
Text S1 Preprocessing Tweets

Tweeting, the process of publishing a tweet, proceeds in the form of free text, often in combination
with special characters, symbols, emoticons, and emoji. This, in combination with a character
limit, make tweeters creative and concise in their writing, favoring brevity over readability to convey
their message—even more so with the 140 characters limit. Thus tweet data is highly idiosyncratic
and several preprocessing steps were necessary (described below) to make the dataset suitable for
sentiment analysis.

Retweets and duplicate tweets We removed retweets, identified by the string ’RT’ preceding
the tweet, as they essentially are duplicates of the initial or first tweet. Additionally, duplicate
tweets that were identical in their content were also excluded.

Non-English tweets We focused our analysis on English tweets only and excluded all non-
English tweets according to the ’lang’ attribute provided by the Twitter API.

User tags and URLs For the purpose of sentiment analysis, the user tags (i.e., mentioning of
other Twitter user accounts by using @) and URLs (i.e., a link to a specific website) convey no
specific sentiment and were therefore replaced with a suitable placeholder (e.g. USER, URL). As a
result, the presence and frequency of user tags and URLs were retained and normalized.

Hashtags Hashtags are an important element of Twitter and can be used to facilitate a search
while simultaneously convey opinions or sentiments. For example, the hashtag #love reveals a
positive sentiment or feeling, and tweets using the hashtag are all indexed by #love. Twitter allows
users to create their own hashtags and poses no restrictions in appending the hashtag symbol (i.e.,
#) in front of any given text. Following the example of the #love hashtag, we preprocessed hashtags
by removing the hash sign, essentially making #love equal to the word love.

Contractions and repeating characters Contractions, such as don’t and can’t, are a common
phenomenon in the English spoken language and, generally, less common in formal written text.
For tweets, contractions can be found in abundance and are an accepted means of communication.
Contractions were preprocessed by splitting them into their full two-word expressions, such as do
not and can not. In doing so, we normalized contractions with their ”decontracted” counterparts.
Another phenomenon occurring in tweets is the use of repeating characters, such as I loveeeee it,
often used for added emphasis. Words that have repeated characters are limited to a maximum of
two consecutive characters. For example, the word loveee and loveeee are normalized to lovee. In
doing so, we maintained some degree of emphasis.

Lemmatization and uppercase words For grammatical reasons, different word forms or deriva-
tionally related words can have a similar meaning and, ideally, we would want such terms to be
grouped together. For example, the words like, likes, and liked all have similar semantic meaning
and should, ideally, be normalized. Stemming and lemmatization are two NLP techniques to reduce
inflectional and derivational forms of words to a common base form. Stemming heuristically cuts off
derivational affixes to achieve some kind of normalization, albeit crude in most cases. We applied
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lemmatization, a more sophisticated normalization method that uses a vocabulary and morpholog-
ical analysis to reduce words to their base form, called lemma. It is best described by its most basic
example, normalizing the verbs am, are, is to be, although such terms are not important for the
purpose of sentiment analysis. Additionally, uppercase and lowercase words were grouped as well.

Emoticons and Emojis Emoticons are textual portrayals of a writer’s mood or facial expres-
sions, such as :-) and :-D (i.e., smiley face). For sentiment analysis, they are crucial in determining
the sentiment of a tweet and should be retained within the analysis. Emoticons that convey a
positive sentiment, such as :-), :-], or ;), were replaced with the positive placeholder word EM POS;
in essence, grouping variations of positive emoticons with a common word. Emoticons conveying a
negative sentiment, such as :-(, :c, or :-c, were replaced by the negative placeholder word EM NEG. A
total of 47 different variations of positive and negative emoticons were replaced. A similar approach
was performed with emojis that resemble a facial expression and convey a positive or negative senti-
ment. Emojis are graphical symbols that can represent an idea, concept or mood expression, such as
the graphical icon of a happy face. A total of 40 emojis with positive and negative facial expressions
were replaced by the placeholder word EM POS and EM NEG, respectively. Replacing and grouping
the positive and negative emoticons and emojis will result in the sentiment classification algorithm
learning an appropriate weight factor for the corresponding sentiment class. For example, tweets
that have been labeled as conveying a negative sentiment (by a human annotator for instance) and
predominantly containing negative emoticons (e.g., :-(), can result in the classification algorithm
assigning a higher probability or weight to the negative sentiment class for such emoticons. Note
that this only holds when the neutral and positively labeled tweets do not predominantly contain
negative emoticons; otherwise their is no discriminatory power behind them.

