin E_1\right\}\right] = 0. \text{ Because } E_1 \subset \mathcal{O}_q^+, \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in E_1\right\}\right] \ge \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \in$ $F_q(\lambda, c') \in E_1$, which implies that the former relation in each of the two disjunctions just given holds: $\Pr\left[\left\{\lambda: F_q(\lambda, c) \in E_1\right\}\right] > 0$ and $\Pr\left[\left\{\lambda: F_q(\lambda, c) \notin E_1, F_q(\lambda, c') \in E_1\right\}\right] = 0$. This in turn implies $S(E_0 \setminus E_1)$ and $\Pr[\{\lambda : F_q(\lambda, c) \in E_0 \setminus E_1\}] < \beta$, contradicting the definition of β . On the other hand, if $\beta = 0$ then $\Pr[\{\lambda : F_q(\lambda, c) \in E_0\}] < \Pr[\{\lambda : F_q(\lambda, c') \in E_0\}]$, contradicting the fact that $E_0 \subset \mathcal{O}_q^+$. Therefore the supposed set $E \subset \mathcal{O}_q^+$ with $\Pr\left[\left\{\lambda : F_q(\lambda, c) \notin E, F_q(\lambda, c') \in E\right\}\right]$ > 0 cannot exist.

3

Next, let $(E_n)_{n\in\mathbb{N}}$ be a countable basis for \mathcal{O}_q^+ , using the assumption that \mathcal{O}_q is secondcountable. Take any $v_1 \in \mathcal{O}_q$ and $v_2 \in \mathcal{O}_q^+$ with $v_1 \neq v_2$. Because \mathcal{O}_q is Hausdorff, there exists be an open neighborhood N of v_2 not containing v_1 . Because $(E_n)_{n\in\mathbb{N}}$ is a basis for \mathcal{O}_q^+ , there exists some E_m with $v_2 \in E_m \subset N \cap \mathcal{O}_q^+$ and hence also $v_1 \notin E_m$. This shows that $\{\lambda: F_q(\lambda, c') \in \mathcal{O}_q^+, F_q(\lambda, c) \neq F_q(\lambda, c')\}$ is a subset of $\bigcup_n \{\lambda: F_q(\lambda, c) \notin E_n, F_q(\lambda, c') \in E_n\}$. Therefore

$$\Pr\left[\left\{\lambda: F_q\left(\lambda, c'\right) \in \mathcal{O}_q^+, F_q\left(\lambda, c\right) \neq F_q\left(\lambda, c'\right)\right\}\right] \leq \sum_n \Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) \notin E_n, F_q\left(\lambda, c'\right) \in E_n\right\}\right]$$
$$= 0,$$

which in turn implies

$$\Pr\left[\left\{\lambda: F_q\left(\lambda, c\right) = F_q\left(\lambda, c'\right) \in \mathcal{O}_q^+\right\}\right] = \Pr\left[\left\{\lambda: F_q\left(\lambda, c'\right) \in \mathcal{O}_q^+\right\}\right]$$
$$= \mu^0\left(\mathcal{O}_q^+\right).$$

A parallel argument shows $\Pr\left[\left\{\lambda: F_q(\lambda, c) = F_q(\lambda, c') \in \mathcal{O}_q^-\right\}\right] = \mu^0(\mathcal{O}_q^-)$. Therefore the total direct influence in \mathcal{M} for q, c, c' is given by

$$\begin{aligned} \Delta_{c,c'} \left(F_q \right) &= 1 - \Pr\left[\left\{ \lambda : F_q \left(\lambda, c \right) = F_q \left(\lambda, c' \right) \right\} \right] \\ &= 1 - \Pr\left[\left\{ \lambda : F_q \left(\lambda, c \right) = F_q \left(\lambda, c' \right) \in \mathcal{O}_q^+ \right\} \right] - \Pr\left[\left\{ \lambda : F_q \left(\lambda, c \right) = F_q \left(\lambda, c' \right) \in \mathcal{O}_q^- \right\} \right] \\ &= 1 - \mu^0 \left(\mathcal{O}_q^+ \right) - \mu^0 \left(\mathcal{O}_q^- \right) \\ &= 1 - \alpha. \end{aligned}$$

General Definition of Aligned Partitioned Models and Hidden Signals Given an observer k, an observable $q \in Q_k$ with arbitrary outcome space \mathcal{O}_q , and contexts c and c' with $c_k = c'_k = q$, a partitioned model $\tilde{\mathcal{M}}$ is said to have hidden signals with respect to $\{k, c, c'\}$ when there exists a measurable set $E \subset \mathcal{O}_q$ such that $\Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c) \in E\right\}\right] > 0$, $\Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c') \notin E\right\}\right] > 0$, and for every measurable subset $E' \subset E$, either $\Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c) \in E', \tilde{F}_k(\lambda, c') \notin E'\right\}\right] > 0$ and $\Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c) \notin E', \tilde{F}_k(\lambda, c') \in E'\right\}\right] > 0$, or else $\Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c) \in E'\right\}\right] = \Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c') \notin E'\right\}\right] > 0$ and $\Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c) \notin E', \tilde{F}_k(\lambda, c') \in E'\right\}\right] > 0$, or else $\Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c) \in E'\right\}\right] = \Pr\left[\left\{\lambda : \tilde{F}_k(\lambda, c') \notin E'\right\}\right] = 0$. A partitioned model is aligned if it has no hidden signals for any k, c, c'. This definition is equivalent to Definition 14 in the main text when \mathcal{O}_q is discrete for all $q \in Q_k$, as can be seen by identifying E with $\{v\}$.

