
Supplementary Materials

For the article “Connecting empirical phenomena and theoretical models of biological co-

ordination across scales” by Mengsen Zhang, Christopher Beetle, J. A. Scott Kelso and Em-

manuelle Tognoli, in the Journal of the Royal Society Interface.

Additional analyses on the coexistence of inphase and antiphase preference

The coexistence of inphase and antiphase preference in human coordination (24) (Fig 2D-F)

and model behavior (Fig 5D-F) is reflected by the location of troughs (minima in the probability

density functions) separating the inphase and antiphase peaks. In the human data (Fig 2D-F),

the minima are at φ = 0.62π , 0.77π, and 0.8π (away from both 0 and π) for δf = 0, 0.3, and 0.6

Hz respectively, with the minimum for δf = 0 Hz significantly less than chance (p < 0.0005,

Fig S1A; nowhere with probability density significantly less than chance for δf = 0.3, and

0.6 Hz, as shown in Fig S1BC). This suggests that there is an unstable phase relation between

inphase and antiphase, which is most prominent for δf = 0 Hz. This is well reflected in the

behavior of the present model (i.e. equation (3) with a = b = 0.105) shown in Fig 5D-F, where

the minima of the probability density functions are at φ = 0.6π, 0.7π, and 0.67π for δf = 0, 0.3,

and 0.6 Hz and the contrast between the minimum and the antiphase peak is most prominent for

δf = 0 Hz (Fig 5D). On the other hand, for the Kuramoto model (i.e. equation (3) with b = 0),

the minima of the probability density functions are always at φ = π for all δf ’s (Fig 5G-I),

reflecting the instability related to antiphase when second order coupling is removed (supported

by analytical results in Section Multistability of the present model). To think probablistically

of how the troughs in the distributions inform us about which model better captures empirical

phenomena, we consider the probability of observing the minima of three random distributions

in a specific interval. The probablity of the minima of three random distributions to fall within

the interval [0.6π, 0.8π] (like those for the human data and simulations of the proposed model)
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is 0.008, and that for interval [0.99π, π] (like those for simulations of the Kuramoto model)

is 10−6. Thus, the convergence between human behavior and that of the proposed model, the

divergence between human behavior and the Kuramoto model are highly unlikely to be due to

chance. With all considered, the experimental phenomena from (24) cannot be fully captured

without the second order coupling.
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Fig S1. Relative phase distributions in the human experiment and comparisons with
corresponding chance-level distributions for δf = 0 (A), 0.3 (B), and 0.6 Hz (C). coloured
solid lines are the probability density functions of all dyadic relative phases for different δf ’s,
each estimated in 100 bins. White solid lines and colour-shaded areas are the chance level
distributions and corresponding confidence intervals with significance level p = 0.0005 per bin
(after Bonferroni correction for p̂ = 0.05 for an entire distribution; see the construction of
random distributions in Section D in S1 File of (24)). Black dots above the distributions mark
where the probability density functions are significantly greater than chance, and black dots
below mark where they are significantly less than chance (dots appear as bars when significant
difference from chance is found in consecutive bins). This is a reproduction of Fig E (B1-B3)
in S1 File of (24) but with all bins significantly different from chance marked (rather than as
in (24), bins were marked only if significance was found in 3 or more consecutive bins).

For simulated dynamics, we show in Fig S2 that antiphase peaks in the relative phase dis-

tributions (prominent in Fig S2A, weak in Fig S2BC, which were reproduced from Fig 5D-F)

did not result from transient behavior. Removal of transients from every simulated trial has

little effect on the the relative phase distributions (comparing red dashed curves to black solid

curves).
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Fig S2. Aggregated relative phase distributions of simulated trials with δf = 0 (A), 0.3 (B),
and 0.6 Hz (C). Each distribution was computed from 200 simulated time series. Distributions
computed from all time points of all trials are plotted as black solid curves, which are identical
to those in Fig 5D-F. Distributions computed from the same trials but with the first 10s of each
time series discarded are plotted as red dashed curves.

