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The appendix contains the following sections:

• Section S1 lists the equations of motion of the inverted pendulum biped model described in
figure 1 of the main manuscript.

• Section S2 provides specific information about the ODE solver and optimisation algorithms used
in our calculations.

• Section S3 provides information about the formal optimization problem to determine the con-
troller for the inverted pendulum biped model.

• Section S4 gives information about the perturbation impulses applied to the subjects and the
resulting center of mass trajectories and velocities from the perturbation experiments.

• Section S5 gives information about the variability and confidence intervals in the measured and
inferred quantities, specifically, the center of mass state, foot placement, foot placement gains,
and the mid-stance-to-mid-stance map.

• Section S6 gives information about the goodness of fit for the derived controller

S1 Inverted pendulum walking: equations of motion

Body motion during single stance. The biped model is shown in figure S2 (figure 3 in the main
text). See also [1,2] for a similar discussion. Positions in the lateral, forward and vertical directions are
denoted by x, y, and z respectively, so that the center of mass position is (xcom, ycom, zcom) and the foot
position is (xfoot, yfoot, zfoot). The equations of motion for the center of mass are:

mcom ẍcom = F
xcom − xfoot

`
, (1)

mcomÿcom = F
ycom − yfoot

`
, and (2)

mcomz̈com = F
zcom − zfoot

`
− mcomg. (3)

where F is the force along the leg and ` is leg length, given by:

`2 = (xcom − xfoot)
2 + (ycom − yfoot)

2 + (zcom − zfoot)
2 . (4)
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Figure S1: Phase of impulses applied during perturbation experiment. For each perturbed step, we looked at
the forces applied at the pelvis for the 0.5s before the mid-stance for a “highly perturbed” step. For these force,
the instance where the force was maximum was noted to be the phase of the applied perturbation. This figure
shows a histogram of phases for a) the backwards perturbation experiment, and b) the sideways perturbation
experiment. In each of the figures, the horizontal axis represents bins of 10% phase each, starting and ending
with left mid-stance. The vertical axis counts the number of perturbations in each bin. The blue filled boxes
correspond to steps where the right leg was in stance, thus the perturbing forces considered occur in the 0.5 s
before the right mid-stance. The red filled boxes correspond to steps where the left leg was in stance, thus the
perturbing forces considered occur in the 0.5 s before the left mid-stance.

This leg length ` is a constant during the inverted pendulum single stance: ` = `max. The equality con-
straint along with the previous differential equations gives a set of “differential algebraic equations”.
We convert the algebraic constraint ` = `max into the second order ODE ῭ = 0, which can be solved
along with the other equations for the center-of-mass accelerations and the required leg-force to keep
the leg length constant, allowing a forward integration given an initial biped state. While this inte-
gration may not, by itself, ensure leg length constancy, the constancy of leg length is enforced in the
optimization (described in section S2 below) as a constraint on the initial values of the leg length and
leg length rate: ` = `max and ˙̀ = 0 at the beginning of each stance phase.

Effect of an impulse. Push-off and heel-strike impulses are collisional [3], in that they result in an
instantaneous change in the body velocity. When an impulse I acts along the leg, the change in the
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Figure S2: Inverted pendulum walking with a simple biped. a) This biped consists of a point-mass and two
mass-less legs. The inverted pendulum walking gait consists of single-stance inverted-pendulum motions sep-
arated by an instantaneous step-to-step transition consisting of a push-off and a heel-strike impulse along the
trailing and leading legs. b) The classic inverted pendulum walking gait is planar, with the inverted pendu-
lum motions being planar and the foot placements along a line. c) The 3D inverted pendulum walking motion
consists of 3D inverted pendulum phases, and the foot placements not in a line. A two-step periodic 3D in-
verted pendulum walking motion is shown. d) The 3D inverted pendulum walking motion can be controlled by
modulating the next target foot-position and the applied push-off impulse, allowing the biped to recover from
perturbations. This figure contains elements from figure 3 of the main manuscript.

body center of mass velocity is given by:

∆mcom ẋcom = I
xcom − xfoot

`
, (5)

∆mcomẏcom = I
ycom − yfoot

`
, and (6)

∆mcomżcom = I
zcom − zfoot

`
. (7)

These equations are used directly to compute the consequences of a given push-off impulse. To solve
for the heel-strike impulse, we use these equations in addition to the condition that the leg length rate
after the collision is zero.

