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Supplemental Materials and Methods

Patient-specific LH model

The BAV and MV geometries were segmented at mid-systole and mid-diastole, respectively, approximating their stress–free configuration [1]. Similarly, the aortic root and ascending aorta were segmented at mid-systole, while the myocardium was segmented at mid-diastole. The patient-specific MV model used in this study was developed and validated in a previous work from our group that investigated MV dynamics under functional MR [2]. Briefly, the detailed chordae structure (number, position, length, branching, origins of the PM tips, and insertions into the leaflets) was directly reconstructed from the MSCT images. Chordae were classified into five groups: anterior strut (AS), anterior basal (AB), anterior marginal (AM), posterior basal (PB), and posterior marginal (PM). Cross-sectional area values of 0.38 mm2, 0.71 mm2 and 2.05 mm2 were assigned to marginal, basal and strut chordae, respectively [3]. A total of 18 chordae origins were modeled from the PM tips. 

3D solid elements (eight-node hexahedral C3D8R/C3D8I elements, six-node wedge C3D6 elements, and four-node tetrahedral C3D4 elements) were used to discretize the ascending aorta, aortic root, BAV, calcification and MV. Stress/displacement truss elements (two-node linear T3D2 elements) were used for the mitral chordae, while shell elements (four-node quadrilateral S4 elements) were used to model the endocardial wall. Two layers of elements were used across the mitral leaflet thickness. For the AML, the average thickness values for the leaflet belly and free edge were 1.26 mm and 2.09 mm, respectively. For the PML, the average thickness values of the leaflet belly and free edge were 1.31 mm and 1.57 mm, respectively [2]. Four layers of elements were used across the ascending aorta/aortic root and BAV leaflet thickness, with a uniform total thickness of 2 mm and 0.7 mm, respectively. 

After a mesh convergence study, average mesh sizes for the BAV, MV, chordae, aorta/aortic root and calcification were 0.25 mm, 0.7 mm, 1.5 mm , 1 mm and 0.5 mm, respectively. Leaflet mesh size was refined until stress results were not affected by mesh size, with results showing a variation within 5%. The total number of elements used for the BAV was 48,567, 6550 for MV, 860 for chordae, 183,130 for aorta/aortic root, and 42,650 for calcification. The BAV/aortic root and calcification shared the same nodes on the tissue-calcification interface, thus avoiding contact-related issues during the simulation. SPH particles were uniformly distributed in the domain with a spatial resolution of 0.8 mm, which led to approximately 1 million one-node (PC3D) elements.

Balloon-expandable TAV model

The stent, which was generated using depictions in the literature, had an external nominal diameter of 26 mm, a frame height of 16.1 mm, and a rectangular cross section of 0.4 x 0.55 mm for the frame struts. 3D solid elements (eight-node hexahedral C3D8I elements) were used to model the stent, while 3D membrane elements (M3D4) were used to model the fully enclosed balloon, which resembled the Edwards RetroFlex 3 balloon geometry. Two layers of 3D solid elements (eight-node hexahedral C3D8R elements) were used to model the TAV leaflets, with a uniform total thickness of 0.28 mm. The skirt was modeled by shell elements (three-node triangular S3 elements).

Cardiac tissues and TAV mechanical properties 

Supplemental Table 1 lists the fitted material parameters for the cardiac tissues, which were assumed to be homogeneous, non-linear and elastic. The modified anisotropic hyperelastic Holzapfel–Gasser–Ogden material (MHGO) model [4, 5] was adopted to characterize the mechanical response of the ascending aorta, aortic root sinuses, BAV leaflets, MV leaflets, TAV leaflets and myocardium. Local coordinate systems were defined for each cardiac tissue to include local fiber orientation. The MHGO material model was implemented into Abaqus 6.17/Explicit (Dassault Systèmes Simulia Corp., Providence, RI, USA) with a user sub-routine VUMAT. Additionally, the isotropic hyperelastic Ogden material model [6] was used to characterize the mechanical response of the mitral chordae and intervalvular fibrosa. In-house multiprotocol biaxial and uniaxial testing data of healthy human cardiac tissues were used to obtain the material properties selected from an existing human cardiac tissue database established in our lab (age- and gender-matched patient).

