
Why are some personalities less plastic?

A. Description of the model following the ODD protocol

1. Overview

1.1 Purpose

The purpose of the model is to predict when individual differences in consistent traits (i.e.

fighting ability) should be related to differences in strategy use and behavioural plasticity. More

precisely, individuals with different fighting abilities compete by pairwise interactions for

resources by using either the fixed peaceful (Dove) or aggressive (Hawk) strategies or a plastic

Assessor strategy and the model allows to determine the best strategy use for each fighting

ability.

1.2 State variables and scales

The model comprises three hierarchical levels: individuals, resources and groups.

Individuals are characterized by their identity (i), fighting ability (αi), strategy S[i] that is equal to

0, 1 or 2 if the individual plays Assessor, Dove or Hawk respectively, state that is equal to 0 or 1

if the individual is available or not, and the probability of making an assessment error (εi).

Pairs of individuals compete for resources that are characterized by their quality.

The groups are characterized by their size, the maximum difference between two contestant

individuals in terms of fighting ability (that is determined by the spatial distribution of

individuals according to their fighting ability), the cost of losing a fight and the cost of

assessment.

1.3 Process overview and scheduling

Each simulation lasts T time steps, that each corresponds to a feeding event. Within each time

step, 4 phases are proceeded in the following order: 1) individuals are partly randomly paired, 2)

the expected gain of each individual is calculated based on its behaviour and fighting ability as

well as that of its opponent, 3) for each fighting ability, the average gain of each strategy is

estimated, 4) for each fighting ability, one randomly chosen individual that uses the least

successful strategy is replaced by another individual of the same fighting ability that uses the

most successful strategy, unless all individuals already use the same strategy.

The duration of a simulation is set at 1000 time steps to ensure that the group has reached

equilibrium frequencies, although for all combinations of parameters studied, the equilibrium is

reached much more rapidly. As a group with a particular set of parameters does not necessarily

converge towards the same equilibrium, because of the stochastic effects, each simulation is

replicated 100 times.

2. Design concepts

Emergence: Individual differences in strategy use emerge as individuals that perform poorly are

eliminated and replaced by individuals that adopt the most efficient strategy.

Fitness: The model assumes that natural selection eliminates the least performing individuals (i.e.

individuals whose strategy provides the lowest average expected gain) that are replaced by

individuals using the most effective strategy.

Prediction: There is no individual learning included in the decision process. Individuals,

therefore, do not change their decision rules over time as a consequence of their experience. They

cannot either predict future conditions.

Sensing: Individuals know their own fighting ability but ignore that of their opponents. Only

individuals that use the Assessor strategy estimate their opponent’s fighting ability and then

decide to behave aggressively or non-aggressively, accordingly.

Stochasticity: Individuals are paired partly randomly, as the difference between two contestants

cannot exceed q. This variable was introduced as individuals within a group may distribute

spatially according to their phenotypic or behavioural traits, which may cause interactions to

occur assortatively. The value of the resources for which pairs of contestants compete is also

randomly chosen at the beginning of each time step among all possible values.

Collectives: The model assumes that the degree of assortativity between contestants may vary.

More precisely the parameter q represents the maximum difference in fighting ability between

two contestants. Thus, if q is equal to 5 (i.e. the highest fighting ability), individuals interact

randomly, while the probability of assortative interactions increases as q decreases. As such, the

model implicitly assumes that individuals may be spatially distributed in the environment

according to their fighting ability.

Observation: For model testing, all information relative to each phase has been checked.

Specifically, the output data included for each time step the identity, fighting ability and strategy

of all pair members, their expected gain, the average gain of each strategy and the identity and

strategy of the individual that was eliminated and replaced by a more performing individual. This

was done to find and fix all potential mistakes that could have occurred at each step. Notably, I

made numerous tests to be sure make sure that the code does not continue to run after giving

some variables completely wrong values (i.e. run-time errors).

Also for time step 1 (individuals’ pairing), I used the state variable (COMP[i]) that represents the

number of potential opponents each individual can be paired with to ensure that interactions

occurred partly randomly, each individual was paired only once and each pair of individuals had

a difference in fighting ability than never exceeded q. The state variable opposant[i] (i.e. the

identity of the opponent of individual i) was also reinitialized to 999 at the beginning of each time

step, to verify that each individual had been paired to another individual.

For model analysis, the output data correspond to the number of individuals using the Dove,

Hawk and Assessor strategies after T time steps and for each fighting ability as well as the

average expected gain (Model B).

3. Details

3.1 Initialization

At time t=0, each individual is assigned a fighting ability and a strategy.

