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Proof of Proposition 1 For each ¢, extend p. to a probability measure u(c) on quQ Oy, for
example by choosing an arbitrary distribution for each observable ¢ £ ¢ and then taking the
product measure. Identify the set of possible values for A (i.e., the space of hidden states) with the

Cartesian product [] .. (H 7€Q Oq) , and let 114 be the product measure on this space obtained

from the measures { o ce C}. Finally, define Fy (\,¢) = Ac,q. For any ¢, the conditional
distribution Pr[{Fy:q < c}|C =] is equal to the distribution obtained from ;14 by projecting
[lece (H 4€0 (’)q) — [I;<. Oq (taking copy c from the outside product and marginalizing over
all ¢ £ cin the inside product), which by construction is yc.

Proof of Proposition 2 Sufficiency: Noncontextuality of M implies there exists a distribution
w over all the observables such that its projection to the observables within each context ¢
equals the distribution pic. Define a context-free model with A ranging over [] .o Og with
probability measure p4 = p1, and with Fy (A\) = Aq for every ¢ and A. Then the joint distribution
Pr [{Fy : ¢ € Q}] equals y, and thus for any context ¢, the distribution Pr [{F}; : ¢ < ¢}] equals pec.

Necessity: If M is a context-free model for M, then p. is the same distribution as
Pr[{Fy : ¢ < c}|C = ], which in turn is the same as Pr [{ F§; : ¢ < c}] because the F; do not depend
on C. Therefore p. equals the projection of Pr [{Fy : g € Q}] to [], . Oq for all ¢, implying M is
noncontextual.

g=<c

Proof of Proposition 3 In any context-free model for My, Fy is independent of C, implying
Pr [Fy|C = ] = Pr [Fy] (as distributions on Oy) for all c. Therefore M{ has the same distribution
for all ¢, implying consistent connectedness. Conversely, if M is consistently connected then for
each g we can define the probability measure jq on Oy that is the distribution shared by all M¢.
A model of My is then trivially constructed by letting A range over O, with distribution 4 and
taking Fyy (A) = A forall A € Oq.

General Definition of Aligned Canonical Models and Hidden Influences Given an observable
g with arbitrary outcome space O, and two contexts c, ¢ > ¢, a canonical causal model
M is said to have hidden direct influences with respect to {gq,c,c’} when there exists a
measurable set E C Oy such that Pr[{\: Fy (A, c) € E}| >0, Pr[{X: Fy (A, ) € E}] >0, and
for every measurable subset E'C E, either Pr[{\:F;(\,c)€E',F;(\,d)¢ E'}] >0 and
Pr[{X:Fy(\c) 2 E',Fg (\, ) €E'}] >0, or else Pr[{\: F; (\,¢c)€ E'}] =Pr [{x:F; (\,¢)
ck /} } = 0. A model is aligned if it has no hidden direct influences for any ¢, c, ¢'. This definition
is equivalent to Definition 9 in the main text when Oy is discrete, as can be seen by identifying £
with {v}.

Proof of Theorem 1 Let M be a consistently connected measurement system. By Proposition 3,
for each g there exists a context-free model Mg for My. The model My satisfies A, . (Fy) =0
for all ¢,¢’ > g, and it can be arbitrarily extended to a model for the full system. Therefore, M is
M-noncontextual iff there exists a model for M with all direct influences equal to zero.
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If there exists a context-free model for M, all direct influences in this model are zero and
therefore M is M-noncontextual. Conversely, assume M is M-noncontextual a let M be a model
for M with all direct influences equal to zero. For each ¢ and contexts ¢, ¢’ > ¢, define Eg =

{X:Fy (XN ¢)=Fy (X ¢)}. By assumption, Pr [Egcl} =1. Because Q and C are assumed to be

countable, Pr[E] =1, where E=(, . .1..<c o Egc,. Now define a new model M’ by restricting
the range of A and the domain of every Fy (in the first argument) to E. By construction, M’ is a
context-free model for M.