Choosing the appropriate coupling strength

What we want to see is how the present model behaves as we manipulate the diversity of nat-

ural frequency ωi’s just as we did to human subjects. However, there remain two unknown

parameters to be taken care of, namely the coupling strength a and b in equation (3). Before

systematically finding the appropriate coupling strength, we want to first show qualitatively how

it affects the dynamics.

Three simulated trials with increasing coupling strength are shown in Fig 4 from A to C,

where the initial phases and natural frequencies are the same across trials (warm-color group

centered around fA = 1.2 Hz, cold-color group fB = 1.8 Hz, corresponding to the condition

δf = 0.6 Hz). When the coupling is weak (a = b = 0.1, Fig 4A), oscillators are well-segregated

into two frequency groups. Within each frequency group, members intermittently converge

(marked by black triangles) then diverge, reflecting metastability at a group level (collective

dwells). For intermediate coupling (a = b = 0.2, Fig 4B), oscillators within each group are

locked together, interacting strongly as a whole with the other frequency group (seen as the

oscillation of frequency), so that the ensemble (N = 8) behaves like a dyad (N = 2). Finally,

for strong coupling (a = b = 0.4, Fig 4C), everyone converges to a single steady frequency.
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We see a progression from group-level segregation to integration from (A) to (C), indicating

the important role of coupling strength in determining intergroup relation. Qualitatively, the

model’s behavior under weak coupling (Fig 4A) is closer to human behavior (Fig 2C) than that

of stronger coupling. Next we take a more quantitative look.

To quantify the joint effect of frequency diversity (δf ) and coupling strength (a = b for

simplicity) on integration and segregation between two frequency groups, we calculated the

level of intergroup integration (β1) for simulated trials using the same method as for the human

experiment (see Phase-locking value and level of integration in Materials and Methods in the

main text). For each parameter pair (δf, a) with a = b, we simulated 200 trials. In each simu-

lated trial, two frequency groups A and B each consists of four oscillators (ϕ1, · · · , ϕ4 in group

A, ϕ5, · · · , ϕ8 in group B). The natural frequency of oscillators in group A (i.e. ω1, · · · , ω4,

divided by 2π) was drawn from a distribution P (fA) centered around fA (corresponds to the

metronome frequency for the group in the human experiment), and P (fB) for group B. The

difference between two groups δf = |fA−fB| corresponds to the level of diversity in the human

experiment. Here the probability density function P (f), which defines frequency dispersion

within each group, was obtained by a nonparametric estimation of the empirical distribution

(see Materials and Methods in the main text).

The level of intergroup integration for simulated trials is shown in Fig 4D as the colour

of each pixel (diversity δf as y-coordinate; coupling strength a = b as x-coordinate). Three

regimes are apparent: the highly integrated (yellow, β1 ≈ 1), the partially integrated (red,

0 < β1 � 1), and the segregated (blue, β1 < 0). Between the red and blue area is the critical

boundary (white solid line, β1 = 0), separating the regimes of integration and segregation. With

any fixed coupling strength, for the critical boundary to fall between δf = 0.3 Hz and δf = 0.6

Hz as in the human experiment, the coupling strength has to be weak (for δf = 0.6 Hz, β1 < 0

only when a = b < 0.15 ) but not too weak (for δf = 0.3 Hz, β1 > 0 only when a = b > 0.05).

4



Without risking overfitting, we simply choose the coupling strength a = b = 0.105, for which

the level of intergroup integration is the closest to experimental observation for δf = 0.3 Hz

(β1 = 0.31).

Empirical distribution of tapping frequency around metronome frequency

In the “Human Firefly” experiment (24), subjects’ tapping frequency during the transient be-

tween pacing and interaction (a proxy to “natural frequency”; see Materials and Methods in

main text) dispersed around the metronome frequencies. The distribution of this deviation from

metronome frequencies is shown in Fig S3 (blue histogram). Most of the time, subjects were

very close to the metronome frequency (peak around zero). We can use a normal distribution

N (µ, σ) to capture this peak (Fig S3 yellow line), where parameters µ = 0 and σ = 0.0986