Numbers, punctuation, and slang Numbers and punctuation symbols were removed, as they
typically convey no specific sentiment. Numbers that were used to replace characters or syllables
of words were retained, such in the case of see you l8er. We chose not to convert slang and
abbreviations to their full word expressions, such as brb for be right back or ICYMI for in case
you missed it. The machine learning model, described later, would correctly handle most common
uses of slang, with the condition that they are part of the training data. As a result, slang that
is indicative of a specific sentiment class (e.g. positive or negative) would be assigned appropriate
weights or probabilities during model creation.

Input features Each tweet was tokenized, the process of obtaining individual words from sen-
tences. Furthermore, we represented tweets as count vectors with and without inverse document
frequency (IDF) weighting [1]. Different variations of tokenization were explored, such as 1-word
(unigram), 2-word (bigrams), 3-word (trigrams), and 4-word (n-gram) combinations. Bi-grams are
especially important to capture negation of words combinations, such as not good or not great, that
would not be captured when using 1-word (unigram) features alone.
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Text S2 Descriptions of the seven datasets used to train the
sentiment classifier

Sanders The Sanders dataset consists out of 5,513 hand classified tweets related to the topics
Apple (@Apple), Google (#Google), Microsoft (#Microsoft), and Twitter (#Twitter). Tweets were
classified as positive, neutral, negative, or irrelevant; the latter referring to non-English tweets which
we discarded. The Sanders dataset has been used for boosting Twitter sentiment classification using
different sentiment dimensions [2], combining automatically and hand-labeled twitter sentiment
labels [3], and combining community detection and sentiment analysis [4]. The dataset is available
from http://www.sananalytics.com/lab/.

Obama-McCain Debate (OMD) The Obama-McCain Debate (OMD) dataset contains 3,238
tweets collected in September 2008 during the United States presidential debates between Barack
Obama and John McCain. The tweets were collected by querying the Twitter API for the hash tags
#tweetdebate, #current, and #debate08 [5,6]. A minimum of three independent annotators rated
the tweets as positive, negative, mixed, or other. Mixed tweets captured both negative and positive
components. Other tweets contained non-evaluative statements or questions. We only included the
positive and negative tweets with at least two-thirds agreement between annotators ratings; mixed
and other tweets were discarded. The OMD dataset has been used for sentiment classification by
social relations [7], polarity classification [8], and sentiment classification utilizing semantic concept
features [9]. The dataset is available from https://bitbucket.org/speriosu/updown.

Stanford Test The Stanford Test dataset contains 182 positive, 139 neutral, and 177 negative
annotated tweets [10]. The tweets were labeled by a human annotator and were retrieved by
querying the Twitter search API with randomly chosen queries related to consumer products,
company names and people. The Stanford Training dataset, in contrast to the Stanford Test dataset,
contains 1.6 million labeled tweets. However, the 1.6 million tweets were automatically labeled, thus
without a human annotator, by looking at the presence of emoticons. For example, tweets that
contained the positive emoticon :-) would be assigned a positive label, regardless of the remaining
content of the tweet. Similarly, tweets that contained the negative emoticon :-( would be assigned
a negative label. Such an approach is highly biased [11] and we choose not to include this dataset
for the purpose of creating a sentiment classifier from labeled tweets. The Stanford Test dataset,
although relatively small, has been used to analyze and represent the semantic content of a sentence
for purposes of classification or generation [12], semantic smoothing to alleviate data sparseness
problem for sentiment analysis [13], and sentiment detection of biased and noisy tweets [14]. The
dataset is available from http://www.sentiment140.com/.

