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S1 Food web and local population dynamics1

We consider a multitrophic metacommunity consisting of 40 species on a varying number of randomly positioned2

habitat patches, Z (the meta-food-web, figure 1b). All patches have the same abiotic conditions and each patch can3

potentially harbour the full food web, consisting of 10 basal plant and 30 animal consumer species. The feeding links4

(i.e. who eats whom) are constant over all patches (figure 1a,b) and are as well as the feeding dynamics determined by5

the allometric food web model by Schneider et al. [1]. We integrate dispersal as species-specific biomass flow between6

habitat patches (figure 1b,d).7

Using ordinary differential equations to describe the feeding and dispersal dynamics, the rate of change in biomass8

density, Bi,z , of species i on patch z is given by9

dBi,z

dt
= Ti,z − Ei,z + Ii,z , (1)

with Ti,z = υi,z · Bi,z as the rate of change in biomass density determined by local feeding interactions (where υi,z is the10

per capita growth rate, see table S2), Ei,z as the total emigration rate of species i from patch z (equation 2), and Ii,z as11

the total rate of immigration of species i into patch z (equation 4).12

Local food web dynamics13

We use an allometric trophic network model (ATN model) based on the work of Schneider et al. [1] & Kalinkat et14

al. [2] to simulate the trophic dynamics of local populations (Ti,z in Equation 1). Regarding this term, we distinguish15

between animal species (Equation T1-1) and basal plant species (Equation T1-6). In each patch, the biomass dynamics16

of animal species (biomass densities Ai,z) is given by the differences between growth due to consumption of animal17

or plant species and losses due to mortality through predation and metabolic demands. The rate of change in plant18

biomass densities Pi,z depends on the uptake of the two resources, mortality through grazing, and also accounts for19

metabolic losses. We used a dynamic nutrient model (equation T1-8) with two nutrients (concentrations Nl,z) of20

different importance as the energetic basis of our food web [1, 3].21

The topological network model is an extension of the niche model originally introduced by Williams & Martinez [4]22

and accounts for allometric degree distributions and recent data on scaling relationships for species body mass and23

trophic levels [5]. Each species i is fully characterised by its average adult body mass mi . We sampled log10 body24

masses of animal species randomly with a uniform probability density from the inclusive interval (2, 12) and the log1025
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body masses of plant species from the inclusive interval (0, 6) (for empirical examples see [6]). This step makes the26

model inherently stochastic, but from hereon, all other steps are completely deterministic. The model is designed such27

that animal consumers feed on resources, which can be both plants and other animal species that are smaller than28

themselves. Body masses further determine the interaction strengths of feeding links as well as the metabolic demands29

of species.30

Data from empirical feeding interactions are used to parametrise the functions that characterise the optimal prey31

body mass and the location and width of the feeding niche of a predator. From each mi a unimodal attack kernel, called32

feeding efficiency, Li j , is constructed which determines the probability of consumer species i to attack and capture an33

encountered resource species j. We model Li j as an asymmetrical hump-shaped Ricker’s function (equation T1-4) that34

is maximised for an energetically optimal resource body mass (optimal consumer-resource body mass ratio Ropt = 100)35

and has a width of γ = 2. The maximum of the feeding efficiency Li j equals 1. Table S1 list the full set of equation36

and table S2 is an overview of the standard parameter set for the equations. See also Schneider et al. [1] for further37

information regarding the allometric food web model.38
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Table S1: Ordinary differential equations describing the local population dynamics driven by feeding interactions (see Schneider et al. [1]. We use the same allometric
constraints and parameter ranges.

Equation No. Model equations Description

Equation T1-1 Animal population dynamics
dAi,z

dt
= eP Ai,z

∑
j

Fi j,z + eAAi,z

∑
k

Fik,z

−
∑
k

Ak,zFki,z − xi Ai,z

Rate of change of biomass density of animal species i on patch z; with conversion efficiency eP = 0.545

typical for herbivory [7]; conversion efficiency eA = 0.906 typical for carnivory [7]; feeding rate

Fi j,z of consumer i on resource j on patch z; metabolic demands per unit biomass for animals

xi = xAm−0.305i with scaling constant xA = 0.314 [8, 9]. The first sum goes over all plant resources j,

the second over all animal resources k and the third over all animal predators k of animal species i.