3.2 Inputs

The environment is assumed to be constant, so the model has no input data.

3.3 Submodels

Individuals’ pairing

At the beginning of each time step, all individuals are considered available (i.e. state[i]=0). The

model considers successively all available individuals and randomly chooses one opponent for

each of them. To do that, it draws a number between 0 and G and verifies that the opponent

(whose identity corresponds to this random number) is acceptable (in terms of availability and

fighting ability) or repeats the procedure until finding an acceptable opponent. Once paired, both

contestants become unavailable (state[i]=1) for other individuals and for both of them the state

variable opponent[i] takes as value the identity of their opponent.

Calculation of individuals’ expected gain

For each pair, the model estimates the average payoff of both constants (gain[i]). As individuals

can adopt three different strategies, there are 9 possible combinations of strategies. The equations

used to calculate the payoffs are those given in Table 2, expect that the probability of making an

assessment error (ε) is not necessarily fixed but may vary among individuals depending on their

fighting ability (see lines 129-134 in the article).

Calculation of average expected gains

To determine which strategy provides the highest and lowest payoff, the model calculates, for

each fighting ability, the average expected payoff of individuals that play Dove, Assessor and

Hawk. The variables gain_D[i], gain_A[i] and gain_H[i], that correspond to the average gains of

individuals of fighting ability i playing Dove, Assessor or Hawk respectively, are first

incremented by the payoffs of individuals, and then divided by the number of individuals playing

the different strategies D[i], A[i] and H[i].

Replacement of one randomly chosen individual

For each fighting ability, the model seeks the strategy that provides individuals with the lowest

and highest average payoffs, then randomly chooses one individual that uses the least effective

strategy and changes its strategy for the most successful one.

This step is performed only if individuals of a given fighting ability still use at least two different

strategies.

B. Codes of the two models

Model	A.	Less	successful	individuals	are	replaced	by	individuals	with	similar	fighting	ability		
#include<stdio.h>	
#include<stdlib.h>	
#include<math.h>	
#include<time.h>	
	
const	int	n=20;	/*initial	number	of	individuals	with	a	particular	fighting	ability	and	a	
particular	strategy	*/	
const	int	nb_strategies=3;	/*Dove	(0),	Assessor	(1),	Hawk	(2)*/	
const	int	nb_classes=6;	/*number	of	fighting	abilities*/	
	
const	int	Vmoy=10;	
const	int	ecart=0;	/*deviation	around	the	mean*/	
const	double	C=10;/*cost	of	losing	a	fight*/	
const	int	q=5;	/*maximal	difference	in	fighting	ability	between	two	contestants*/	
const	int	T=1000;	/*number	of	time	steps	per	simulation*/	
const	double	erreur_min=0;	
const	double	erreur_dif=0;	
const	int	nb_simul=100;	
const	double	cost_a=2;	
	
int	G;	
int	V;	
int	Vmax,	Vmin;	
	int	strategie[1000];	
int	capacite[1000];	
double	gain[1000];	
double	p[1000];	
int	opposant[1000];	
int	i,t,j,k,y,s;	
int	state[1000];	
COMP[1000];	/*Number	of	potential	opponents	each	individual	can	be	paired	with*/	
int	CHOIX,VA,X;	
int	Low[100],	High[100];	
int	proba;	
double	erreur[1000];	
int	D[20],A[20],H[20];	
double	gain_D[100],gain_A[100],gain_H[100];	
double	moy_gain_D[100],moy_gain_A[100],moy_gain_H[100];	
int	Cumul_D[100],Cumul_A[100],Cumul_H[100];	
	
	
void	main	(void){	

	 srand((unsigned)time(NULL));	
	
	 G=nb_classes*nb_strategies*n;	
	 X=n*nb_strategies;	
	
/*The	following	variables	correspond	to	the	sum	of	the	number	of	individuals	whose	
fighting	ability	is	j	and	that	use	the	strategies	Dove,	Assessor	or	Hawk	after	s	simulations*/	
	 for	(j=0;j<nb_classes;j++){	
	 	 Cumul_D[j]=0;	
	 	 Cumul_A[j]=0;	
	 	 Cumul_H[j]=0;	
	 }	
	
	 for	(s=0;s<nb_simul;s++){	
	 	 printf("\nSimulation	%d",s);	
	 	 	
y=0;	
/*At	the	beginning	of	each	simulation,	each	individual	y	is	assigned	a	strategy	and	a	fighting	
ability	that	determines	its	probability	of	making	an	assessment	error*/	
for	(i=0;i<nb_classes;	i++){	
	 for	(j=0;j<nb_strategies;j++){	
	 	 for	(k=0;k<n;k++){	
	 	 	 capacite[y]=i;	
	 	 	 strategie[y]=j;	
	 	 	 erreur[y]=erreur_min+i*erreur_dif;	
	 	 	 if(erreur[y]>0.5)erreur[y]=0.5;	
	 	 	 y+=1;	
	 	 }	
	 }	
}	
	
