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Text S1 Polyandry and Sperm Competition with an Arbitrary Number of Mating1

Partners2

Polyandry Let fn,k denote the frequency of a female mating with n males of which k are drive3

males. To calculate fn,k , we need to know the probability that a female mates with n mating4

partners (where n ∈ {1 . . . nmax}), which we determine with parameter φn (with
∑n

1 φn = 1). We5

assume here that the mating process is random. Because we only have two types of (fertile) males,6

the probability that a female encounters k t-Sry males in her sample of n mating partners follows7

a binomial distribution. For a given mating combination n, k , we thus have8

fn,k = φn

(
n

k

)
y k(1− y)n−k . (S1)

For example, the probability that a female encounters two drive males (k = 2) if she mates with9

three males overall (n = 3) will be f3,2 = φn3y2(1− y).10

Sperm Competition and Gene Drive The genotypic outcome of a given mating combination n, k11

will depend on the probability of fertilization by a t sperm, denoted by pn,k . It depends on the12

level of gene drive s (where s = 0.5 denotes Mendelian inheritance and s = 1 represents complete13

drive) and sperm competitiveness r (see below). w/t and w/w males contribute the fraction14

k
n and n−k

n , respectively, to the sperm pool (viable and non-viable). However, we assume that15

only r of a DwDSry male’s sperm is viable, of which a fraction s carries the driver. Parameter r16

hence defines DwDSrymale sperm competitiveness relative to DwDw wildtype males (whose sperm17

competitiveness equals unity). It is thus a measure of sperm precedence at fertilisation, also referred18

to as the loading of the sperm raffle. If all viable sperm have an equal fertilization probability, pn,k19

will be the fraction of viable t-Sry sperm k
n sr divided by the total number of sperm (1 − k) + kr .20

We thus have21

pn,k =
kdr

n − k + kr
. (S2)

If there are only drive males in a given male sample, pn,k=n = s. Likewise, if all males are wildtype22

males, pn,k=0 = 0. Hence, a drive male’s reduced sperm competitiveness (r) is only relevant if males23

of both genotypes are in the sample (0 < k < n for n > 1). We can now calculate p, defined as24

the probability that a given ova is fertilised by t-Sry sperm over all possible matings, which is simply25

sum of the probability of Dt fertilisation of a particular mating pn,k weighed by possible mating26
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combinations fn,k :27

pnmax =

nmax∑
n=1

n∑
k=0

fn,kpn,k . (S3)

For the polyandry model used in the main text, we consider a simple scenario where females either28

mate with one male (at frequency 1 − ψ) or two males (at frequency ψ). We can recover p1 and29

p2 from the main text by solving equations S1–S3 for nmax = 2, φ1 = 1− ψ, and φ2 = ψ.30

Figure S1 illustrates how the number of mating partners nmax , drive male frequency in the31

population y , and drive male sperm competitiveness r affect the probability of drive fertilisation p.32
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Figure S1. Polyandry and sperm competition reduce the probability that a female is fertilised by drive sperm. A.

Polyandry is more effective if the number of mating partners n is high, although the marginal reduction in p gets

smaller with every additional mating partner n. The different coloured lines represent varying levels of drive male

sperm competitiveness r (colour gradient). The frequency of drive males in the population equals y = 0.5. B.

Polyandry is less effective if the frequency of drive males is increased, as sperm competition is only relevant if drive

males compete against wildtype males. The colour gradient again represents different levels of drive male sperm

competitiveness r
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Text S2 Analytical Results — Single Release33