Equation T1-2 Functional response

Fi j,z =
ωibi, jR

1+q
j,z

1 + cAi,z + ωi
∑

k bikhikR1+q
k,z

·
1

mi

Per unit biomass feeding rate of consumer i as function of its own biomass density, Ai , (taking

interference competition c, which is the time lost due to intraspecific encounters, sampled from a

normal distribution with mean µc = 0.8 and s.d. σc = 0.2 for each food web), and biomass density of

the resource Rj (either animal Aj or plant species Pj); with bi j , resource specific capture coefficient

(Eq. T1-3); hi j , resource-specific handling time (Eq. T1-5); ωi = 1/(number of resource species of i),

relative consumption rate accounting for the fact that a consumer has to split its consumption if it has

more than one resource species.

Continued on next page



Table S1 – continued from previous page

Equation No. Model equations Description

Equation T1-3 Capture coefficient

bi j = akmβi
i mβ j

j Li j

Resource specific capture coefficient of consumer species i on resource species j scaling the feeding

kernel Li j by a power function of consumer and resource body mass, assuming that the encounter

rate between consumer and resource scales with their respective movement speed. We sample the

exponents βi and β j from normal distributions (mean µβi = 0.42, s.d. σβi = 0.05; µβ j = 0.19, s.d.

σβ j = 0.04, respectively [10]). We divide here the group of consumer species into the subgroup

of carnivorous and herbivorous species each comprising a constant scaling factor for their capture

coefficients ak with k ∈ 0, 1 (a0 = 40 for carnivorous species and a1 = 5000 for herbivorous species);

For plant resources, mβ j

j was replaced with the constant value of 1 (as plants do not move).

Equation T1-4 Feeding efficiency

Li j =

(
mi

m jRopt
e
1−

mi
mj Ropt

)γ The probability of consumer i to attack and capture an encountered resource j (which can be either

plant or animal), described by an asymmetrical hump-shaped curve (Ricker’s function), with width γ

= 2 centered around an optimal consumer-resource body mass ratio Ropt = 100.

Equation T1-5 Handling time

hi j = h0mηi
i mη j

j

The time consumer i needs to kill, ingest and digest resource species j, with scaling constant h0 = 0.4

and allometric exponents ηi and η j drawn from normal distributions with means µηi = −0.48 and

µη j = −0.66, and standard deviations σηi = 0.03 and σηi = 0.02, respectively [11].

Continued on next page



Table S1 – continued from previous page

Equation No. Model equations Description

Equation T1-6 Plant population dynamics
dPi,z

dt
= riGiPi,z −

∑
k

Ak,zFki,z − xiPi,z

Rate of change of biomass density of plant species i on patch z; with predation loss Fki,z summed

over all consumer species k feeding on plant species i; metabolic demands per unit biomass for plants

xi = xPm−0.25i with xP = 0.138; intrinsic growth rate ri = m−0.25i ; species specific growth factor Gi

(Eq. T1-7).

Equation T1-7 Growth factor for plants

Gi = min
(

N1

Ki,1 + N1
,

N2

Ki,2 + N2

) Species-specific growth factor of plants determined dynamically by the most limiting nutrient l ∈ 1, 2;

with Ki,l , half-saturation densities determining the nutrient uptake efficiency assigned randomly for

each plant species i and nutrient l (uniform distribution within (0.1, 0.2)). The term in the minimum

operator approaches 1 for high nutrient concentrations.

