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A Hill numbers and entropy

In the definition of diversity we rely on the concept of Hill numbers, follow-
ing [1] and [2]. The Hill number of order q is given by the reciprocal of a
generalized mean of the relative frequencies. The generalized weighted mean
of the relative frequencies of types is given by

qp̄ = q−1

√∑
i

pip
q−1
i , (1)

where the weights are given by the relative frequencies pi. The parameter q
determines which mean is considered. For example, 0p̄ denotes the Harmonic
mean, 1p̄ the geometric mean and for 2p̄ the arithmetic mean [1]. The Hill
number of order q measures the diversity of types as the reciprocal of the
mean

qD(S) =
1
qp̄

=

(∑
i

pqi

) 1
1−q

.

The parameter q determines how heavily the average weights common or
rare species. Values of q > 1 weigh more heavily types with high relative
frequency, and values of q < 1 weigh more heavily the presence of types with
small relative frequency. The minimal value of q = 0 considers every type
to contribute equally to the mean, regardless of its relative frequency. For
q = 0 the diversity is given by

0D(S) =
∑
i

1 = n

and gives simply a count of the number of types in S. The Hill number of
order 0 is thus a measure of variety, which is also known as species richness
in ecology.

For q = 2, one obtains

2D(S) =
∑
i

1

p2i
,

which relates directly to Simpson’s index of concentration and the Gini-index
[2].
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In general, the Hill numbers are related to the Rényi entropy [4] by qD(S) =
e
qH(X), where

qH(X) =
1

1− q
log

(∑
i

pqi

)
.

The Shannon entropy arises as a special case when taking the limit of q → 1.
This corresponds to the unique Hill number that does not favor either rare
or common types and is given by

D(S) = lim
q→1

qD(S) = e−
∑
i pi log(pi) = eH(X).

The relationship between Hill numbers and entropies described above tell
us how to transform measures of uncertainty, given by entropies in units
of bits or nats, into measures of diversity, given in units of the ’effective
number of types’. The more uncertain one is about the type of a randomly
sampled element from S (i.e. the higher qH(X)), the more diverse the set S
in considered to be.

B Properties from Leinster & Cobbold

In their introduction of a diversity measure that takes into account dispar-
ity by including pairwise similarities between types, Leinster & Cobbold [3]
show that their measure satisfies nine properties that ’encode basic scientific
intuition’ that every diversity measure should satisfy. The nine properties
are divided into three categories: partitioning properties, elementary proper-
ties, and similarity properties. In this section it is shown that the properties
posed in [3] also hold for the number of compositional units Dβ(S ′).

We follow the notation as introduced in the main text: a collection of
features i ∈ S, a collection of types j ∈ S ′, and their corresponding random
variables X, Y and XY with probabilities pi = P (X = i), pj = P (Y = j),
and pij = P (X = i, Y = j) respectively.

Partitioning

Effective number: the diversity of a community of n equally abun-
dant, totally dissimilar types is n.

Note that when all types are totally dissimilar, there is no uncertainty about
the type j of an element given that one knows its feature i. That is, for
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every feature i we have that pj|i = 1 for one specific type j. This implies
that H(Y |X) = −

∑
i pi
∑

j pj|i log(pj|i) = 0, so that

MI(X, Y ) = H(X) + H(Y )−H(XY )

= H(Y )−H(Y |X)

= H(Y ).

Then

Dβ(S ′) = eMI(X,Y ) = eH(Y ) = D(S ′).

Hence for totally dissimilar types the number of compositional units reduces
to the effective number of types. In particular, for equally abundant types
we have Dβ(S ′) = eH(Y ) = n.

Modularity: if a collection of types consists of multiple non-overlapping
sub-collections of types, for which types in different sub-collections
are totally dissimilar, then the total diversity is entirely determined
by the size and diversity of every sub-collection.