In the case of a single release (µ = 0), our system of differential equations ?? simplifies to34

dN

dt
= bW − (m1 +m2N)N

dW

dt
= bW

1− p
2
− (m1 +m2N)W

dD

dt
= bW

p

2
− (m1 +m2N)D

(S4)

where p = s D
W+D under monandry.35

Fixed points The system S4 will reach a longterm equilibrium {N̂, Ŵ , D̂} if dN
dt = dW

dt = dD
dt = 0.36

We have the following three solutions37

N̂ =
b
2 −m1

m2
, Ŵ =

b
2 −m1

2m2
, D̂ = 0

N̂ = 0, Ŵ = 0, D̂ = 0

N̂ = −
m1

m2
, Ŵ = 0, D̂ = D

(S5)

of which only the first two are biologically feasible, as the third equilibrium requires negative mortality38

rates to produce N̂ > 0. The first equilibrium point describes a population where the driver is absent39

and the population is at carrying capacity. The second equilibrium corresponds to the trivial case40

where the population is not sustainable in the first place.41

Stability The first equilibrium has the following three stability eigenvalues: r1 = − b2 , r2 = m1 −42

b
2 , r2 = − b2 (1 − s). As expected, the population is viable if birth rates outweigh baseline death43

rates (m1 <
b
2 ). Moreover, and as mentioned in the main text, we can have r3 = 0 as the leading44

eigenvalue when drive is complete (s = 1), which will change the dynamics of the system altogether,45

as the driver can be maintained stably in the population.46
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Text S3 Analytical Results — Continued Release under Monandry47

To simplify equilibrium calculations under continued release (µ > 0), we rearrange the system48

slightly. Let D′ denote the number of drive carrying ‘females’ XYwt in the population. We can now49

write the system as the following three differential equations50

dW

dt
= bW

1− p
2
− (m1 +m2N)W

dD

dt
= bW

p

2
− (m1 +m2N)D + µ

dD′

dt
= bW

p

2
− (m1 +m2N)D′

(S6)

where the total population is now given as N = 2W + D + D′. We again search for equilibria by51

setting dW
dt = dD

dt = dD′

dt = 0. In the case of monandry, we get two biologically feasible solutions:52

D̂1 =
−m1 +

√
m2

1 + 4m2µ

2m2
, Ŵ1 = 0, D̂′1 = 0

D̂2 =
2µ

b(1− s)
, Ŵ2 = complicated expression?,∆D̂2 = complicated expression?

(S7)

?available on supplementary Maple file.53

The eradication equilibrium and its stability As in the case a single release, the first equilib-54

rium {Ŵ1, D̂1, D̂
′
1} describes the (desired) outcome where the population is successfully eradicated55

(Ŵ1 = 0). Of the three eigenvalues of the Jacobian matrix, r1,2,3, at the equilibrium point (see sup-56

plementary Maple file), only one can take on positive values (r1 =
(1−s)b−m1−

√
m2

1+4m2µ

2 ). We can57

thus calculate the critical release rate µ?1 at which the eradication equilibrium becomes attracting58

as the point where the leading eigenvalues r1 becomes negative (r1 < 0 if µ > µ?1). In other words,59

if release rates exceed µ?1, wildtype animals can no longer invade a population. Solving r1 = 0 and60

replacing m2 with
b
2
−m1

K (see Text S2), we have61

µ?1 =
K b

2 (1− s)
(

(1− s) b2 −m1

)
4R

, (S8)

where R denotes the baseline reproductive rate R = b
2 −m1. Also note that µ?1 is a linear function62

of carrying capacity K, the standardised release rate µ?std,1 = µ1

K will hence be independent of63

population size K.64
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The internal equilibrium and its stability The second, internal equilibrium corresponds to the case65

where both drive and wildtype individuals stably coexist. Although solutions for Ŵ2 and D̂′2 exist,66

they are unwieldy and offer little insight. However, note that the dynamics of drive males D and67

‘females’ D′ only differ by the fact that males are released into the population while drive ‘females’68

D′ are not. More formally, at equilibrium, we have ∆D̂ = D̂ − D̂′ = µ
m1+m2N

. Together with the69

fact that D′ cannot take on negative values, this implies that 0 ≤ D̂′ ≤ D̂ for biologically relevant70

parameter values (µ,m1, m2 ≥ 0). As a plausible approximation, we can thus examine stability of71

the two boundaries where D̂′ = 0 or D̂′ = D. Note that this argument is mathematically not strictly72

correct, as 0 ≤ D̂′ ≤ D̂ does not guarantee that the stability eigenvalues or critical release thresholds73

are also sandwiched between those two cases (because they may depend non-monotonically on D′).74