Equation T1-8 Nutrient dynamics
dNl,z

dt
= D(Sl − Nl) − νl

∑
i,z

riGiPi,z

Rate of change of nutrient concentration Nl of nutrient l ∈ {1, 2} on patch z, with global turnover rate

D = 0.25, determining the rate at which nutrients are refreshed; supply concentration Sl , determining

the maximum nutrient level of each nutrient, l, drawn from normal distributions with mean µS = 50

and standard deviation σS = 2 (provided Sl > 0); relative nutrient content in plant species biomass νl

(ν1 = 1, ν2 = 0.5).
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S2 Generating landscapes40

We generated differently fragmented landscapes, represented by random geometric graphs [12], by randomly drawing41

the locations of Z patches from a uniform distribution between 0 and 1 for x- and y-coordinates respectively. We42

created landscapes of different size by scaling the maximum dispersal distance of all organisms δmax with a factor, Q,43

to represent landscape sizes with edge lengths between 0.01 and 10. We obtained the number of patches, Z , by using44

a stratified random sampling approach, i.e. we added a random number drawn from an integer uniform distribution45

between 0 and 9 to a series of numbers of 10, 20, . . . , 60. Similarly, we set the landscape size, Q, by adding a random46

number drawn from a uniform distribution between 0 and 1 (respectively 0 and 0.1 for landscape sizes below 1) to a47

series of numbers of 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9.48

S3 Dispersal49

Wemodel dispersal between local communities as a dynamic process of emigration and immigration, assuming dispersal50

to occur at the same timescale as the local population dynamics [13]. Thus, biomass flows dynamically between local51

populations and the dispersal dynamics directly influence local population dynamics and vice versa [14]. Similar52

approaches have been used by e.g. Abrams & Ruokolainen [15] and Ims & Andreassen [16]. We model a hostile matrix53

between habitat patches that does not allow for feeding interactions to occur during dispersal, and thus, assume the54

biomass lost to the matrix to scale linearly with the distance travelled.55

Emigration The total rate of emigration of species i from patch z is56

Ei,z = di,zBi,z , (2)

with di,z as the corresponding per capita dispersal rate. We model di,z as57

di,z =
a

1 + eb(xi−υi,z )
, (3)

with a, the maximum dispersal rate, b, a parameter determining the shape of the dispersal rate (figure S1), xi , the58

inflection point determined by the metabolic demands per unit biomass of species i, and υi,z , the per capita net growth59

rate of species i on patch z. We chose to model di,z as a function of each species’ per capita net growth rate to account60
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for emigration triggers such as resource availability, predation pressure and inter- and intraspecific competition [14, 17].61

If for example an animal species’ net growth is positive, there is no need for dispersal and emigration will be low.62

However, if the local environmental conditions deteriorate, the growing incentives to search for a better habitat increase63

the fraction of individuals emigrating. For plants, we assumed an additional scenario as there are examples of different64

life history strategies. There are for example plant species which disperse from their local habitat when they are doing65

well, i.e. they have a high net growth rate, as they can allocate more resources into reproduction resulting in higher seed66

dispersal [18]. However, there are also examples where plants reallocate resources into reproduction when they are67

doing poorly [19] (figure S1b).68

For each simulation run, a was sampled from a Gaussian distribution (µaS, σaS) and b was sampled from an integer69

uniform distribution within inclusive limits that differed between consumer and plant species (see table S2). The70

different intervals reflect different dispersal triggers for animals and plants.71
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Figure S1: Functions illustrating the dispersal rate di for animal (a) and plant species (b), where xi marks the inflection
point for each species i determined by the metabolic demands per unit biomass of species i (see Table S1). The colours
blue and red represent different dispersal strategies and the respective colour gradients depict the parameter range of b,
which determines the slope of the dispersal rate (see equation 3 in the manuscript). For the purpose of illustration, we
set the maximum dispersal rate to a = 0.1 and for animals and plants xiA = 0.314 and xiP = 0.138, respectively.