	
/*At	the	beginning	of	each	time	step	the	value	of	the	contested	resource	(V)	is	randomly	
chosen	among	all	possible	values	raging	from	(Vmoy-ecart)	and	(Vmoy+ecart)	*/	
for(t=0;t<T;t++){	
	 if(ecart==0)V=Vmoy;	
	 else{	
	 Vmax=Vmoy+ecart;	
	 Vmin=Vmoy-ecart;	
	 /*printf("\nTemps	%d",t);*/	
	 V=rand()%(Vmax-Vmin);	
	 V=V+Vmin;	
	 }	
	 	

/*These	variables	correspond	to	the	number	of	individuals	whose	fighting	ability	is	j	and	
that	play	Dove,	Assessor	and	Hawk.	They	are	reinitialized	to	zero	at	the	beginning	of	each	
time	step*/	
for	(j=0;j<nb_classes;j++){	
	 D[j]=0;	
	 A[j]=0;	
	 H[j]=0;	
}	
	
/*For	each	fighting	ability	the	model	counts	the	number	of	individuals	that	play	Dove,	
Assessor	and	Hawk*/	
for	(i=0;i<G;i++){	
	 if(strategie[i]==0)	D[capacite[i]]+=1;	
	 else	if	(strategie[i]==1)	A[capacite[i]]+=1;	
	 else	H[capacite[i]]+=1;	
}	
	
	
/*Each	individual	is	characterized	by	its	state	(available	:	0,	or	unvailable	:1),	and	its	gain.	
These	two	state	variables	are	reinitialized	to	zero	at	the	beginning	of	each	time	step.*/	
for	(i=0;i<G;i++){	
	 	 state[i]=0;	
	 	 gain[i]=0;	
	 	 COMP[i]=0;	
	 	 opposant[i]=999;	
	 }	
	 	
/*CHOICE	OF	AN	OPPONENT	:	for	each	individual	the	model	chooses	partly	randomly	an	
opponent.	Once	an	individual	has	been	paired,	it	is	no	more	available	(and	so	its	state	
variable	becomes	equal	to	1)*/	
	
for(i=0;i<G;i++){	
	 	 if(state[i]==0){	
	 	 for	(j=i+1;j<G;j++){	
if	((state[j]==0)&&(capacite[j]>(capacite[i]-q))	&&	
(capacite[j]<(capacite[i]+q)))COMP[i]+=1;	
	 	 }	
	 	 	
	 	 if((COMP[i]>0)){	
	 	 do	CHOIX=rand()%G;	
	 	 while	
((state[CHOIX]==1)||(capacite[CHOIX]>(capacite[i]+q))||(capacite[CHOIX]<(capacite[i]-
q)));	
	 	 opposant[i]=CHOIX;	
	 	 opposant[CHOIX]=i;	
	 	 state[i]=1;	

	 	 state[CHOIX]=1;	
	 }	
	
	 else	i++;	
	 }	
	 }	
	
	
/*GAIN	OF	EACH	PLAYER	:	for	each	individual,	the	model	estimates	its	expected	payoff	that	
depends	on	its	strategy	and	that	of	its	opponent,	as	well	as	one	their	relative	fighting	ability	
and	risk	of	assessment	error*/	
	
	 for	(i=0;i<G;i++){	
	 	 if(opposant[i]!=999){	
	
	 /*Case	1:	HH	Both	individuals	play	Hawk*/	
	 	 if((strategie[i]==2)&&(strategie[opposant[i]]==2)){	
	 	 	 if(capacite[i]>capacite[opposant[i]])	gain[i]=V;	
	 	 	 else	if	(capacite[i]<capacite[opposant[i]])	gain[i]=-C;	
	 	 	 else	gain[i]=(V-C)/2;	
	 	 }	
	 /*Case	2:HD	Individual	i	plays	Hawk	and	its	opponent	plays	Dove*/	
	 	 if((strategie[i]==2)&&(strategie[opposant[i]]==0)){	
	 	 	 gain[i]=V;	
	 	 }	
	