(Hz) were estimated using the median and 10th percentile of the empirical distribution. We

can see a difference between the empirical distribution and the normal distribution - the normal

distribution (yellow line) does not capture the fat-tails of the empirical distribution (blue bars

exceed yellow line on its shoulders). These “mutant fireflies” making up the fat-tails are not to

be dismissed as out-liers, because they contribute to the behavior of others in the ensemble. To

better represent the empirical distribution, we used Kernel Density Estimation (with a normal

kernel) as described in section Estimating the distribution of natural frequencies of Materials

and Methods in the main text, and the result of estimation is shown as the red line in Fig S3

(named kernel distribution). The kernel distribution better captures the tails of the empirical

distribution and was used to generate natural frequencies of oscillators in the simulations.
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Fig S3. Distribution of human movement frequency around metronome frequencies and its
estimation.

Examples of dynamics with intergroup coupling removed

By removing intergroup coupling, we obtain a modification of equation (3)

ϕ̇i = ωi − a
N∑
j=1

eij sinφij − b
N∑
j=1

eij sin 2φij (S1)

where eij = 1 if i, j ∈ {1, 2, 3, 4} or i, j ∈ {5, 6, 7, 8}, eij = 0 otherwise, for N = 8. The

resulting dynamics (with all other parameters the same as examples in Fig 5A-C in the main

text) are given in Fig S4. Within each frequency group (one group in cold colours, one group in

warm colours), we see the same intragroup metastable dynamics being repeated regardless of

intergroup difference (df = 0, 0.3, 0.6 Hz for Fig S4A, B, C respectively). These trials, without

intergroup coupling, provide a baseline dynamics for comparison with Fig 5A-C, revealing

the effect of intergroup influence. It turns out that for a given intragroup coupling, intragroup

metastability comes from intragroup dispersion of natural frequencies. Metastability vanishes

when two metastable groups have no intergroup difference (Fig 5A). In other words, without
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intergroup difference (δf = 0), there are more oscillators within the same range of frequency,

which cooperatively increases intragroup coordination. If we remove this intragroup dispersion

of natural frequency (along with the metastability), we can no longer reproduce the experimental

observation that intragroup coordination was weakened and altered by intergroup differences

(see Effect of reduced intragroup variability in natural frequency for a statistical analysis).
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Fig S4. Intragroup dynamics without intergroup coupling, for intergroup difference δf = 0
(A), δf = 0.3 (B), and δf = 0.6 Hz (C).

With intergroup coupling, the time scale of metastability is modified by δf , as shown in

Fig 5BC where the interval between two episodes of convergence (black triangles) is shorter

for δf = 0.3 Hz (B) than for δf = 0.6 Hz (C). In Fig S5A, this is also visualized as the

dynamics of phase-locking value (PLV) within groups (average PLV of all intragroup dyads in
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3-s windows). When oscillators within groups converge, PLV is close to 1, and the interval

between two consecutive peaks in a PLV trajectory reflects the time scale of the metastable

coordination. Without influence from the other group, the time scales are exactly the same

(trajectories exactly on top of each other in Fig S5B). With influence from the other group, the

time scale depends on the level of intergroup difference (inter-peak intervals for δf = 0.3 Hz

was much shorter than that of δf = 0.6 Hz in Fig S5A). Perhaps, we can consider δf = 0 Hz

(i.e. lost of metastability, S5A blue line) as the special case where the inter-convergence interval

is zero.

Fig S5. Dynamics of intragroup phase-locking value (PLV) with (A) and without (B)
intergroup coupling.

It is also interesting to notice that for δf = 0.6 Hz, the metastable time-scale of the trial with
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intergroup coupling (Fig S5A yellow line) is very similar to that of the trial without intergroup

coupling (Fig S5B yellow line). This may be connected to the fact that δf = 0.6 Hz (given

a = b = 0.105) is in the regime of intergroup segregation. It is perhaps a hypothesis worth

further investigation that the level of intergroup integration (as measured by β1, see main text)

reflects how the time scale of intragroup metastability was affected by intergroup difference.

Here our discussion on these examples is only to provide an intuitive understanding of the

dynamics.