Proof of Theorem 2 Fix and g and ¢, ¢ > g, and let u© and ;f/ respectively be the distributions of
Mg and M, g/ , as probability measures on Og. By the Hahn-Jordan decomposition theorem applied
to the signed measure ;€ — uc/, there exist a partition of the outcome space Oy =0Oj U Oy
and positive measures " and p~ such that ™ (07 ) =p~ (OF ) =0 and p° — u =pt -
Moreover, ;1™ and p~ are unique. Define pl = p¢ — pt =p¢ — =, whichis necessarily a positive
measure, and define a = 11° (O,). We prove the following three statements:

(i) The minimal direct influence across all models for M is given by minpyq A, o (Fg) =1 —
a.
(ii) If a model M for M satisfies A, . (Fy) =1 — «, then it contains no hidden influences
with respect to {q, c,c’}.
(iii) Conversely, if a model M for M contains no hidden influences with respect to {q, e, },
then it satisfies A, o (Fg)=1— .

Together, these three statements imply that any model M for M is aligned iff it minimizes all
direct influences, which in turn implies the theorem.

Proof of Statement (i). Let M be any canonical model for M. The direct influence in M is
constrained by

XiFy (A Q) €OF Fy (A ) ¢ OF }]

X Fy(Ae eO+H r[{hiF () e of ]

(Oq)
= Mc (Oq) - MO (Oq)
=1—a.

Therefore 1 — « is a lower bound for A, ./ (Fy). To construct a model meeting this bound, let A
range over Oy x Oq4 and define Fy ((v1,v2),c) =v1 and Fy ((v1,v2),¢") =vs for all v1, v € Oy.
Let 7% : Og — 04 x Oy be the diagonal embedding 7?4 (v) = (v,v), and define the push-forward
measure p = ¢ (MO), so that u? (E) = u® ({ve Oy : (v,v) € E}) for all measurable E C Oy x
Oyq. Define a second measure u* on Qg4 X (’)q, generated by

P (B - p” (B2)

u —
(E1 X Ep) = 1o
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for all measurable Ey, E2 C O4. Now define the distribution on A by Pr[A] = u? + p®. For any
measurable E C O,

Pr[Fy € B|C =d=p’ (B x Og) + " (E x Og)

1 (B) - p” (Og)

=’ (B) + 1~ a

+ E) - o 0,) — 0 10)
o) (ul<_2> 1 (0g))
=p°(E)

A similar calculation shows Pr[Fy; € E|C =] = 1€ (E). Therefore M is a model for the
subsystem {M;, Mgl }, which can be arbitrarily extended to a model for the full system M. The
direct influence is given by

Ac,c’ (Fq) = /J'd (Oq X OQ)

(ri00-10(00) (00 - 0)

11—«

=1—a.

Proof of Statement (ii). Assume M has hidden influences with respect to {q, c, c’}, and let
E be as given above in the General Definition of Hidden Influences. Define E* = En O,
and E~ = EN Oy . Because Pr [{\: Fy (A\,c) € E}]>0and Pr [{\: F; (\,¢') € E}] >0, it cannot
be that Pr [{A: Fy (\,c) e ET}| =Pr[{X\: F; (\,d) €ET}]=0and Pr [{X: Fy (\,c) eE™}] =
Pr[{X:F; (A, )€ E7}]=0. Without loss of generality, assume the former equality,
Pr{X:Fy(\c)e EY}] =Pr[{A:F; (\,¢) € ET}] =0, is false. Then the definition of hidden
influences implies Pr [{\: Fy (\,c)¢ ET,Fy (\,¢) € ET}] >0. Because ET C Of, the sets
INiFy(\e) €O Fg (N )¢ 05} and {X\:F;(\c)¢ ET,F; (\,¢) € ET} are disjoint, so
we can bound the direct influence as A. s (Fy) >Pr [{A:Fy (A, ¢) € OF , Fy (\,c') ¢ OF }] +
Pr[{X:Fy(\c)¢ ET,F; (A c) € ET}]. The proof of Statement 1 shows the former of these
probabilities is at least 1 — «, and therefore we have A, ./ (Fy) > 1 — a. Thus we have shown
any model with hidden influences cannot satisfy A. . (Fy) =1 — o