	 /*Case3:	HA	Individual	i	plays	Hawk	and	its	opponent	plays	Assessor	*/	
	 	 if((strategie[i]==2)&&(strategie[opposant[i]]==1)){	
	 	 	 if(capacite[i]>capacite[opposant[i]])	gain[i]=V-cost_a;	
	 	 	 else	if(capacite[i]<capacite[opposant[i]])	
gain[i]=erreur[opposant[i]]*V-(1-erreur[opposant[i]])*C-cost_a;	
	 	 	 else	gain[i]=(1-erreur[opposant[i]])*(V-C)/2+erreur[opposant[i]]*V-
cost_a;	
	 	 }	
	
	 /*case	4:DH	Individual	i	plays	Dove	and	its	opponent	plays	Hawk	*/	
	 	 if((strategie[i]==0)&&(strategie[opposant[i]]==2)){	
	 	 	 gain[i]=0;	
	 	 }	
	
	 /*Case	5:DD	Both	individuals	play	Dove	*/	
	 	 if((strategie[i]==0)&&(strategie[opposant[i]]==0)){	
	 	 	 gain[i]=V/2;	
	 	 }	
	
	 /*case6:DA	Individual	i	plays	Dove	and	its	opponent	plays	Assessor*/	

	 	 if((strategie[i]==0)&&(strategie[opposant[i]]==1)){	
	 	 	 gain[i]=0;	
	 	 }	
	
	
	 /*case7:AH	Individual	i	plays	Assessor	and	its	opponent	plays	Hawk	*/	
	 	 if((strategie[i]==1)&&(strategie[opposant[i]]==2)){	
	 	 	 if(capacite[i]>capacite[opposant[i]])	gain[i]=(1-erreur[i])*V-cost_a;	
	 	 	 else	if	(capacite[i]<capacite[opposant[i]])	gain[i]=0-erreur[i]*C-cost_a;	
	 	 	 else	gain[i]=(1-erreur[i])*(V/2-C/2)-cost_a;	
	 	 }	
	
	 /*case8:AD	Individual	i	plays	Assessor	and	its	opponent	plays	Dove	*/	
	 	 if((strategie[i]==1)&&(strategie[opposant[i]]==0)){	
	 	 	 gain[i]=V-cost_a;	
	 	 }	
	
	 /*case9:AA	Both	individuals	play	Assessor	*/	
	 	 if((strategie[i]==1)&&(strategie[opposant[i]]==1)){	
	 	 	 if	(capacite[i]>capacite[opposant[i]])	gain[i]=(1-
erreur[i])*V+erreur[i]*(1-erreur[opposant[i]])*(V/2)-cost_a;	
	 	 	 else	if	(capacite[i]<capacite[opposant[i]])	gain[i]=(1-
erreur[i])*erreur[opposant[i]]*V/2+erreur[i]*(erreur[opposant[i]]*V-(1-
erreur[opposant[i]])*C)-cost_a;	
	 	 	 else	gain[i]=(1-erreur[i])*((1-erreur[opposant[i]])*(V-
C)/2+erreur[opposant[i]]*V)+erreur[i]*erreur[opposant[i]]*V/2-cost_a;	
	 	 }	
	 }	
	 }	
	
/*For	each	fighting	ability,	the	model	estimates	the	average	payoff	associated	with	each	
strategy	*/	
	 for	(i=0;i<nb_classes;i++){	
	 	 gain_A[i]=0;	
	 	 gain_D[i]=0;	
	 	 gain_H[i]=0;	
	 	 Low[i]=9;	
	 	 High[i]=9;	
	 }	
	 	
	 for(i=0;i<G;i++){	
	 	 if(strategie[i]==0)	gain_D[capacite[i]]+=gain[i];	
	 	 else	if	(strategie[i]==1)	gain_A[capacite[i]]+=gain[i];	
	 	 else	if(strategie[i]==2)	gain_H[capacite[i]]+=gain[i];	
	 	 }	
	

	 for	(i=0;i<nb_classes;i++){	
	 	 if	(D[i]>0)	moy_gain_D[i]=gain_D[i]/D[i];	
	 	 if(A[i]>0)	moy_gain_A[i]=gain_A[i]/A[i];	
	 	 if(H[i]>0)moy_gain_H[i]=gain_H[i]/H[i];	
	 }	
	
/*For	each	fighting	ability,	the	model	seeks	the	strategies	that	provide	individuals	with	the	
lowest	and	highest	average	payoff	*/	
	
	 for(i=0;i<nb_classes;i++){		
	 	 /*printf("\nC:%d,	gain_D:%lf,	gain_A:%lf,		
gain_H:%lf",i,gain_D[i],gain_A[i],gain_H[i]);*/	
	 	