Effect of reduced intragroup variability in natural frequency

Recall that the reduction in intragroup coordination shown in Fig 3D (left) was based on sim-

ulations with nontrivial dispersion in natural frequency within each group, reflecting the nat-

ural variability carried into the experiment by human subjects. What if we remove that intra-

group dispersion? As shown in Fig S6A (left three bars), intragroup coordination becomes all

very close to the maximal level (phase-locking value close to 1) for all diversity conditions

(MANOVA interaction effect F (2, 19194) = 50152, p < 0.001); we no longer see the large

drop in intragroup coordination as seen in Fig 3BD. Even if we break the symmetry in coupling

strength (use equation (1) with random coefficients, instead of uniform coupling in equation

(3); see Random coupling for details), the phenomenon is not recovered (Fig S6B very similar

to A; MANOVA interaction effect F (2, 19194) = 59678, p < 0.001). By studying the model’s

behavior, we found that the reduction in intragroup coordination due to intergroup difference, as

observed in the human experiment, mainly depends on asymmetry in natural frequency rather

than coupling strength.
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Fig S6. Intragroup and intergroup phase-locking by different levels of diversity δf for
simulated data with identical natural frequency within groups. (A) shows the results of
simulations with uniform coupling, and (B) non-uniform coupling (a’s and b’s are randomly
distributed in the interval [0, 0.2] see text for details).

Random coupling

To study the effect of symmetry breaking in coupling strength, we generated random coefficients

for equation (1), following a uniform distribution on the interval [0, amax],

P (a) =
1

amax
. (S2)

We simulated 200 trials for each parameter pair (δf = 0.3Hz, amax) for amax ∈ [0, 1] (dis-

cretized into intervals of length 0.01) with initial phases randomly distributed from 0 to 2π and

natural frequencies following the empirical distribution from the human experiment (see Empir-

ical distribution of tapping frequency around metronome frequency). We then find the value of

amax = 0.2, which produces the level of intergroup integration (β1) closest to the experimental

value (0.31). Using this fitted amax, we simulated 200 trials with no intragroup dispersion in

natural frequency, which were used to produce results in Fig S6B.
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Intergroup relation without second order coupling

To examine whether the second order coupling term (i.e. b
∑

sin 2φij) in equation (3) is neces-

sary for reproducing key experimental results, we let b = 0 and followed the exact same analysis

as for the case of b 6= 0. The results are shown in Fig S7 (its b 6= 0 counterpart is Fig 4D), and

Fig S8AB (its b 6= 0 counterpart is Fig 3CD).

Fig S7 shows the organization of the parameter space δf × a in terms of the level of integration

between groups (β1, see definition in main text). Similar to Fig 4D (for b 6= 0), the space con-

sists of three regions - complete integration (β1 ≈ 1, yellow), partial integration (0 < β1 � 1,

red), and segregation (β1 < 0, blue) - arranged from upper right to lower left. Fig S7 is approx-

imately a scaled version of Fig 4D along a.

Fig S7. Level of integration between groups by δf and a, with b = 0.
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We estimated the coupling strength to be a = 0.154, where the corresponding level of

intergroup integration for δf = 0.3 Hz is the closest to the empirical value (up to 10−3 precision

for a; for a = 0.154, β1(0.3Hz) = 0.29, the empirical value is 0.31). The corresponding

relations between intragroup and intergroup coordination is shown in Fig S8A and average

intra/intergroup coordination in Fig S8B for different levels of δf .

In Fig S8A, each dot represents a particular trial with its x-coordinate indicating the average

intragroup coordination (measured by phase-locking value, see Materials and Methods in main

text) and y-coordinate the average intergroup coordination, whereas the colour indicates the

diversity δf . Similar to the human experiment and the case of b 6= 0, more intragroup coordi-

nation is associated with more intergroup coordination (i.e. intergroup integration) for δf = 0

and 0.3 Hz (blue, red regression lines with positive slopes), and less intergroup coordination

(i.e. intergroup segregation) for δf = 0.6 Hz (yellow regression line with negative slope). Two

differences are (1) the β1 for δf = 0.6 Hz and b = 0 is not significantly different from zero