Bovine pericardium properties of TAV leaflets were obtained from our recent studies that characterized the mechanical properties of chemically-treated bovine and porcine pericardium [7, 8]. Further details on the determination of material parameters have been described in previous publications [9] [10]. Calcification was assumed to be a linear-elastic material with a Young’s modulus of 12.6 MPa and a Poisson ratio of 0.3 [11]. The stent was modeled as an elastic-plastic material with the properties of 316 stainless steel with a Young’s modulus of 193 GPa, a Poisson ratio of 0.3, and initial yield stress of 340 MPa [12]. SPH particles were given Newtonian blood properties with a density of  and a dynamic viscosity of .

Supplemental Table 1. Cardiac tissues material parameters 

	MHGO model
	()
	
	 ()
	
	
	
	

	BAV leaflets
	0.017
	147.262
	39704.1
	2352.96
	0
	0.317
	5.0e-4

	AML
	0.285
	61.303
	9.295
	99.684
	0
	0.333
	5.0e-4

	PML
	0.101
	33.191
	10.756
	48.495
	27.98
	0.089
	5.0e-4

	Sinuses
	1.755
	13.707
	10.550
	80.379
	20.06
	0
	5.0e-4

	Aorta
	4.175
	3.464
	3.771
	15.927
	70.95
	0.086
	5.0e-4

	Myocardium
	0.0374
	15.387
	6.079
	98.366
	6.78
	0.144
	5.0e-4

	TAV leaflets
	6.358
	16.734
	13.415
	96.850
	0
	0
	5.0e-4

	Ogden model
	()
	
	()
	
	()
	
	

	Anterior marginal
	17.824
	17.808
	17.660
	17.797
	17.592
	17.768
	

	Anterior strut
	24.342
	11.338
	10.332
	11.167
	14.914
	11.188
	

	Anterior/posterior basal
	10.256
	16.579
	10.654
	16.554
	10.671
	16.554
	

	Posterior marginal
	12.995
	15.651
	13.083
	15.683
	12.870
	15.662
	

	Intervalvular fibrosa
	1.505
	21.400
	11.207
	21.400
	1.441
	21.400
	







Supplemental References
[bookmark: _GoBack]
1.	Sun W, Martin C, Pham T. Computational modeling of cardiac valve function and intervention. Annual review of biomedical engineering. 2014;16:53-76.
2.	Pham T, Kong F, Martin C, Wang Q, Primiano C, McKay R, et al. Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation. Cardiovascular engineering and technology. 2017;8(1):3-16.
3.	Wang Q, Sun W. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Annals of biomedical engineering. 2013;41(1):142-53.
4.	Holzapfel GA, Gasser TC, Ogden RW. A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. Journal of elasticity and the physical science of solids. 2000;61(1):1-48. doi: 10.1023/a:1010835316564.
5.	Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of The Royal Society Interface. 2006;3(6):15-35. doi: 10.1098/rsif.2005.0073.
6.	Ogden RW. Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids. Proceedings of the Royal Society of London A Mathematical and Physical Sciences. 1972;326(1567):565-84. doi: 10.1098/rspa.1972.0026.
7.	Caballero A, Sulejmani F, Martin C, Pham T, Sun W. Evaluation of transcatheter heart valve biomaterials: biomechanical characterization of bovine and porcine pericardium. Journal of the Mechanical Behavior of Biomedical Materials. 2017;75:486-94.
8.	Sulejmani F, Caballero A, Martin C, Pham T, Sun W. Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium. Journal of the Mechanical Behavior of Biomedical Materials. 2019;97:159-70. doi: https://doi.org/10.1016/j.jmbbm.2019.05.020.
9.	Martin C, Sun W. Biomechanical characterization of aortic valve tissue in humans and common animal models. J Biomed Mater Res A. 2012;100(6):1591-9. doi: 10.1002/jbm.a.34099. PubMed PMID: 22447518; PubMed Central PMCID: PMCPMC3882754.
10.	Pham T, Sun W. Material properties of aged human mitral valve leaflets. J Biomed Mater Res A. 2014;102(8):2692-703. doi: 10.1002/jbm.a.34939. PubMed PMID: 24039052; PubMed Central PMCID: PMCPMC4033712.
11.	Wang Q, Kodali S, Primiano C, Sun W. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomechanics and modeling in mechanobiology. 2015;14(1):29-38.
12.	Tzamtzis S, Viquerat J, Yap J, Mullen MJ, Burriesci G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Medical Engineering & Physics. 2013;35(1):125-30. doi: https://doi.org/10.1016/j.medengphy.2012.04.009.

1