Immigration The rate of immigration of biomass density of species i into patch z follows72

Ii,z =
∑
n∈Nz

Ei,n(1 − δi,nz )
1 − δi,nz∑

m∈Nn
1 − δi,nm

, (4)

where Nz and Nn are the sets of all patches within the dispersal range of species i on patches z and n, respectively. In73

this equation, Ei,n is the emigration rate of species i from patch n, (1 − δi,nz ) is the fraction of successfully dispersing74

biomass, i.e. the fraction of biomass not lost to the matrix, and δi,nz is the distance between patches n and z relative to75

9



Ryser et al. Supplement to "The biggest losers"

species i’s maximum dispersal distance δi (see below paragraph Maximum dispersal distance). The term 1−δi,nz∑
1−δi,nm

76

determines the fraction of biomass of species i emigrating from source patch n towards target patch z. This fraction77

depends on the relative distance between the patches, δi,nz , and the relative distances to all other potential target patches78

m of species i on the source patch n, δi,nm. Thus, the flow of biomass is greatest between patches with small distances.79

For numerical reasons, we did not allow for dispersal flows with Ii,z < 10−10. In this case, we immediately set Ii,z to 0.80

81

Maximum dispersal distance Based on empirical observations (e.g. [20]) and previous theoretical frameworks (e.g.82

[10, 21–23]), we assume that the maximum dispersal distance δi of animal species increases with their body mass. For83

animal species, the body mass mi determines how fast and how far they can travel through the matrix before needing to84

rest and feed in a habitat patch. Thus animal species at high trophic positions can disperse further than smaller animals85

at lower trophic levels. Each animal species perceives its own dispersal network dependent on its species-specific86

maximum dispersal distance87

δi = δ0mε
i , (5)

where the exponent ε = 0.05 determines the slope of the body mass scaling of δi . We chose a positive value for ε to88

account for a higher mobility of animals with larger body masses. The intercept δ0 = 0.1256 was chosen such that the89

animal species with the largest possible body mass of mi = 1012 had a maximum dispersal distance of δi = 0.5. Thus,90

the animal species with the smallest possible body mass of mi = 102 had a maximum dispersal distance of δi = 0.158.91

As plants are passive dispersers driven by e.g. wind with no clear relationship between body mass and dispersal92

distance, we model their maximum dispersal distance as random and body mass independent [20]. We sampled δi for93

each plant species from a uniform probability density within the interval (0, 0.5). Thus, the best plant disperser can94

potentially have the same maximum dispersal distance as the largest possible animal species (table S2). Additionally,95

we tested a null model in which all species have the same maximum dispersal distance of δi = δmax . See section S8 for96

further information on the additional simulations.97
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Table S2: Model parameters and output variables.

Parameter Description Value
Trophic interactions between species

eA conversion efficiency animal species 0.906; [7]
eP conversion efficiency plant species 0.545; [7]
xA scaling constant metabolic demands animal species 0.314; [9]
xP scaling constant metabolic demands plant species 0.138; [9]
µc , σc mean and standard deviation for interference competition 0.8, 0.2
a0 scaling factor capture coefficient for carnivorous species 40
a1 scaling factor capture coefficient for herbivorous species 5000
µβi , σβi mean and standard deviation allometric exponent for attack rates consumer 0.42, 0.05; [10]

ωi relative consumption rate 1
number of prey species i

Ropt optimal consumer-resource body mass ratio 100
γ scaling exponent Ricker’s function 2
h0 scaling factor handling time 0.4
µηi , σηi mean and standard deviation allometric exponent handling time consumer -0.48, 0.03; [11]
µη j , ση j mean and standard deviation allometric exponent handling time resource -0.66, 0.02; [11]
µq , σq mean and standard deviation hill coefficient 1.5, 0.2

Nutrient dynamics
K half saturation density nutrient uptake (0.1, 0.2)
D nutrient turnover rate 0.25
µSl , σSl mean and standard deviation of nutrient supply concentration 50, 2
ν1, ν2 relative nutrient content in plant species biomass 1, 0.5

Dispersal dynamics
δmax species-specific maximum dispersal distance 0.5
ε scaling exponent for species-specific maximum dispersal distance 0.05
µaS , σaS mean and standard deviation of max. emigration 0.1, 0.03
θ cut off emigration function 3 · σaS

b shape parameter of the emigration function (0,19) (cons.)
(-20,19) (plants)

Output variables

τ
mean distance between all habitat patches, with τnm, the absolute distance
between patches n and m, and (Z2 − Z ), the total number of potential directed
links between all Z habitat patches

∑Z
n,m=1 τnm

Z2−Z

ρi
landscape connectance of species i, with Li , the number of directed dispersal
links of species i