(p > 0.05; see main text for more statistics), where as its counterparts in the human data and the

case of b 6= 0 are (p < 0.05); (2) in the human data and the case of b 6= 0, three regression lines

intersect at almost the same point (see Fig 3A, C), which is not the case for b = 0 (Fig S8A).
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Fig S8. Intragroup, intergroup coordination and the relationship between them for a = 0.154
and b = 0. Here the level of coordination is measured by phase-locking value (see main text
for definitions). (A) shows the relationship between intragroup (x-coordinate of each dot) and
intergroup coordination (y-coordinate of each dot) for different levels of diversity (color code).
The solid lines are corresponding regression lines whose slope quantifies the level of
integration between two frequency groups. (B) shows the average intragroup (left three bars)
and intergroup coordination (right three bars) for different levels of diversity (color code).

In Fig S8B, we show the average level of intragroup and intergroup coordination (again, in

terms of phase-locking values). Intragroup coordination is reduced by the presence of inter-

group difference (red, yellow bars on the left significantly shorter than blue bar). Intergroup

coordination is more dramatically reduced by intergroup difference. Overall, these results re-

semble those of the human data and the case of b 6= 0.

Multistability of the present model

The equations for N Kuramoto oscillators with the same natural frequency, coupled to one

another with a uniform coupling a > 0 are

ϕ̇i = −a
∑
j

sin(ϕi − ϕj). (S3)
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These equations can be recast in the mean-field form

ϕ̇i = −r sin(ϕi − ψ) with r eiψ := a
∑
j

eiϕj , (S4)

which admit two types of fixed points: either (a) r = 0, or (b) sin(ϕi−ψ) = 0 for each oscillator.

In either case, the linearized equations governing the evolution of a small perturbation δϕ away

from a fixed point are

δϕ̇i = −a
∑
j

cos(ϕi − ϕj) (δϕi − δϕj)

= −r cos(ϕi − ψ) δϕi + a
∑
j

cos(ϕi − ϕj) δϕj (S5)

We will study these linearized equations in the two cases separately.

Case (a) The first term of equation (S5) vanishes in this case. If we assume further that

δϕj = 0 initially for all but one oscillator, then the simplified equations are

δϕ̇i = a cos(ϕi − ϕj) δϕj. (S6)

In particular, δϕj itself grows exponentially at a rate a, so this fixed point cannot be stable.

Case (b) In this case there are two subgroups of oscillators, all exactly inphase within their

group, and exactly antiphase to the other group. These groups cannot be equal in number

because then r = 0 in equation (S5). Accordingly, we have r = (n+ − n−)a, where n+ > n−

are the sizes of the in- and antiphase groups (relative to the mean oscillator ψ, which of course

is inphase with the larger group). The linearized equations become

δϕ̇i = −(n+ − n−)asi δϕi + asi
∑
j

sj δϕj, (S7)

where si := cos(ϕi − ψ) = ±1 indicates whether ϕi is in- or antiphase to ψ. This equation can

be recast in the matrix form

δϕ̇ = J δϕ :=
[
aSHS − (a trS)S

]
δϕ, (S8)
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where S is the N × N matrix with non-zero entries si = ±1 along the diagonal and H is the

N ×N matrix with all entries equal to +1. Our goal is to show that the Jacobian matrix J has

at least one positive eigenvalue. This will imply that the fixed point is unstable dynamically. To

do this, first we use the elementary identities S2 = 1 and H2 = ( tr 1)H to calculate

J2 = (a tr 1)J − (a trS)
[
aHS + aSH − (a tr 1)S − (a trS)1

]
, (S9)

where 1 denotes the N × N identity matrix. The additional identity HSH = ( trS)H then

gives

J3 = (a tr 1)J2 + (a trS)2J + (a trS)2
[
aH − (a tr 1)1

]
(S10)

Applying all three of these identities one last time yields

J4 = (a tr 1)J3 + (a trS)2J2 − (a tr 1)(a trS)2J. (S11)

That is, J solves a quartic polynomial, which moreover factors in the form

J
[
J − (a tr 1)1

][
J − (a trS)1

][
J + (a trS)1

]
= 0. (S12)