	
	 	 /*case	1:	The	3	strategies	are	still	present*/	
	 	 if((D[i]>0)&&(A[i]>0)&&(H[i]>0)){	
	 	
	 if((moy_gain_H[i]<=moy_gain_D[i])&&(moy_gain_H[i]<=moy_gain_A[i]))	Low[i]=2;	
	 	 	 else	if	
((moy_gain_A[i]<=moy_gain_H[i])&&(moy_gain_A[i]<=moy_gain_D[i]))	Low[i]=1;	
	 	 	 else	Low[i]=0;	
	
	 	
	 if((moy_gain_D[i]>=moy_gain_H[i])&&(moy_gain_D[i]>=moy_gain_A[i]))	High[i]=0;	
	 	 	 else	if	
((moy_gain_A[i]>=moy_gain_H[i])&&(moy_gain_A[i]>=moy_gain_D[i]))	High[i]=1;	 	
	 	 	 else	High[i]=2;	
	 	 }	
	
	
	 	 /*case	2:	Only	H	and	D	are	still	present*/	
	 	 if((D[i]>0)&&(A[i]==0)&&(H[i]>0)){	
	 	 	 if(moy_gain_H[i]<=moy_gain_D[i])	{	
	 	 	 	 Low[i]=2;	
	 	 	 	 High[i]=0;	
	 	 	 }	
	
	 	 	 else	{	
	 	 	 	 Low[i]=0;	
	 	 	 	 High[i]=2;	
	 	 	 }	
	 	 }	
	
	
	 	 /*case	3:	Only	H	and	A	are	still	present*/	
	 	 if((D[i]==0)&&(A[i]>0)&&(H[i]>0)){	

	 	 	 if(moy_gain_H[i]<=moy_gain_A[i])	{	
	 	 	 	 Low[i]=2;	
	 	 	 	 High[i]=1;	
	 	 	 }	
	 	 	 else	{	
	 	 	 	 Low[i]=1;	
	 	 	 	 High	[i]=2;	
	 	 	 }	
	 	 }	
	
	 	 	
	 	 /*case	4:	Only	D	and	A	are	still	present*/	
	 	 if((D[i]>0)&&(A[i]>0)&&(H[i]==0)){	
	 	 	 if(moy_gain_A[i]<=moy_gain_D[i])	{	
	 	 	 	 Low[i]=1;	
	 	 	 	 High[i]=0;	
	 	 	 }	
	 	 	 else	{	
	 	 	 	 Low[i]=0;	
	 	 	 	 High[i]=1;	
	 	 	 }	
	 	 }	
	 }	
	
/*For	each	fighting	ability,	the	model	randomly	chooses	one	individual	that	uses	the	least	
efficient	strategy	and	changes	its	strategy	for	the	most	efficient	one*/	
	 for(i=0;i<nb_classes;i++){	
	 	 if((Low[i]!=9)&&(High[i]!=9)){	
	 	 	 do	{	
	 	 	 	 VA=rand()%X+i*X;	
	 	 	 }	
	 	 	 while	(strategie[VA]!=Low[i]);	
	 	 	 strategie[VA]=High[i];	
	 	 }	
	 	 }	
	
}	
	 	
	
/*Simulation	outputs:	results	for	the	simulation	s*/	 	
for(i=0;i<nb_classes;i++){	
	 	 printf("\nFighting	ability:	%d,	D:%d,	A:%d,	H:%d",i,D[i],A[i],H[i]);	
	 	 Cumul_D[i]+=D[i];	
	 	 Cumul_A[i]+=A[i];	
	 	 Cumul_H[i]+=H[i];	
	 }	

	
}	
	
/*Simulation	outputs:	results	for	all	S	simulations*/	 	
printf("\nResults	after	%d	Simulations",	s);	
for(i=0;i<nb_classes;i++){	
	 printf("\nFighting	ability:	%d,	D:%d,	A:%d,	
H:%d",i,Cumul_D[i],Cumul_A[i],Cumul_H[i]);	
}	
	
}	
	
	
	 	

Model	B.	Less	successful	individuals	are	replaced	by	individuals	with	the	highest	payoff	
regardless	of	their	competitive	ability	
	