We can implement the sub-collections by adding a third label k to every
element, which denotes the sub-collection k ∈ S ′′ it belongs to. Hence, we
now have elements with labels i, j, k, where i denotes a feature, j denotes a
type, and k denotes the sub-collection. Further introducing the correspond-
ing random variable Z, this defines probabilities pijk = P (X = i, Y = j, Z =
k). Since sub-collections are non-overlapping, there is no uncertainty about
the sub-collection k of an element given that one know its type j, so that
H(Z|Y ) = 0. Furthermore, since types from different sub-collections are
totally dissimilar, sub-collections do not share any features, so there is no
uncertainty about the sub-collection k of an element given that one knows
its feature i, so H(Z|X) = 0. These properties imply that H(Y Z) = H(Y )
and H(XZ) = H(X). Defining

MI(X, Y |Z) =
∑
k

pk
∑
ij

pij|k log

(
pij|k

pi|kpj|k

)
,
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we can then write

MI(X, Y |Z) = H(X|Z) + H(Y |Z)−H(XY |Z)

= H(XZ)−H(Z) + H(Y Z)−H(Z)−H(XY ) + H(Z)

= H(X) + H(Y )−H(XY )−H(Z)

= MI(X, Y )−H(Z)

so that

MI(X, Y ) = MI(X, Y |Z) + H(Z).

Taking the exponential, this shows how the total number of compositional
units of types S ′ relates to the number of compositional units in each sub-
collection k, their relative size pk, and the effective number of sub-collections
D(S ′′):

Dβ(S ′) = eMI(X,Y )

= eMI(X,Y |Z)+H(Z)

= e
∑
k pkMI(X,Y |k)+H(Z)

= D(S ′′)
∏
k

Dβ(S ′k)
pk , (2)

where D(S ′′) = eH(Z) denotes the effective number of sub-collections.

Replication: if m non-overlapping sub-collections are of equal size
and diversity d, the diversity of the whole collection is given by md.

Using (2), it is easily seen that if the number of compositional units in every
sub-collection is d, and there are m sub-collections with relative size 1

m
, we

have

Dβ(S ′) = m
∏
k

d
1
m = md.

Elementary

Symmetry: diversity is independent of the order of the listing of
types.

This property follows directly from the properties of the Shannon entropy.
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Absent types: diversity is unchanged by adding a type of zero
abundance.

This property follows directly from the properties of the Shannon entropy.

Identical types: for two identical types, merging the types leaves
diversity unchanged.

Recall that XY is defined as the random variable with probabilities pij =
P (X = i, Y = j), where i ∈ S and j ∈ S ′. For two identical types j′ and
j′′, we have that pi|j′ = pi|j′′ since they have an identical distribution over
features.

Define a random variable XỸ in which j′ and j′′ are merged, i.e. p̃ij′ =
P (X = i, Ỹ = j) = pij′ + pij′′ , p̃ij′′ = 0 and p̃ij = pij for all j 6= j′, j′′. Then

MI(X, Y ) =
∑

ij,j 6=j′,j′′
pij log

(
pi|j
pi

)
+
∑
i

pij′ log

(
pi|j′

pi

)
+
∑
i

pij′′ log

(
pi|j′′

pi

)
=

∑
ij,j 6=j′,j′′

pij log

(
pi|j
pi

)
+
∑
i

(pij′ + pij′′) log

(
pi|j′

pi

)
= MI(X, Ỹ ).

Hence, Dβ(S ′) = Dβ(S̃ ′), so merging identical types does not affect the
number of compositional units.

Effect of similarity on diversity

Monotonicity: when similarity between types is increased, diver-
sity decreases.

Although we do not have an explicit measure of pairwise similarity between
types, similarity in our framework is given by the (average) overlap of fea-
tures between types. This overlap may increase in two ways: either the
total diversity of features Dγ(S) decreases while the average within-type di-
versity Dα(S) remains constant, or the average within-type diversity Dα(S)
increases while the total diversity of features Dγ(S) remains constant. From

the definition of the number of compositional units Dβ(S ′) = Dγ(S)

Dα(S)
it follows

that in both cases the number of compositional units decreases.
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Naive model: when similarities are ignored, diversity is greater or
equal than when similarities are taken into account.