This is clearly the minimal-order polynomial that J solves, and it has all distinct roots. It

follows that J has a complete basis of eigenvectors with eigenvalues λ0 := 0, λ∗ := Na,

λ+ := (n+ − n−)a, and λ− := (n− − n+)a. (We can’t tell the multiplicity of each of these

eigenvalues from this calculation, but each has at least a one-dimensional eigenspace associated

to it.) The zero eigenvalue arises because the right side of equation (S3) involves only relative

phases, so the dynamics is insensitive to rigid rotations ϕi 7→ ϕi + θ for all i. The eigenvalues

λ∗ and λ+, meanwhile, are strictly positive, and show that this fixed point is unstable.

The lone exception to this argument occurs when n− = 0, and therefore S = 1. Then we

have J = a[H − N1], which clearly has a zero eigenspace corresponding to the rigid rotation

of all oscillators in the system (i.e., all δϕi equal to one another). Apart from this, there is
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only a single, complementary eigenspace of dimension N − 1 associated with the eigenvalue

λ = −Na. The configuration with all oscillators exactly inphase is therefore the only stable

fixed point solution of the Kuramoto model.

Our model (with second-order coupling), on the other hand, has multiple stable fixed points

for suitable values of its parameters. For uniformly coupled, identical oscillators, our equations

are

ϕ̇i = −a
∑
j

sin(ϕi − ϕj)− b
∑
j

sin 2(ϕi − ϕj). (S13)

The fixed points of the Kuramoto model with each ϕi equal either to ψ or to ψ+π are also fixed

points of these equations, and the linearized equations around such a fixed point are

δϕ̇i = −(n+ − n−)asi δϕi + asi
∑
j

sj δϕj − 2Nb δϕi + 2b
∑
j

δϕj. (S14)

Here again we set si := cos(ϕi − ψ) = ±1 and let n± denote the numbers of oscillators with

si = ±1. The matrix form of these linearized equations is

δϕ̇ = J δϕ :=
[
aSHS − (a trS)S + 2bH − (2b tr 1)1

]
δϕ, (S15)

where the matrices S, H , and 1 are defined as before. This Jacobian matrix differs from the

Kuramoto Jacobian, which now we denote Ja, by its last two terms. Importantly, we have

JaH = aSHSH − (a trS)H = 0 (S16)

because HSH = ( trS)H . It follows that all cross-terms vanish in any binomial expansion:[
J + (2b tr 1)1

]n
=
[
Ja + 2bH

]n
= Jna +

[
2bH

]n (S17)

for all integers n. Applying these results in equation (S10) then shows that

[
J + (2b tr 1)

]3 − (a tr 1)
[
J + (2b tr 1)

]2
− (a trS)2

[
J + (2b tr 1)

]
+ (a trS)2(a tr 1)1

= (a trS)2aH +
[
2bH

]3 − (a tr 1)
[
2bH

]2 − (a trS)2
[
2bH

]
. (S18)
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Each term on the right here vanishes if we multiply through by J . Meanwhile, the cubic

polynomial on the left is the same one from the Kuramoto case, with its argument shifted by

J 7→ J + (2b tr 1)1. It factors in the same way as before to give the minimal polynomial

J
[
J + (2b tr 1− a tr 1)1

][
J + (2b tr 1− a trS)1

][
J + (2b tr 1 + a trS)1

]
= 0 (S19)

for the present model. The non-zero eigenvalues of the Kuramoto models are therefore all

shifted by the same amount, giving λ0 = 0, λ∗ = (a−2b)N , and λ± := ±(n+−n−)a trS−2Nb.

These are all negative as long as 2b > a, the same condition that governs the HKB model for

dyadic coordination. Our model is multistable when its parameters satisfy this condition.