#include<stdio.h>	
#include<stdlib.h>	
#include<math.h>	
#include<time.h>	
	
const	int	n=20;	
const	int	nb_strategies=3;	
const	int	nb_classes=6;	
	
const	int	Vmoy=10;	
const	int	ecart=10;	
const	double	C=20;	
const	int	T=1000;		
const	int	q=5;	
	const	double	erreur_min=0;	
const	double	erreur_dif=0;	
const	int	nb_simul=100;	
const	double	cost_a=1;	
	
int	G;	
int	V,Vmax,Vmin;	
int	strategie[1000];	
int	capacite[1000];	
double	gain[1000];	
int	opposant[1000];	
double	erreur[1000];	
int	i,t,j,k,y,s;	
int	state[1000];	
int	CHOIX,VA,X;	
int	Low,	High;	
double	Min,Max;	
double	gain_min,	gain_max;	
int	capacite_min,	capacite_max;	
int	proba;	
int	D[100],A[100],H[100];	
int	COMP[1000];	
int	Sum_D[20],Sum_A[20],Sum_H[20];	
double	gain_D[100],gain_A[100],gain_H[100];	
double	moy_gain_D[100],moy_gain_A[100],moy_gain_H[100];	
int	Cumul_D[100],Cumul_A[100],Cumul_H[100];	
double	gain_moy;	
double	gain_moy_all_simul;	
	

void	main	(void){	
	 srand((unsigned)time(NULL));	
	
	 G=nb_classes*nb_strategies*n;	
	 X=n*nb_strategies;	
	 gain_moy_all_simul=0;	
	
	 for	(j=0;j<nb_classes;j++){	
	 	 Cumul_D[j]=0;	
	 	 Cumul_A[j]=0;	
	 	 Cumul_H[j]=0;	
	 }	
	
	 for	(s=0;s<nb_simul;s++){	
	 	 printf("\nSimulation	%d",s);	
	 	 gain_moy=0;	
	 	 	
y=0;	
for	(i=0;i<nb_classes;	i++){	
	 for	(j=0;j<nb_strategies;j++){	
	 	 for	(k=0;k<n;k++){	
	 	 	 capacite[y]=i;	
	 	 	 strategie[y]=j;	
	 	 	 erreur[y]=erreur_min+(i*erreur_dif);	
	 	 	 if(erreur[y]>0.5)erreur[y]=0.5;	
	 	 	 y+=1;	
	 	 }	
	 }	
}	
	
/*The	value	of	the	contested	resource	is	chosen	randomly	among	all	possible	values*/	
for(t=0;t<T;t++){	
	 Vmax=Vmoy+ecart;	
	 Vmin=Vmoy-ecart;	
	 if(ecart==0)V=Vmoy;	
	 else{	
	 	 V=rand()%(Vmax-Vmin);	
	 	 V+=Vmin;	
	 }	
	 	
for	(j=0;j<nb_classes;j++){	
	 D[j]=0;	
	 A[j]=0;	
	 H[j]=0;	
}	
	

	
for	(j=0;j<nb_classes;j++){	
	 Sum_D[j]=0;	
	 Sum_A[j]=0;	
	 Sum_H[j]=0;	
}	
	
	
for	(i=0;i<G;i++){	
	 if(strategie[i]==0)	D[capacite[i]]+=1;	
	 if	(strategie[i]==1)	A[capacite[i]]+=1;	
	 if	(strategie[i]==2)	H[capacite[i]]+=1;	
}	
	
	
/*Each	individual	is	characterized	by	its	state	(available	:	0,	or	unvailable	:1),	and	its	gain.	
These	two	state	variables	are	reinitialized	to	zero	at	the	beginning	of	each	time	step*/	
for	(i=0;i<G;i++){	
	 	 state[i]=0;	
	 	 gain[i]=0;	
	 	 COMP[i]=0;	
	 	 opposant[i]=999;	
	 }	
	 	
	 for(i=0;i<G;i++){	
	 if(state[i]==0){	
	 	 for	(j=i+1;j<G;j++){	
	 	 	 if	((state[j]==0)&&(capacite[j]>(capacite[i]-
q))&&(capacite[j]<(capacite[i]+q)))	COMP[i]+=1;	
	 	 }	
	 	 if(COMP[i]>0){	
	 	 do	CHOIX=rand()%G;	
	 	 while	
((state[CHOIX]==1)||(capacite[CHOIX]>(capacite[i]+q))||(capacite[CHOIX]<(capacite[i]-
q)));	
	 	 opposant[i]=CHOIX;	
	 	 opposant[CHOIX]=i;	
	 	 state[i]=1;	
	 	 state[CHOIX]=1;	
	 }	
	
	 else		i++;	
	 }	
	 }	
	
/*Calculation	of	the	expected	gain	of	each	individual*/	

	
	 for	(i=0;i<G;i++){	
	 	 if(opposant[i]!=999){	
	
	
	 /*Case	1:	HH*/	
	 	 if((strategie[i]==2)&&(strategie[opposant[i]]==2)){	
	 	 	 if(capacite[i]>capacite[opposant[i]])	gain[i]=V;	
	 	 	 else	if	(capacite[i]<capacite[opposant[i]])	gain[i]=-C;	
	 	 	 else	gain[i]=(V-C)/2;	
	 	 }	
	 /*Case	2:HD*/	
	 	 if((strategie[i]==2)&&(strategie[opposant[i]]==0)){	
	 	 	 gain[i]=V;	
	 	 }	
	