Non-dimensionalization. All variables were non-dimensionalized using mass mcom, leg length `max,
and acceleration due to gravity g. Here are some examples: non-dimensional forward position ȳcom =
ycom/`max, non-dimensional leg force F̄ = F/(mcomg), non-dimensional speed v̄ = v/

√
g`max, and

non-dimensional time t̄ = t
√

g/`max, where the overbar denotes the non-dimensional variant of the
variable.
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S2 Inverted pendulum walking: nominal motion and forward simulation

Problem formulation. The nominal motion for the biped was determined by determining the unique
two-step periodic inverted pendulum walking motion with a given step period tstep, step width wstep,
the step length dstep. We use a shooting-like method to determine such a motion. See also [1, 4, 5].

Specifically, knowing the equations of motion, we can simulate each step of the inverted pendulum
motion by defining the duration of each step, namely tstep,1 and tstep,2, the initial position and velocity
of the center of mass for the first step, namely (xcom10, ycom10, zcom10) and (ẋcom10, ẏcom10, żcom10), the
initial position and velocity of the center of mass for the second step, namely (xcom20, ycom20, zcom20) and
(ẋcom20, ẏcom20, żcom20), the scalar values of the four impulses along the leg, namely Ipush−off1, Iheel−strike1,
Ipush−off2 and Iheel−strike2, and the locations of the feet for the two steps, namely (xfoot1, yfoot1) and
(xfoot,2, yfoot,2).

Without loss of generality, the position of the foot for the first step is fixed to the origin for the
system. The position of the foot for the second step is determined by the given step-width and step-
length from the experiments, and the step periods are also set to match data from our experiments.
These constraints leaves us 16 unknown variables to determine: Z = ( xcom10, ycom10, zcom10, ẋcom10,
ẏcom10, żcom10, xcom20, ycom20, zcom20, ẋcom20, ẏcom20, żcom20, Ipush−off1, Iheel−strike1, Ipush−off2, Iheel−strike2).

Each step is simulated independently and starts with a heel-strike impulse that ensures that the leg-
length-rate after impulse is exactly zero. We then integrate the smooth equations of motion forward in
time for the duration of the step period. Then, a push-off impulse is applied.

The unknown variable Z is determined so as to satisfy the following constraints: (1) Inequality
constraints to prevent negative impulses (the foot pulling on the ground): 0 ≤ Ij; (2) An equality
constraint on the initial leg length for each step: ` = `max. (3) Continuity constraints ensuring that
the state at the end of the first step is equal to the state at the beginning of the second step; that is,
xcom

(
tstep

)
= xcom20, ycom

(
tstep

)
= ycom20, zcom

(
tstep

)
= zcom20, ẋcom

(
tstep

)
= ẋcom20, ẏcom

(
tstep

)
=

ẏcom20, żcom
(
tstep

)
= żcom20, zplatform

(
tstep

)
= zplatform20, and żpaltform

(
tstep

)
= żplatform20. (4) Periodicity

constraints ensuring that the state at the end of the second step is equal to the state at the beginning
of the first step except for a forward translation. xcom

(
2tstep

)
= xcom10, ycom

(
2tstep

)
= ycom10 + 2dstep,

zcom
(
2tstep

)
= zcom10, ẋcom

(
2tstep

)
= ẋcom10, ẏcom

(
2tstep

)
= ẏcom10 and żcom

(
2tstep

)
= żcom10.

Computational methods. We used ode45 in MATLAB with absolute and relative tolerances of 10−9

for integrating the differential equations in forward simulations. To determine the biped’s nominal
motion, we used the nonlinear optimiser SNOPT [6, 7] with default feasibility tolerances of 10−6 to
determine the unknown Z consistent with the constraints above.

The equality constraint equations above are such that there is a locally unique solution that satisfies
all of them. That is, the number of equations is equal to the number of unknowns (with the lineariza-
tion of the equations having full rank). We use a optimization algorithm to solve this ‘root finding’
problem only because we can conveniently impose inequality constraints such as positivity of push-
off impulse and forward progression of the biped. The optimization has a dummy constant objective
function equal to 1, so the results only depend on the constraints. Repeated optimizations converged
to the same results, providing some numerical evidence for global uniqueness of the obtained motion.