Li

Z2−Z

11
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S4 Numerical simulations and data analysis98

We constructed 30 model food webs, each comprising 10 plant and 30 animal species. To avoid confounding effects99

of different initial species diversities, we kept both the number of species S and the fraction of plants and animals100

constant among all food webs. For each simulation, we randomly generated a landscape of size Q (edge length of a101

square landscape) with Z randomly distributed habitat patches. To test each food web across a gradient of number of102

habitat patches and habitat isolation, we drew the number of habitat patches, Z , from the inclusive interval (10, 69) and103

the size of the landscape, Q, from the inclusive interval (0.01, 10) using a stratified random sampling approach (see104

also section S2 for further information). With this approach, we generated landscapes on two independent gradients105

covering two aspects of fragmentation, namely number of fragments and habitat isolation. To cover the full parameter106

range of Z and Q, we simulated each food web on 72 landscapes resulting in a total of 2160 simulations. We achieved107

a full range for the gradient of habitat isolation (landscape connectance ranging from 0 to 1, figure S3c). The upper108

limit for the number of patches was chosen to conform to the maximum usage time of 10 days per simulation on the109

high-performance-cluster we used [24]. Additionally, we performed dedicated simulation runs to reference the two110

extreme cases, i.e. (1) landscapes in which all patches are direct neighbours without a hostile matrix, and thus, no111

dispersal mortality, and (2) fully isolated landscapes, in which no species can bridge between patches, and thus, a112

dispersal mortality of 100% .113

For each simulation run, we initialised our model with random conditions: Each habitat patch z holds a random114

selection of 21 to 40 species (with each of the 40 species of the full food web existing on at least one patch) and initial115

biomass densities Bi,z and nutrient concentrations Nl (l ∈ 1, 2) were randomly sampled with uniform probability density116

within the intervals (0, 10) for Bi,z and (Sl/2, Sl) for Nl , respectively. Here, Sl are the supply concentrations of the117

nutrients, which are constant on all habitat patches but differ between the two nutrients. See table S2 and Schneider et118

al. [1] for further information on the nutrient dynamics.119

Starting from these random initial conditions, we numerically simulated local food web and dispersal dynamics120

over 50,000 time steps by integrating the system of differential equations implemented in C++ using procedures of the121

SUNDIALS CVODE solver version 2.7.0 (backward differentiation formula with absolute and relative error tolerances of122

10−10 [25]). Successful dispersal between local populations thereby enabled species to establish populations on patches123

where they were initially absent. For numerical reasons, a local population was considered extinct once Bi,z < 10−20,124

and Bi,z was then immediately set to 0.125
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Output variables126

We recorded the following output variables for each simulation run: (1) the mean biomass density of each species i127

on each habitat patch z over the last 20,000 time steps to capture oscillations, Bi,z ; (2) the number of habitat patches128

in a landscape, Z; (3) habitat isolation, i.e. the mean distance between all habitat patches, τ (see table S2); and (4)129

the landscape connectance of each species i, ρi (see table S2). Thus, ρi determines the ability of a species to connect130

habitat patches in a fragmented landscape.131

Statistical models and data visualisation We tested for correlation between initialised and emerged β-diversity,132

which was however not the case (see section S9). Further, we used generalised additive mixed models (GAMM) from133

the mgcv package in R [26] to visualise the impact of number of patches and habitat isolation on species diversity. To fit134

the model assumptions, we logit-transformed α-diversity, and log-transformed β-diversity. We analysed each diversity135

index separately, with the number of patches Z (log-transformed), the mean patch distance τ (log-transformed) and136

their interaction as fixed effects and the ID of the food web (1 - 30) as random factor (with normal distribution for α-137

and β-diversity, and binomial distribution for γ-diversity). Similarly, we analysed the mean biomass densities, Bi,z138

(log-transformed), and species-specific landscape connectance, ρi , for each species (ID 1 - 40) using GAMM with a139

normal distribution. We used the mean patch distance, τ, as fixed effect and the food web ID (1 - 30) as random effect.140