	 /*Case	3:	HA*/	
	 	 if((strategie[i]==2)&&(strategie[opposant[i]]==1)){	
	 	 	 if(capacite[i]>capacite[opposant[i]])	gain[i]=V;	
	 	 	 else	if(capacite[i]<capacite[opposant[i]])	
gain[i]=erreur[opposant[i]]*V-(1-erreur[opposant[i]])*C;	
	 	 	 else	gain[i]=(1-erreur[opposant[i]])*(V-C)/2+erreur[opposant[i]]*V;	
	 	 }	
	
	 /*case	4:DH*/	
	 	 if((strategie[i]==0)&&(strategie[opposant[i]]==2)){	
	 	 	 gain[i]=0;	
	 	 }	
	
	 /*Case	5:DD*/	
	 	 if((strategie[i]==0)&&(strategie[opposant[i]]==0)){	
	 	 	 gain[i]=V/2;	
	 	 }	
	
	 /*case	6:DA*/	
	 	 if((strategie[i]==0)&&(strategie[opposant[i]]==1)){	
	 	 	 gain[i]=0;	
	 	 }	
	
	
	 /*case	7:AH*/	
	 	 if((strategie[i]==1)&&(strategie[opposant[i]]==2)){	
	 	 	 if(capacite[i]>capacite[opposant[i]])	gain[i]=(1-erreur[i])*V-cost_a;	
	 	 	 else	if	(capacite[i]<capacite[opposant[i]])	gain[i]=0-erreur[i]*C-cost_a;	
	 	 	 else	gain[i]=(1-erreur[i])*(V/2-C/2)-cost_a;	
	 	 }	

	
	 /*case	8:AD*/	
	 	 if((strategie[i]==1)&&(strategie[opposant[i]]==0)){	
	 	 	 gain[i]=V-cost_a;	
	 	 }	
	
	 /*case	9:AA*/	
	 	 if((strategie[i]==1)&&(strategie[opposant[i]]==1)){	
	 	 	 if	(capacite[i]>capacite[opposant[i]])	gain[i]=(1-
erreur[i])*V+erreur[i]*(1-erreur[opposant[i]])*(V/2)-cost_a;	
	 	 	 else	if	(capacite[i]<capacite[opposant[i]])	gain[i]=(1-
erreur[i])*erreur[opposant[i]]*V/2+erreur[i]*(erreur[opposant[i]]*V-(1-
erreur[opposant[i]])*C)-cost_a;	
	 	 	 else	gain[i]=(1-erreur[i])*((1-erreur[opposant[i]])*(V-
C)/2+erreur[opposant[i]]*V)+erreur[i]*erreur[opposant[i]]*V/2-cost_a;	
	 	 }	
	 	 gain_moy+=gain[i];	
	 	 	
	 }	
	
	 }	
	
	 	 gain_moy=gain_moy/G;	
	 	 if(t==(T-1)){	
	 	 	 gain_moy_all_simul+=gain_moy;	
	 	 	 printf("		Gain	moy:	%lf	Gain	all	sim:%lf",gain_moy,	
gain_moy_all_simul);	
	 	 }	
	
	 for	(i=0;i<nb_classes;i++){	
	 	 gain_A[i]=0;	
	 	 gain_D[i]=0;	
	 	 gain_H[i]=0;	
	 }	
	 	 Low=9;	
	 	 High=9;	
	 	 Min=100;	
	 	 Max=-100;	
	 	
	 	
	 for(i=0;i<G;i++){	
	 	 if(strategie[i]==0)	gain_D[capacite[i]]+=gain[i];	
	 	 else	if	(strategie[i]==1)	gain_A[capacite[i]]+=gain[i];	
	 	 else	if(strategie[i]==2)	gain_H[capacite[i]]+=gain[i];	
	 	 }	
	

	 for	(i=0;i<nb_classes;i++){	
	 	 if	(D[i]>0)	moy_gain_D[i]=gain_D[i]/D[i];	
	 	 if(A[i]>0)	moy_gain_A[i]=gain_A[i]/A[i];	
	 	 if(H[i]>0)moy_gain_H[i]=gain_H[i]/H[i];	
	 }	
	