Health Care Reform (HCR) The Health Care Reform (HCR) dataset was created in 2010 –
around the time the health care bill was signed in the United States – by extracting tweets with
the hashtag #hcr [8]. The tweets were manually annotated by the authors by assigning the labels
positive, negative, neutral, unsure, or irrelevant. The dataset was split into training, development
and test data. We combined the three different datasets that contained a total of 537 positive,
337 neutral, and 886 negative tweets. The tweets labeled as irrelevant or unsure were not included.
The HCR dataset was used to improve sentiment analysis by adding semantic features to tweets [9].
The dataset is available from https://bitbucket.org/speriosu/updown.
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SemEval-2016 The Semantic Analysis in Twitter Task 2016 dataset, also known as SemEval-
2016 Task 4, was created for various sentiment classification tasks. The tasks can be seen as
challenges where teams can compete amongst a number of sub-tasks, such as classifying tweets into
positive, negative and neutral sentiment, or estimating distributions of sentiment classes. Typi-
cally, teams with better classification accuracy or other performance measure rank higher. The
dataset consist of training, development, and development-test data that combined consist of 3,918
positive, 2,736 neutral, and 1,208 negative tweets. The original dataset contained a total of 10,000
tweets – 100 tweets from 100 topics. Each tweet was labeled by 5 human annotators and only
tweets for which 3 out of 5 annotators agreed on their sentiment label were considered. For
a full description of the dataset and annotation process see [15]. The dataset is available from
http://alt.qcri.org/semeval2016/task4/.

Sentiment Strength (SS) The Sentiment Strength (SS) dataset was used to detect the strength
of sentiments expressed in social web texts, such as tweets, for the sentiment strength detection
program SentiStrength [16]. The dataset was labeled by human annotators and each tweet was
rated on a scale from 1 to 5 for both positive and negative sentiment, i.e. a dual positive-negative
scale. For the purpose of this paper, we re-labeled the tweets into positive, negative and neutral
tweets as follows. Tweets were considered positive if the positive score was at least 1.5 times larger
than the negative score; a positive score of 4 and a negative score of 1 would result in a positive
label. Tweets that have a negative score of 1.5 times larger than the positive score were considered
negative. A similar score on the positive and negative scale would result in a neutral tweet, such
when the positive score is 2 and the negative score 2. A similar re-labeling process was performed
by [11]. A total of 1,252 positive, 1,952 neutral, and 861 negative tweets were used. SentiStrength
has been used to quantify and statistically validate trading assets from social media data [17], and
analyzing emotional expressions and social norms in online chat communities [18]. The dataset is
available from http://sentistrength.wlv.ac.uk/documentation/

CLARIN 13-Languages The CLARIN 13-languages dataset contains a total of 1.6 million la-
beled tweets from 13 different languages, the largest sentiment corpus made publicly available [19].
We used the English subset of the dataset since we restricted our analysis to English tweets. Tweets
were collected in September 2013 by using the Twitter Streaming API to obtain a random sam-
ple of 1% of all publicly available tweets. The tweets were manually annotated by assigning a
positive, neutral, or negative label by a total of 9 annotators; some tweets were labeled by more
than 1 annotator or twice by the same annotator. For tweets with multiple annotations, only
those with two-third agreement were kept. The original English dataset contained around 90,000
labeled tweets. After recollection, a total of 15,064 positive, 24,263 neutral, and 12,936 nega-
tive tweets were obtained. The dataset is available from http://hdl.handle.net/11356/1054.