S3 Inverted pendulum walking: optimization to fit the controller

Formulation of the optimization problem. In the main text, we describe the process of calculating
the mid-stance-to-mid-stance state map J1 as well as the foot-placement map K from human data. We
also describe how these maps are symmeterized about the sagittal plane. For the simulated biped the
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mid-stance-to-mid-stance state map can be written as

∆

 XCoM(n + 1)
ẊCoM(n + 1)
ẎCoM(n + 1)


mid-stance

= (J2 + J3 · J4) · ∆

 XCoM(n)
ẊCoM(n)
ẎCoM(n)


mid-stance

. (8)

In this equation J2 and J3 are properties of the biped model. J4 represents the set of nine independent
free variables for the system. Of these, J4(1 : 2, :) is the foot placement controller and J4(3, :) is the
impulse controller. These free parameters are what we use to make the inverted pendulum biped
behave in a human-like manner.

In practice we have 18 parameters, 9 for left-to-right steps (J4left to right) and 9 for right-to-left steps
(J4right to left), and 9 constraints that ensure symmetry about the sagittal plane. For the controller J4left to right ,
we simulate the inverted pendulum biped for 1 step and determine the mid-stance-to-mid-stance state
map J∗1 . We then generate a set of 15 error terms :

e =



J4(1, 1)− K(1, 1)
J4(1, 2)− K(1, 2)
J4(1, 3)− K(1, 3)
J4(2, 1)− K(1, 1)
J4(2, 2)− K(2, 2)
J4(2, 3)− K(2, 3)
J∗1 (1, 1)− J1(1, 1)
J∗1 (1, 2)− J1(1, 2)
J∗1 (1, 3)− J1(1, 3)
J∗1 (2, 1)− J1(2, 1)
J∗1 (2, 2)− J1(2, 2)
J∗1 (2, 3)− J1(2, 3)
J∗1 (3, 1)− J1(3, 1)
J∗1 (3, 2)− J1(3, 2)
J∗1 (3, 3)− J1(3, 3)



.

The optimization problem can be written as:

minimize
J4

f0(J4),

subject to f1(J4) = 0,

where
f0(J4) = Σ15

i=1(λiei)
2

and

f1(J4) =



J4left to right(1, 1)− J4right to left(1, 1)
J4left to right(1, 2)− J4right to left(1, 2)
J4left to right(1, 3) + J4right to left(1, 3)
J4left to right(2, 1) + J4right to left(2, 1)
J4left to right(2, 2) + J4right to left(2, 2)
J4left to right(2, 3)− J4right to left(2, 3)
J4left to right(3, 1) + J4right to left(3, 1)
J4left to right(3, 2) + J4right to left(3, 2)
J4left to right(3, 3)− J4right to left(3, 3)


.
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Here, λi is a scaling parameter equal to the inverse of the confidence interval for the corresponding
human derived data. Details of these confidence intervals can be found in section S5.

S4 Experimental details

Perturbation phase. The perturbing forces in our experiments were applied by humans pulling on
cables magnetically connected to a belt tied around the pelvis of the subjects. These forces ranged in
duration from 0.5s - 0.9s and were thus much longer duration than those typically found in exper-
iments using robots to pull on subjects [8, 9]. Figure S1 shows a histogram of perturbation phases
corresponding to forces applied before each “highly perturbed” step (as defined in the main text) from
a) the backward and b) the sideways perturbation experiments. The phase for the perturbing force was
determined by looking at the peak applied force for a duration of 0.5s preceding each mid-stance cor-
responding to the “highly perturbed” step. The blue filled boxes correspond to steps where the right
leg was in stance, thus the perturbing forces considered occur in the 0.5 s before the right mid-stance.
The red filled boxes correspond to steps where the left leg was in stance, thus the perturbing forces
considered occur in the 0.5 s before the left mid-stance.