Analysis141

Out of the 2160 simulations we started, 57 were terminated by reaching the maximum usage time of 10 days per142

simulation on the high-performance-cluster we used [24]. We further deleted 30 simulations as they had entirely isolated143

landscapes with no dispersal links. We performed all statistical analyses in R version 3.3.2. [27] using the output of the144

remaining 2073 simulations. See also section S8 for additional information.145

Species diversity We quantified Whittaker’s α-, β-, and γ-diversity [28] using presence-absence data derived from146

the recorded mean biomass densities, Bi,z , counting species i present on patch z when Bi,z > 10−20. In Whittaker’s147

approach, α accounts for the local species richness, β is the component of regional diversity that accumulates from148

compositional differences between local communities, and γ is the regional diversity, i.e. the species richness at the149

landscape scale [28]. We relate α, β and γ to each other using multiplicative partitioning [28], i.e. α · β = γ. Here, we150

use α averaged over all habitat patches Z (which we hereafter refer to as α) to get a measure at the landscape level151
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comparable to β and γ.152

S5 Maximum trophic level153
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Figure S2: Heatmap visualising the maximum trophic level within a food web (colour-coded; z-axis) in response
to habitat isolation, i.e. the mean patch distance (τ, log10-transformed; x-axis) and the number of habitat patches
(Z; y-axis). The heatmap was generated based on the statistical model predictions (see the methods section in the
manuscript). The loss of species diversity driven by habitat isolation also translates into a loss of the maximum trophic
level.
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S6 Additional simulations with a constant maximum dispersal distance154

We repeated all simulations with a constant maximum dispersal range for all species of δconst . = 0.5, i.e. all species155

have the same spatial network, to understand the effect of the dispersal advantage of larger animals. The results from156

these simulations are very similar to the results with the species-specific scaling of dispersal ranges, showing the same157

biomass density drop of larger animals at low mean distances (figure S3).158
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Figure S3: Top row: Mean biomass densities of consumer (a) and plant species (b) over all food webs (Bi , log10-
transformed; y-axis) in response to habitat isolation, i.e. the mean patch distance (τ, log10-transformed; x-axis). Each
colour depicts the biomass density of species i averaged over all food webs: (a) colour gradient where orange represents
the smallest, red the intermediate and blue the largest consumer species; (b) colour gradient where light green represents
the smallest and dark green the largest plant species. Bottom row: Mean species-specific landscape connectance (ρi;
y-axis) for consumer species (c) and plant species (d) over all food webs as a function of the mean patch distance (τ,
log10-transformed; x-axis), using the same maximum dispersal distance for all species, δconst = 0.5.
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S7 Additional simulations of the two extreme cases159

To explore the extreme cases of fragmentation in our model framework, we conducted additional simulations with160

emigration but no immigration on patches to represent completely isolated patches (disconnected), and landscapes161

with patches containing all species of the meta-food-web and neither emigration nor immigration to represent one joint162

landscape with no fragmentation (joint). For the disconnected scenario we simulated 12 replicates for each of the 30 food163

webs covering in the same stratified random gradient of patch numbers between 10 and 69 as in the main simulations164

and were also initialised with a subset of species (see the methods section in the paper). For the joint scenario we165

simulated 20 replicates for each food web containing 2 independent patches initialised with all species and no dispersal.166

(1) Joint scenario with no dispersal mortality α-diversity is on average 37.621, γ-diversity 37.172 and β-diversity167

1.004 (figure S4, purple triangle).168

(2) Fully isolated scenario with 100% dispersal mortality α-diversity is on average 11.945, γ-diversity 32.801 and169

β-diversity 2.876 (figure S4, orange triangle).170
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Figure S4: Shown are model predictions for landscapes with 40 patches across the whole gradient of the mean patch
distance (τ, log10-transformed; x-axis). Top-left panel showing the landscape connectance averaged over all species
(y-axis) as response to the mean patch distance (τ, log10-transformed; x-axis). Subsequent panels showing γ-diversity,
β-diversity and α-diversity (y-axes) in response to the mean patch distance (τ, log10-transformed; x-axis). Purple
triangles represent reference points from dedicated simulations in a joint scenario and orange triangles for fully isolated
scenarios (see section S7).