Proof of Proposition 4 If *M* is noncontextual, then Proposition 2 implies there exists a contextfree canonical model \mathcal{M} for *M*. The corresponding partitioned model $\tilde{\mathcal{M}}$ is easily seen to be a model for *M* with no signaling. Conversely, if there is a partitioned model $\tilde{\mathcal{M}}$ for *M* that has no signaling, the corresponding canonical model \mathcal{M} is context-free, and Proposition 2 then implies *M* is noncontextual.

Proof of Theorem 3 Let $\tilde{\mathcal{M}}$ be any partitioned model for M, with \mathcal{M} the corresponding canonical model. As observed in the main text, direct influence in \mathcal{M} and signaling in $\tilde{\mathcal{M}}$ exactly correspond, in that $\tilde{\Delta}_{c,c'}\left(\tilde{F}_k\right) = \Delta_{c,c'}\left(F_q\right)$ whenever $c_k = c'_k = q$. Therefore $\tilde{\mathcal{M}}$ minimizes all signaling iff \mathcal{M} minimizes all direct influences. The theorem then follows from the definition of M-noncontextuality, as the existence of such an \mathcal{M} .

Proof of Theorem 4 If $\tilde{\mathcal{M}}$ is an aligned partitioned model for M, then the corresponding canonical model \mathcal{M} is also aligned, implying M is M-noncontextual by Theorem 2. Conversely, if

4

M is M-noncontextual, there exists an aligned canonical model \mathcal{M} for M by Theorem 2, and the corresponding partitioned model $\tilde{\mathcal{M}}$ is also aligned.

Proof of Proposition 5 First part: Let (Ω, Σ, P) be the sample space for the jointly distributed random variables composing T, such that each T_q^c is a function $\Omega \to \mathcal{O}_q$. Define \mathcal{M} by letting Λ range over Ω with distribution P and defining each F_q by $F_q(\lambda, c) = T_q^c(\lambda)$ for $c \succ q$ and choosing arbitrary values for $F_q(\lambda, c)$ for $c \nvDash q$ (for all $\lambda \in \Omega$). Then for any context c and measurable subsets $V_q \subset \mathcal{O}_q$,

$$\begin{aligned} \Pr\left[\forall q \prec c \left(F_q \in V_q\right) | C = c\right] &= \Pr\left[\left\{\lambda : \forall q \prec c \left(F_q \left(\lambda, c\right) \in V_q\right)\right\}\right] \\ &= \Pr\left[\left\{\lambda : \forall q \prec c \left(T_q^c \left(\lambda\right) \in V_q\right)\right\}\right] \\ &= \Pr\left[\forall q \prec c \left(T_q^c \in V_q\right)\right] \\ &= \Pr\left[\forall q \prec c \left(M_q^c \in V_q\right)\right].\end{aligned}$$

Therefore \mathcal{M} is a model for M. For any q and $c, c' \succ q$, the claimed equality holds:

$$\Delta_{c,c'} (F_q) = \Pr \left[\left\{ \lambda : F_q (\lambda, c) \neq F_q (\lambda, c') \right\} \right]$$
$$= \Pr \left[\left\{ \lambda : T_q^c (\lambda) \neq T_q^{c'} (\lambda) \right\} \right]$$
$$= \Pr \left[T_q^c \neq T_q^{c'} \right].$$

Second part: Given $\mathcal{M} = (\Lambda, C, \{F_q\})$, let $\Omega = \{\lambda\}$ be the range of Λ with $P = \Pr[\Lambda]$ the associated probability measure on Ω and Σ the sigma-algebra of measurable sets of values for Λ . Then (Ω, Σ, P) defines a sample space. For each q and $c \succ q$, define a random variable T_q^c on this sample space by $T_q^c(\lambda) = F_q(\lambda, c)$. Then derivations similar to those above show that $T = \{T_q^c\}$ is a coupling for M and that $\Delta_{c,c'}(F_q) = \Pr\left[T_q^c \neq T_q^{c'}\right]$ for all q and $c, c' \succ q$.

Proof of Theorem 5 If M is M-noncontextual, then there exists a canonical causal model \mathcal{M} for M that simultaneously minimizes all direct influences. The corresponding coupling T provided by Proposition 5 minimizes $\Pr\left[T_q^c \neq T_q^{c'}\right]$ for all q and $c, c' \succ q$. Therefore T_q is multimaximal for all q, implying M is CbD-noncontextual. Conversely, if M is CbD-noncontextual then there exists a coupling T for M such that T_q is multimaximal for all q, implying $\Pr\left[T_q^c \neq T_q^{c'}\right]$ is minimal for all $c, c' \succ q$. The corresponding canonical model \mathcal{M} provided by Proposition 5 minimizes $\Delta_{c,c'}(F_q)$ for all q and $c, c' \succ q$, implying M is M-noncontextual.

Proof of Theorem 6 The theorem follows directly from Theorems 2 and 5: CbD-contextuality is equivalent to M-contextuality, which is equivalent to the non-existence of an aligned model.