Human response to perturbations. Figure S3 shows the center of mass response to perturbations in
“highly perturbed” steps (as defined in the main text) for strides starting with a left mid-stance in both,
the sideways and backward, perturbation experiments. Examples of these perturbations are used in
the main text while trying to recreate human behaviour using the simulated biped. For the sideways
experiment we picked example trajectories that have both a rightwards position and rightwards ve-
locity deviation at mid-stance as these are far more distinct from the mean unperturbed trajectory
than other combinations, i.e. leftward velocity deviation with rightward position deviation, rightward
velocity deviation with leftward position deviations.
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Figure S3: Pelvis position and velocity trajectories from experiment. a) Top view of center of mass position tra-
jectories for “highly perturbed” steps from one trial in the sideways perturbation experiment. b) Pelvis forward
velocity for “highly perturbed” steps from one trial in the backward perturbation experiment. Each trajectory
corresponds to different mid-stance state deviation magnitudes, the darker line represents the mean “unper-
turbed” motion with the blue band around it marking ±1 standard deviation around the mean motion. These
strides all start with a left mid-stance; two complete steps (one stride) are shown.
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S5 Variability in the human data

Mid-stance pelvis state variability. The subject’s state at each mid-stance is slightly different, and
this is also true for the highly perturbed steps. The standard deviation for the non-dimensionalized
states of all subjects for these highly perturbed steps are as follows:

σXpelvis = 0.03 for left to right steps and 0.03 for right to left steps,

σẊpelvis
= 0.03 for left to right steps and 0.03 for right to left steps, and

σẎpelvis
= 0.02 for left to right steps and 0.02 for right to left steps.

The covariance matrix for the non-dimensionalized states of all subjects for perturbed left to right steps
is given by:

cov(∆ Xpelvis, ∆ Ẋpelvis, ∆ Ẏpelvis) = 10−3 ·

 0.81 −0.07 0.05
−0.07 0.78 0.10
0.05 0.10 0.52

 ,

with eigenvalues (0.47 · 10−3, 0.77 · 10−3, 0.87 · 10−3). For right to left steps, this matrix is given by:

cov(∆ Xpelvis, ∆ Ẋpelvis, ∆ Ẏpelvis) = 10−3 ·

 0.96 −0.19 −0.02
−0.19 0.78 −0.04
−0.02 −0.04 0.57

 ,

with eigenvalues (0.54 · 10−3, 0.68 · 10−3, 1.08 · 10−3). All three eigenvalues being comparable in mag-
nitude, and none of them being too small compared to the others, means that this three-dimensional
data cannot be reduced to two. The mid-stance state variability during the unperturbed steps along
with the limits of the basin of attraction are shown in Table S1.

Table S1: Standard deviation of states in normal (unperturbed) walking for the backward (AP) and the medio-
lateral (ML) protocols and maximum perturbations for which the controlled biped simulation remains stable.

State AP exp ML exp Basin max/min limits
Xpelvis 0.0100 0.0119 0.25/-0.21
Ẋpelvis 0.0084 0.0083 0.26/-0.20
Ẏpelvis 0.0075 0.0084 0.35/-0.19

Foot-placement variability. The standard deviations for the non-dimensionalized foot-positions of
all subjects for perturbed steps are as follows:

σXfoot = 0.08 for left to right steps and 0.07 for right to left steps, and
σYfoot = 0.06 for left to right steps and 0.05 for right to left steps.

The covariance matrix for the non-dimensionalized foot-placement deviations of all subjects for
perturbed left to right steps is given by:

cov(∆ Xfoot, ∆ Yfoot) = 10−2 ·
[

0.68 −0.10
−0.10 0.32

]
with eigenvalues (0.30 · 10−2, 0.71 · 10−2). For right to left steps, this matrix is given by:

cov(∆ Xfoot, ∆ Yfoot) = 10−2 ·
[

0.54 0.13
0.13 0.28

]
with eigenvalues (0.22 · 10−2, 0.59 · 10−2).
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Foot placement gain variability. The foot placement relationship derived directly from human data,
as shown in section 3 of the main text, is the symmetrized version of two different relationships, one
each for the set of steps for which the left foot and right foot are in stance. The 95% confidence interval
for the linear relationship derived from steps in left stance is:

∆ Xfoot = (1.93 ± 0.04) · ∆ Xpelvis + (2.07 ± 0.04) · ∆ Ẋpelvis + (0.04 ± 0.05) · ∆ Ẏpelvis and

∆ Yfoot = −(0.40 ± 0.07) · ∆ Xpelvis − (0.97 ± 0.07) · ∆ Ẋpelvis + (0.84 ± 0.08) · ∆ Ẏpelvis.