S8 Sensitivity analysis171

We tested the effect of randomly drawn dispersal parameters (maximum dispersal rate, a, and the shape of the dispersal172

function, b; see the manuscript, equation 3) on mean α-, β- and γ-diversity for consumers and plants respectively.173

We used generalised additive mixed models (GAMM) from the mgcv package in R for all sensitivity analyses. To174
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fit the model assumptions, we logit-transformed α-diversity, and log-transformed β- and γ-diversity.The emigration175

parameters were separately used as fixed effects and the ID of the food web (1 - 30) as random factor (with normal176

distribution for α- and β-diversity, and binomial distribution for γ-diversity). Both parameters show no strong effect in177

all tested cases (figure S5 - S7). Only the maximum emigration rate a of consumers shows a small negative effect on178

α-diversity (figure S5). As a higher maximum emigration rate results in an overall larger loss therm due to dispersal,179

which fits to our general findings.180

Additional sensitivity analysis for interference competition, allometric exponent for attack rates of consumer species,181

exponents for handling time, hill coefficient and nutrient turnover rate were omitted as they were tested thoroughly in182

[1]. There, the dynamics of the food web model were shown to be robust to changes in model parameters. For each183

of the 2073 simulation runs the parameters of the trophic interactions were independently sampled from appropriate184

probability distributions within ecologically reasonable limits (see table 1). To account for the stochastic nature of the185

algorithm provided by Schneider et al. [1] by which food web topologies are created, we generated an ensemble of 30186

food webs by randomly sampling 30 sets of species body masses.187
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Figure S5: α-diversity (y-axes) of consumers and plants in dependence of the maximum emigration rate, a, and the
shape of the emigration function, b respectively (x-axes).
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Figure S6: β-diversity (y-axes) of consumers and plants in dependence of the maximum emigration rate, a, and the
shape of the emigration function, b respectively (x-axes).
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Figure S7: γ−diversity (y-axes) of consumers and plants in dependence of the maximum emigration rate, a, and the
shape of the emigration function, b respectively (x-axes).

S9 Initial and post-simulation β-diversity188

To see how the initialised β-diversity (see section S4) influenced the post-simulation β-diversity we performed a189

generalised additive mixed model (GAMM) from the mgcv package in R with the initial β-diversity as fixed effect and190

the post-simulation β-diversity as the response variable. Both were log-transformed to fit model assumptions. The191

post-simulation β-diversity and initial β-diversity were not correlated. This suggests that the initial β-diversity which is192

due to initialising the patches in the landscape with only a subset of species from the regional species pool does not193
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influence the post-simulation β-diversity delectably (approximate p-value: 0.518) (figure S8).194
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Figure S8: (a) The post-simulation β-diversity (y-axis) and the initial β-diversity (x-axis) were not correlated. (b)
Heatmap visualising β-diversity (colour-coded; z-axis) in response to habitat isolation, i.e. the mean patch distance
(τ, log10-transformed; x-axis) and the initial β-diversity (y-axis). The heatmap was generated based on the statistical
model predictions (see the methods section in the manuscript). In strongly isolated landscapes β-diversity increases
slightly with higher initial β-diversity. However, post-simulation β-diversity is higher than the initial β-diversity.
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S10 Standard errors in biomass densities195
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Figure S9: Top row: Mean biomass densities [log10(biomass density -1)] with standard errors [± 2*SE] for four
exemplary animal consumer species (a) and three exemplary basal plant species (b) over all food webs (Bi , log10-
transformed; y-axis) in response to habitat isolation, i.e. the mean patch distance (τ, log10-transformed; x-axis). Each
colour depicts the biomass density of species i averaged over all food webs: (a) colour gradient where orange represents
the smallest, red the intermediate and blue the largest consumer species; (b) colour gradient where light green represents
the smallest and dark green the largest plant species. Bottom row: Mean species-specific landscape connectance
(ρi; y-axis) for consumer (c) and plant species (d) over all food webs as a function of the mean patch distance (τ,
log10-transformed; x-axis).
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