Proof of Statement (iii). We first prove that Pr [{\: F; (\,c) € E, Fy (\,¢') € E}] =0 for any
measurable E C OF . To see this, assume the contrary, that Pr [{\: F; (\,¢) € E, Fy (\,c/) € E}] =
e with € >0 for some EC Of. Using alignment of M, the probability ¢ can be squeezed
into successively smaller subsets of E so as to produce a contradiction. Specifically,
define a property S with S (E’) being the statement that E’ is a measurable subset
of E with Pr[{\:F;(\c)¢E,F;(\c)eE\E}]=0. Note that S is preserved under
countable intersection and that S (E’) implies Pr [{\: Fy (\,¢) ¢ E, Fy (\,¢') € E'}] =e. If we
define B =inf {Pr [{\: F; (\,c) € E'}] : S (E')}, then the countable intersection property just
stated implies there exists a set Eg C E meeting this bound: Pr[{\: Fy (A, c) € Eg}] =0 and
Pr[{X:F;(\ )¢ E, Fy (\ () € Eg}] =e. If B> 0, then alignment of M implies there are no
hidden influences within FEjy; that is, there exists F1 C Eg such that Pr[{\: Fy; (\,¢) € E1}] >
0 or Pr[{X:F;(\c)€Ei}] >0, and also Pr[{\:F;(\c)¢E1,Fy(A\c)€E}]=0 or
Pr[{\: Fy (\ c) € B1, Fy (A, ¢) ¢ E1}] =0.Because Ey C O, Pr[{\: Fy (A, ¢) € E1}] > Pr[{\:
Fy (X, ) € E1}], which implies that the former relation in each of the two disjunctions just given
holds: Pr[{X: Fy (A, c) € E1}] >0 and Pr[{\: Fy (A, ¢) ¢ E1, Fy (A\,¢') € E1}] =0. This in turn
implies S (Ep \ E1) and Pr[{\: Fy (\,c) € Ep \ E1}] < B, contradicting the definition of 3. On
the other hand, if 8 =0 then Pr [{\: Fy; (\,¢) € Eo}] <Pr [{X: Fy (), ) € Ey}], contradicting the
fact that By C O . Therefore the supposed set E C OF with Pr [{\: F; (\,¢) ¢ E, F; (\,¢) € E}]
> 0 cannot exist.
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Next, let (En), oy be a countable basis for O, using the assumption that Oy is second-
countable. Take any v1 € Oy and vg € O;r with v; # ve. Because Oy is Hausdorff, there exists
be an open neighborhood N of vy not containing v;. Because (En)nEN is a basis for (’)[1" ,
there exists some E,, with vy € E,, CN ﬂO[}' and hence also v; ¢ Ep,. This shows that
{N:Fy (AN ) €OF, Fy (X ) # Fy (A )} is a subset of U, {\: Fy (\,¢) ¢ En, Fy (\,¢') € En}.
Therefore

Pr[{XiFy (A ) €OF Fy (00 # Fy (A ) ] < DT Pr[{0i By (0, 0) € B, Fy (A ) € Bn}l]

=0,

which in turn implies
Pr[{X:Fy (o) = Fy (A &) eof ] =Pr [{ni B (A ) € OF }]
= uo (O;‘) .

A parallel argument shows Pr [{\: Fy (\,¢) = F; (\,¢/) € O }] = 1° (07 ). Therefore the total
direct influence in M for ¢, c, ¢ is given by

A (Fg)=1=Pr[{A: Fy(\e)=Fg (\¢)}]
=1-Pr[{x: R () =Fy (A ) € Of H = Pr[{X: By (o) = Fy (A &) € 0 }]
(o) -0 o)

=1—-a.