	 	
/*The	model	seeks	the	strategy	and	fighting	ability	that	are	associated	with	the	lowest	
expected	gain.	They	are	represented	by	the	variables	Low	and	capacite_min,	respectively.	
More	precisely	the	model	considers	sequentially	the	Dove,	Assessor	and	Hawk	players	and	
compare	the	gain	of	each	individual	to	a	predefined	minimum	value	(Min)	which	was	set	to	
100:	if	the	gain	of	the	individual	is	lower	than	Min,	“Min”,	“Capacite_min”	and	“Low”	take	as	
values	the	gain,	fighting	ability	and	strategy	of	that	individual*/	 	
for	(i=0;i<nb_classes;i++){	
	 if(D[i]>0){	
	 	 if(gain_D[i]<Min){	
	 	 	 Min=gain_D[i];	
	 	 	 Low=0;	
	 	 	 capacite_min=i;	
	 	 }	
	 }	
	
	
	 if(H[i]>0){	
	 	 if(gain_H[i]<Min){	
	 	 	 Min=gain_H[i];	
	 	 	 Low=2;	
	 	 	 capacite_min=i;	
	 	 }	
	 }	
	
	 	 if(A[i]>0){	
	 	 if(gain_A[i]<Min){	
	 	 	 Min=gain_A[i];	
	 	 	 Low=1;	
	 	 	 capacite_min=i;	
	 	 }	
	 }	
}	
	
	 	
/*The	model	seeks	the	strategy	and	fighting	ability	that	are	associated	with	the	highest	
expected	gain.	They	are	represented	by	the	variables	High	and	capacite_max,	respectively.	
More	precisely	it	considers	sequentially	the	Dove,	Assessor	and	Hawk	players	and	compare	
the	gain	of	each	individual	to	a	predefined	maximal	value	(Max)	which	was	set	to	-100:	if	

the	gain	of	the	individual	is	larger	than	Max,	“Max”,	“Capacite_max”	and	“high”take	as	values	
the	gain,	fighting	ability	and	strategy	of	that	individual*/	
for	(i=0;i<nb_classes;i++){	
	 if(D[i]>0){	
	 	 if(gain_D[i]>Max){	
	 	 	 Max=gain_D[i];	
	 	 	 High=0;	
	 	 	 capacite_max=i;	
	 	 }	
	 }	
	
	
	 if(H[i]>0){	
	 	 if(gain_H[i]>Max){	
	 	 	 Max=gain_H[i];	
	 	 	 High=2;	
	 	 	 capacite_max=i;	
	 	 }	
	 }	
	
	 if(A[i]>0){	
	 	 if(gain_A[i]>Max){	
	 	 	 Max=gain_A[i];	
	 	 	 High=1;	
	 	 	 capacite_max=i;	
	 	 }	
	 }	
}	
	
/*The	model	randomly	chooses	one	individual	from	the	least	successful	type	(i.e.	that	uses	
the	strategy	Low	and	has	a	fighting	ability	equal	to	capacite_min)	and	then	changes	its	
strategy	and	fighting	ability	to	High	and	capacite_max	respectively)*/	
	 	 if((Low!=9)&&(High!=9)){	
	 	 	 do	{	
	 	 	 	 VA=rand()%G;	
	 	 	 }	
	 	 	 while	((strategie[VA]!=Low)||(capacite[VA]!=capacite_min));	
	 	 	 strategie[VA]=High;	
	 	 	 capacite[VA]=capacite_max;	
	 	 }	
	
}	
	
for	(i=0;i<G;i++){	
	
	 if(strategie[i]==0)Sum_D[capacite[i]]=D[capacite[i]];	

	 else	if	(strategie[i]==1)	Sum_A[capacite[i]]=A[capacite[i]];	
	 else	Sum_H[capacite[i]]=H[capacite[i]];	
	 	 	
}	
	 	
	
	 for(i=0;i<nb_classes;i++){	
	 	 Cumul_D[i]+=Sum_D[i];	
	 	 Cumul_A[i]+=Sum_A[i];	
	 	 Cumul_H[i]+=Sum_H[i];	
	 }	
	
}	
	
	 printf("\n\nSimulation	outputs	for	%d	simulations",	s);	
for(i=0;i<nb_classes;i++){	
	 printf("\nFighting	ability	%d,	D:%d,	A:%d,	
H:%d",i,Cumul_D[i],Cumul_A[i],Cumul_H[i]);	
}	
printf("\n	Average	gain	:	%lf",	gain_moy_all_simul/s);	
	
	
}	
	 	