They may nevertheless serve as a useful, plausible approximation.75

• In the first boundary case where D′ = 0, our differential equation system reduces to76

dW

dt
= bW

1− p
2
− (m1 +m2N)W

dD

dt
= bW

p

2
− (m1 +m2N)D + µ

(S9)

where, importantly, N = 2W + D (since D′ = 0). System S9 is much easier to handle, and77

allows us to calculate the two eigenvalues of the Jacobian matrix at the internal equilibrium78

(see Supplementary Maple file). Once again, we can calculate critical release rate µ?2 where79

the equilibrium becomes unstable and the population collapses. We have80

µ?2 =
K b

2 (1− s)
(

2bs − R −
√

4bs(2bs − R)
)

R
, (S10)

with R = b
2−m1. Note that µ?2 is again independent of carrying capacity K when standardised81

µ?std,2 = µ2

K .82

• In the second boundary case where D′ = D we have system S9 with the important difference83

that N = 2W + 2D (since D′ = D). We can again calculate the critical release rate µ?3 using84

the approach used above (Supplementary Maple file). We have85

µ?3 =
KR(1− s)

8s
. (S11)
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Testing approximate solutions To assess the accuracy of the two approximate solutions, we com-86

pared them against numerical solutions based on the full equation system (see Figure S2). For all87

parameter combinations considered, the two analytical approximations µ?2, µ?3 predict numerically88

calculated release thresholds relatively accurately. Numerically calculated release thresholds were89

indeed placed inside the interval of the two boundary cases [µ?2, µ?3]. Moreover, the critical release90

rate for the eradication equilibrium µ?1 was smaller than µ? for the internal equilibrium for all param-91

eter values considered (µ?1 < µ?3 < µ?2). Hence, at least for the parameter space examined, we can92

distinguish three qualitatively different dynamics as release rates of drive animals µ into the target93

population are increased.94

1. If release rates µ are sufficiently low such that µ < µ?1, the internal equilibrium is stable and95

the eradication equilibrium unstable. The resident population is sustainable.96

2. At intermediate release rates where µ?1 < µ < µ?3 we have a bistable system where both the97

internal and the eradication equilibrium are stable. Note that the existence of bistability also98

implies that examining the stability criteria of the eradication equilibrium (invasion criteria),99

which is mathematically straightforward, is not sufficient to predict population eradication.100

3. If release rates are sufficiently large such that µ > µ?2 the internal equilibrium is repellent101

and eradication is stable. The population collapses. Note that, because we had µ?1 < µ?2 for102

all combinations considered, the condition µ > µ?2 was both a sufficient and necessary for a103

successful eradication.104
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Figure S2. The critical release effort µ?std required to push a population to eradication as a function of birthrate b

and death rate m1 based on analytical approximation (solid and dotted line for µ?2 and µ?3, respectively) and numerical

calculation (squared dots). Drive strength in both panels is s = 0.9.
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Text S4 Differential survival and mate choice105

In this section, we analyse the effect of differential survival rates between genotypes and precop-106

ulatory mate choice on a) the success of t-Sry release campaign and b) on the strength of the107

polyandry effect explored in the main text. Because all four genotypes now have different fitness,108

we have to track them separately. We have the following equation system109

dWX

dt
= bWX

1− p
2
− (m1 +m2N)WX

dWY

dt
= bWX

1− p
2
− (1 + sm) (m1 +m2N)WY

dDX
dt

= bWX
p

2
− (1 + sm + st) (m1 +m2N)DX

dDY
dt

= bWX
p

2
− (1 + sm + st + s2Sry) (m1 +m2N)DY + µ.