General Definition of Aligned Partitioned Models and Hidden Signals Given an observer k,
an observable g € Qy, with arbitrary outcome space Oy, and contexts ¢ and ¢’ with ¢, =c}, =¢, a
partitioned model M is said to have hidden signals with respect to {k,c,c’} when there exists

a measurable set £ C Oy such that Pr [{)\ (Fp (M) e E}] >0, Pr [{)\ (Fy, (A ) e EH >0,
and for every measurable subset E' C F, either Pr [{)\ By, (\c) e E, F ()\, c’) ¢ E’H >0 and

Pr [{,\ (N o) ¢ E Ry (A ) € E’}] > 0, or else Pr [{,\ (Fy(\ o) e E’H =Pr [{/\ LBy (A )

€ E'}] =0. A partitioned model is aligned if it has no hidden signals for any k,c,c’. This
definition is equivalent to Definition 14 in the main text when Oy is discrete for all g € Qy, as
can be seen by identifying E with {v}.

Proof of Proposition 4 If M is noncontextual, then Proposition 2 implies there exists a context-
free canonical model M for M. The corresponding partitioned model M is easily seen to be a
model for M with no signaling. Conversely, if there is a partitioned model M for M that has no
signaling, the corresponding canonical model M is context-free, and Proposition 2 then implies
M is noncontextual.

Proof of Theorem 3 Let M be any partitioned model for M, with M the corresponding
canonical model. As observed in the main text, direct influence in M and signaling in M exactly
correspond, in that Ac,c’ (Fk) = A, o (Fy) whenever ¢, = c;C = ¢. Therefore M minimizes all
signaling iff M minimizes all direct influences. The theorem then follows from the definition
of M-noncontextuality, as the existence of such an M.

Proof of Theorem 4 If M is an aligned partitioned model for M, then the corresponding
canonical model M is also aligned, implying M is M-noncontextual by Theorem 2. Conversely, if
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M is M-noncontextual, there exists an aligned canonical model M for M by Theorem 2, and the
corresponding partitioned model M is also aligned.

Proof of Proposition 5 First part: Let (2, X, P) be the sample space for the jointly distributed
random variables composing T, such that each Ty is a function 2 — O. Define M by letting A
range over {2 with distribution P and defining each F; by Fy; (X, c) =Ty () for ¢ > g and choosing
arbitrary values for Fy (A, ¢) for ¢ q (for all A € £2). Then for any context ¢ and measurable
subsets V; C Oy,

Pr|Vg<c(Fq € Vy)|C=c]=Pr[{X:Yg<c(Fg(\c)eVy)}
=Pr [{A:Vg=<c(T5 (\) € Vg)}]
= Pr[vg < (T5 € Vy)]
=Pr[Vg=<c(MgeVy)].
Therefore M is a model for M. For any g and ¢, ¢’ > g, the claimed equality holds:
Acr (Fy)=Pr [{X: Fy (\e) # Fy (A ¢) )]
—Pr H/\ TSN AT (A)}]
=pr |15 ATy |

Second part: Given M = (A, C, {Fy}), let 2={\} be the range of A with P =Pr[A] the
associated probability measure on {2 and ¥ the sigma-algebra of measurable sets of values for A.
Then ({2, X, P) defines a sample space. For each ¢ and c > ¢, define a random variable T;; on this
sample space by Ty (X) = Fy (X, ¢). Then derivations similar to those above show that T'= {7} }

is a coupling for and that ’ =Pr ' ora and c,c > q.
i pling for M and that A, . (Fy) =P [T;;AT;]f llgand e, > q

Proof of Theorem 5 If M is M-noncontextual, then there exists a canonical causal model M for
M that simultaneously minimizes all direct influences. The corresponding coupling 7" provided

by Proposition 5 minimizes Pr [ch #* ch,] for all ¢ and ¢, ¢’ > q. Therefore T} is multimaximal for
all ¢, implying M is CbD-noncontextual. Conversely, if M is CbD-noncontextual then there exists
a coupling T for M such that T is multimaximal for all g, implying Pr [ch # chl] is minimal
for all ¢,¢’ > q. The corresponding canonical model M provided by Proposition 5 minimizes
A o (Fy) forall gand c, ¢’ = q, implying M is M-noncontextual.

Proof of Theorem 6 The theorem follows directly from Theorems 2 and 5: CbD-contextuality is
equivalent to M-contextuality, which is equivalent to the non-existence of an aligned model.
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