The 95% confidence interval for the linear relationship derived from steps in right stance is:

∆ Xfoot = (1.78 ± 0.04) · ∆ Xpelvis + (1.84 ± 0.04) · ∆ Ẋpelvis − (0.11 ± 0.05) · ∆ Ẏpelvis and

∆ Yfoot = (0.54 ± 0.05) · ∆ Xpelvis + (1.10 ± 0.06) · ∆ Ẋpelvis + (0.77 ± 0.06) · ∆ Ẏpelvis.

Mid-stance-to-mid-stance map variability. The left-to-right mid-stance-to-mid-stance map J1, along
with the 95% confidence interval is given by:

J1 =

 −(0.40 ± 0.03) −(0.92 ± 0.03) −(0.06 ± 0.04)
(0.42 ± 0.02) (0.36 ± 0.02) −(0.11 ± 0.02)
−(0.04 ± 0.02) −(0.16 ± 0.02) (0.27 ± 0.02)

 with R2 =

 0.62
0.56
0.22

 .

The right-to-left mid-stance-to-mid-stance map with its 95% confidence interval is given by:

J1 =

 −(0.33 ± 0.03) −(0.79 ± 0.03) (0.07 ± 0.03)
(0.39 ± 0.02) (0.32 ± 0.02) (0.07 ± 0.02)
(0.08 ± 0.02) (0.18 ± 0.02) (0.27 ± 0.02)

 with R2 =

 0.55
0.50
0.30

 .

Variability in individual gains. The foot-placement gains and the mid-stance-to-mid-stance map
can be fit for each individual subject as well. Figures S4 and S5 show the variability of these fits for
left-to-right and right-to-left steps respectively. The gains for the main diagonal elements of J1 and
each of the foot-placement gains for each subject are color coded. The box-plot shows the median of
this distribution, a 25% to 75% confidence interval box, and whiskers corresponding to 2.5 times the
standard deviation. Outliers are marked with a red cross. The black dot shows the mean of the pooled
data that is used in the controller derivation.

S6 Accuracy of the controller fit

Residuals for the controller fits. The fitting of the inverted pendulum model to the human-derived
foot placement and step to step maps resulted in small non-zero residuals. Specifically, the residuals
for the foot placement controller were:

e1 =

[
0.21 0.27 −0.34
−0.07 −0.02 0.17

]
and the residuals for the symmetrized left to right Poincaré map were

e2 =

 −0.03 −0.005 −0.06
−0.02 −0.02 0.14
0.01 0.01 −0.06

 .
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Figure S4: Variability in individual gains. The mid-stance-to-mid-stance gains and foot-placement gains can
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The controlled inverted pendulum biped produces a close, but not perfect, approximation of the
human center of mass dynamics. Figure S6 shows a comparison of mid-stance state errors in the next
step, i.e. the 2nd step after perturbations, as predicted by the mid-stance-to-mid-stance J1 (on the
horizontal axis) and the simulated biped (on the vertical axis). The green dots represent one of a 100
randomly sampled input peturbations from the experimental data. The yellow line shows the best fit
to this data. If the center of mass dynamics of the simulated biped perfectly matched the mid-stance-
to-mid-stance map J1, then this best fit line would exactly overlap the red line.
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Predicting state after one step: Three-D model simulations versus linear mid-stance-to-mid-stance map
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Figure S6: Full 3D simulation versus linear model. Comparing state deviations one step after a perturbed step,
as predicted by using full 3D simulation versus as predicted by the linear mid-stance-to-mid-stance map. For
illustrative purposes, we only display 100 randomly selected data points, whereas the best-fit line is fit to the
full data set.
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Foot placement gains: unperturbed vs perturbed walking

Figure S7: Unperturbed walking vs perturbed walking. The foot placement gains inferred from the perturba-
tion experiments herein (horizontal axis) are quantitatively similar to those derived from unperturbed walking
(vertical axis) in a previous study [10]. The similarity two sets of gains is characterized by the best fit line
y = 0.93x − 0.07, with an R2 = 0.963. It appears that the largest relative difference in the gains is in the response
of sideways foot placement Xfoot to deviations in mid-stance Ẋpelvis. Dropping this gain in the comparison
gives an R2 = 0.996 and a regression equation y = 1.05x − 0.03. Note that the gains from [10] have been
non-dimensionalized here for direct comparison.
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