(S12)

Population size N is again given as the sum of all four genotypes: N = WX +WY +DX +DY .110

Differential survival Here, si represent survival differences between the different genotypes. They111

quantify the survival cost (or benefit if si < 0) of being (phenotypically) male (sm), carrying the t112

haplotype (st), and the cost of carrying an extra copy of the Sry (s2Sry).113

The top panels in Figure S3 illustrate the effect of t related survival costs st on the required114

release effort to eradicate the population µ?std, and how that relationship is affected by polyandry115

levels ψ (the primary focus of this manuscript). As expected, required release efforts increase with116

increasing survival costs of the driver. Interestingly, the independent effects of survival (moving117

horizontally on upper panels in Fig. S3) and polyandry (moving vertically on upper panels in Fig.118

S3) are nearly identical, at least for the parameter combinations considered. Additionally, it appears119

that the two effects are close to additive.120

In Figure S4, we investigate the impact of a survival cost on being phenotypically male (sm)121

and of carrying an extra copy of the Sry gene s2Sry on release dynamics. sm has only very small122

effects on required release rates µ?std. This is because the success of the drive construct mainly123

depends on how competitive t-Sry males are relative to wildtype males, which is independent of124

overall male survival. In fact, lower male survival in some cases even decreases the required release125

effort because it creates decreased (density-dependent) competition on reproductive females. The126
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fact that the dynamics are dominated by the fitness contrast between drive and wildtype males also127

explains why the cost of carrying an extra Sry s2Sry is nearly identical to st (as the survival difference128

between drive and wildtype males is st + s2Sry, as reflected in the symmetry in right panel in Figure129

S4 with respect to the diagonal).130

Mate choice We further explore the possibility that females have a precopulatory mating preference131

(preexisting or evolved), most likely to avoid drive carrying males. Let α measure the fixed relative132

strength of females to avoid matings with drive males. The probability of mating with a drive male133

ft is given as134

ft = y
1− α

1− αy . (S13)

where the denominator y(1−α) + (1− y) = 1−αy is a normalising constant that ensures that the135

probabilities of the two possible matings (W and D) add up to 1. Hence, females avoid drive males136

in the spectrum where 0 < α < 1, α = 0 represents random mating, and α < 0 would denote a137

preference for drive males. Substituting ft for y in Equation 2, we then have138

p2 = fts

(
1− ψ(1− ft)

1− r
1 + r

)
. (S14)

The lower three panels in Fig. S3 show the the effects of mate choice on required release efforts.139

Again, as expected, more animals need to be released if resident females avoid drive males. Note140

that mate avoidance becomes particularly problematic from a intervention perspective if drive male141

avoidance is strong (α > 0.6). Again, there are no clear interactive effects with polyandry ψ.142
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Figure S3. The critical release effort µ?std required to eradicate a population as a function of the survival cost of the

driver st , mate choice against the driver α, and polyandry rate ψ. The three upper panels focus on drive survival

costs st for three different levels of mate choice (α = −0.4, 0, 0.4). The three lower panels focus on mate choice

for three levels of drive survival cost (ct = −0.4, 0, 0.4). The white area represent parameter combination where

the required release rate exceeded the range considered (µ?std > 0.4). Remaining parameter values for all panels:

s = 0.9, r = 0.2, sm = 0, s2Sry = 0, b = 4, m1 = 1, K = 1000.
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Figure S4. The critical release effort µ?std required to eradicate a population as a function of the survival cost of the

driver st , the survival cost of being (phenotypically male) sm, and the cost of carrying an extra copy of the Sry gene.

Remaining parameter values for all panels: s = 0.9, r = 0.2, ψ = 0, α = 0, b = 4, m1 = 1, K = 1000.
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Figure S5. The number of wildtype males and females (W in green and orange), t-Sry males (D in violet) and t-Sry

‘females’ (pink) as a proportion of carrying capacity K after a single release of drive individuals into the population.

The dotted line represents the drive frequency in the population. Columns represent different release efforts (number

of males release as a proportion of carrying capacity K). The two rows depict a monandry (ψ = 0) and a polyandry

(ψ = 0.5, r = 0.2) scenario, respectively. The driver cannot eradicate the population in any of the scenarios shown.

Remaining parameter values: s = 0.9, b = 0.9, m1 = 0.4, K = 1000
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