4



Figures

0

200

400

600

800

1000

1200

1400

N
u
m

b
e
r 

o
f 

tw
e
e
ts

interdisciplinary

negative

neutral

positive

0

20

40

60

80

100

120

N
u
m

b
e
r 

o
f 

tw
e
e
ts

transdisciplinary

negative

neutral

positive

2
0

1
7

-3
2

2
0

1
7

-3
3

2
0

1
7

-3
4

2
0

1
7

-3
5

2
0

1
7

-3
6

2
0

1
7

-3
7

2
0

1
7

-3
8

2
0

1
7

-3
9

2
0

1
7

-4
0

2
0

1
7

-4
1

2
0

1
7

-4
2

2
0

1
7

-4
3

2
0

1
7

-4
4

2
0

1
7

-4
5

2
0

1
7

-4
6

2
0

1
7

-4
7

2
0

1
7

-4
8

2
0

1
7

-4
9

2
0

1
7

-5
0

2
0

1
7

-5
1

2
0

1
7

-5
2

2
0

1
8

-0
1

2
0

1
8

-0
2

2
0

1
8

-0
3

2
0

1
8

-0
4

2
0

1
8

-0
5

2
0

1
8

-0
6

2
0

1
8

-0
7

2
0

1
8

-0
8

2
0

1
8

-0
9

2
0

1
8

-1
0

2
0

1
8

-1
1

2
0

1
8

-1
2

2
0

1
8

-1
3

2
0

1
8

-1
4

2
0

1
8

-1
5

2
0

1
8

-1
6

2
0

1
8

-1
7

2
0

1
8

-1
8

2
0

1
8

-1
9

2
0

1
8

-2
0

2
0

1
8

-2
1

2
0

1
8

-2
2

2
0

1
8

-2
3

2
0

1
8

-2
5

2
0

1
8

-2
6

2
0

1
8

-2
7

2
0

1
8

-2
8

2
0

1
8

-2
9

2
0

1
8

-3
0

2
0

1
8

-3
1

2
0

1
8

-3
2

2
0

1
8

-3
30

50

100

150

200

250

300

350

400

450

N
u
m

b
e
r 

o
f 

tw
e
e
ts

multidisciplinary

negative

neutral

positive

Figure S1: Sentiment over time
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Tables

Table S1: Overview of explored hyper-parameter values when performing a cross-validated grid
search to obtain the machine learning classification model with best classification performance (F1-
score). The value ’x’ indicates that the hyper-parameter was used to explore different variations of
the algorithm. Not all hyper-parameters are possible for all explored models, these are indicated
by the absence of an ’x’. A full description of the hyper-parameters can be found in the Scikit-learn
documentation at https://scikit-learn.org/stable/documentation.html

Hyper-parameter Value Range S
V
M

L
o
g
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it
ic

R
e
g
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ss
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n

M
u
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in
o
m
ia
l
N
B

B
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u
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B

D
e
sc
is
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n

T
re

e
s

A
D
A

B
o
o
st

M
L
-P

e
rc
e
p
tr
o
n

n-grams 1–4 x x x x x x x
min-df 0,5,10,15 x x x x x x x
max-df 1.0, 0.95, 0.90 x x x x x x x
IDF Yes, No x x x x x x x
sublinear-TF Yes, No x x x x x x x
C (penalty term) 0.001, 0.01, 0.5, 0.1,

1, 5, 10, 15, 20, 100
x x

fit prior Yes, No x x
alpha 0.001, 0.01, 0.5, 0.1,

1, 5, 10, 15, 20, 100
x x

splitter best, random x
criterion gini, entropy x
max features auto, sqrt, log2,

None
x

num. estimators 100,200,300,400,500 x
algorithm SAMME,

SAMME.R
x

neural architectures (100,50,20),(200,
100, 100),(300, 50,
50, 50),(50, 40,
30, 10),(20, 30, 50,
50),(70, 50, 40, 30)

x

Cross-validation 10-Fold x x x x x x x

Total Models
(x1000)

19.2 19.2 38.4 38.4 30.7 19.2 11.5
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Table S2: Hyper-parameter values that resulted in highest F1 score for the seven explored classi-
fication algorithms.

Hyper-parameter S
V
M
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e
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M
L
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n-grams 1–4 1–4 1–3 1–2 1–4 1–4 1–3
min-df 0 0 5 5 5 5 5
max-df 1 1 1 1 1 1 1
IDF no no n yes no no no
sublinear-TF yes yes yes yes yes yes yes
C 0.5 10
fit-prior yes no
alpha 0.1 1
splitter random
criterion gini
max-features None
n-estimator 400
algorithm SAMME.R
neural architecture 200,100,100
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