Additional triadic dynamics

Here we provide in Fig S9 two additional variations of the simulated triadic dynamics shown

in Fig 6B. Fig S9A shows what happens when all three oscillators have the identical coupling

style, i.e. a1 = a3 = a4 and b1 = b3 = b4 (keeping the same mean coupling strength as

Fig 6B and C). With the symmetry completed restored (in contrast to Fig 6C where only the

symmetry between agent 3 and 4 is restored), not only the “bumps” in φ34 are gone but also the

metastability altogether (at least at the observable time scale). This further illustrates the role of

symmetry breaking in understanding the single-trial dynamics.
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Fig S9. Simulated triadic coordination with (A) a1 = a3 = a4 = 0.4033 and (B) varying
natural frequency ω3.

Fig S9B shows what happens when agent 3’s natural frequency is not constant. A main clue

suggesting a non-constant natural frequency is the increasing size of “bumps” in φ34 observed

in the human behavior (see Fig 6A, the bump in yellow line at 15s was smaller than the one at

25s, and even smaller than the one at 37s) which was accompanied by growing length of the

dwells in φ13 (red trajectory in Fig 6A has three periods of flattening, each one longer than the

previous one). This could simply mean that agent 3’s “natural frequency” was moving towards

agent 1’s and away from agent 4’s. In the model, the natural frequencies of agent 1 and 4

are 1.57 and 1.45 Hz respectively. We simply let ω3 increase linearly from 1.2 Hz to 1.7 Hz,

instead of being constant (i.e. 1.375 Hz for Fig 6BC and S9A), over the course of the trial. The

resulted dynamics is shown in Fig S9B. We see the dwells of φ13 (red line flattening around 7,

17 and 32s) are getting longer over time as the bumps in φ34 (yellow line) grow (the last bump

grows out of itself at 37s and leaves inphase). In fact, at the end of the last dwell (around 37s)

φ13 is no longer metastable in the original sense but begins to oscillate around inphase φ = 0,

whereas φ34 takes its place at that time and becomes metastable (i.e. after 37s yellow line starts
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wrapping).

Gradually increasing natural frequency of agent 3 (ω3) creates two subtle effects in addition

to the increasing bump size. The first has already been hinted at that a gradual change of

parameter can cause φ34 to suddenly leave inphase (∼ 37s yellow line in Fig S9B). In the

human trial (Fig 6A), φ34 had also, after the third bump, left inphase (37s). The difference

is that the humans left for antiphase, instead of becoming metastable as for our simple model

assuming linearly increasing natural frequency. This suggests that there was, unsurprisingly,

more interesting adaptation going on in human movement frequency than just a linear ramping.

Another subtle effect is of the same flavor but is concerned with what happens before φ34 began

to dwell at inphase. In the human trial, φ34 decreased for almost one cycle before it stopped

at inphase (0-10s yellow line in Fig 6A). This is not the case with constant frequency (Fig 6B,

yellow line, φ34 immediately increases to inphase after the beginning of the trial), but it is

the case with varying frequency (Fig S9B, yellow line, 0-5s). All these show by a very simple

example how gradual adaptation in natural frequency may cause sudden changes in coordination

patterns.

A note on metastability

For intuition, let us assume that there are N oscillators in a stationary organization defined

by N − 1 relative phases, each of which remains near inphase, near antiphase, or wrapping,

giving us S = 3N−1 different stationary patterns for our model (S = 2N−1 for the Kuramoto

model because of the lack of antiphase). Now if we look at patterns as sequences of metastable

dwells, we could have M =
∑S

l=1
S!

(S−l)! patterns of various period l (with non-repeated spatial

configurations in sequence). These of course are not all necessarily reachable by a system,

which in itself is an interesting theoretical problem, but still the repertoire M is much greater

than S. This thought experiment shows how metastability contributes to biological complexity
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in a very significant way.

Design of the human experiment

The human experiment (24) was performed by a total of 120 subjects in 15 ensembles. Each

ensemble completed 18 trials (6 trials for each condition δf = 0, 0.3 and 0.6 Hz) of interaction

in a complete network, except one ensemble for which only 7 trials (2 for δf = 0 Hz, 2 for

δf = 0.3 Hz, and 3 for δf = 0.6 Hz) were completed due to equipment malfunction. This

yields 86 trials for δf = 0 Hz, 86 trials for δf = 0.3 Hz, and 87 trials for δf = 0.6 Hz. See (24)

for additional details.
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