This follows directly from the definitions of Dβ(S ′) (which takes into account
disparity) and D(S ′) (which does not take into account disparity), and the
known property that MI(XY ) ≤ H(Y ). This leads to

D(S ′) = eH(Y ) ≥ eMI(X,Y ) = Dβ(S ′).

Range: the diversity of a collection of n types is between 1 and n.

We have that 0 ≤ MI(XY ) ≤ H(Y ) ≤ log(n). Taking exponentials, this
gives 1 ≤ Dβ(S ′) ≤ n.

C Multiple feature sets

This section elaborates on the results given in the main text on diversity
when taking into account two feature sets, described by random variables
X and Y . The feature pairs are then described by the joint distribution
pij = P (X = i, Y = j). Using the simple additive properties of information-
theoretic quantities, we show some simple results regarding diversities. The
calculations are easily verified by considering the Venn diagrams in Figure 1.

Here, we rewrite the diversity of types corresponding to random variable
Z given the overlap among a pair of features given by random variables X
and Y as

DXY
β (S ′) = eMI(XY,Z) (3)

= eH(XY )−H(XY |Z)

= eH(X)+H(Y )−MI(X,Y )−H(X|Z)−H(Y |Z)+MI(X,Y |Z)

= eMI(X,Z)+MI(Y,Z)−MI(X,Y )+MI(X,Y |Z),

where we used that H(XY ) = H(X) + H(Y )−MI(X, Y ) and H(XY |Z) =
H(X|Z) + H(Y |Z) − MI(X, Y |Z). From this, it becomes clear that the
diversity becomes lower as the features X and Y have a larger dependence,
i.e. are more correlated, as indicated by a large value of MI(X, Y ).

In the special case that features X and Y share no information, i.e.
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MI(X, Y ) = 0, we have

DXY
β (S ′) = eMI(XY,Z) (4)

= eMI(X,Z)+MI(Y,Z)

= DX
β (S ′)DY

β (S ′).

Hence, for independent feature sets the diversities are multiplicative.

D Aggregation

Here we consider the types described by random variable Z to be composed
of features described by random variable Y , and the features Y themselves
have features described by a random variable X (this reflects the situation
described in the modularity property in Section B, where Z denotes the
sub-collections, Y denotes the types, and X denotes the features). Hence
the links between types and features are given by the joint probability dis-
tribution pjk, and the links between features and ’sub-features’ by a joint
distribution pij. When the joint probabilities pij are independent of the joint
probabilities pjk, we have pijk = pijpk|j = pi|jpk|jpj. In other words, the ran-
dom variables Z and X are conditionally independent given Y , which means
that MI(X,Z|Y ) = 0. The diversity given feature pairs XY can then be
rewritten as

DXY
β (S ′) = MI(XY,Z) (5)

= eH(Z)−H(Z|XY )

= eH(Z)−(H(ZX|Y )−H(X|Y ))

= eH(Z)−H(Z|Y ) = eMI(Z,Y ),

where we used that MI(X,Z|Y ) = 0 implies that H(XZ|Y ) − H(X|Y ) =
H(Z|Y ). In other words, considering X is superfluous when considering the
diversity of Z in terms of features XY .
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Figure 1: The entropies and mutual information can be represented using Venn
diagrams, where each circle corresponds to the entropy H(X) of the associated
random variable X. The intersection of the two circles associated to X and Y
represents the mutual information MI(X,Y ), and their union represents the joint
entropy H(XY ). The conditional entropy H(X|Y ) is given by subtracting the
intersection from the total uncertainty H(X). A shows the mutual information
MI(XY,Z) from equation (3). The diversity of variable Z given the overlap in
features XY is given by the exponential of the shaded area. B shows the special
case of (4) in which the features X and Y are independent, i.e. MI(X,Y ) = 0.
From the figure it is clear that MI(XY,Z) = MI(X,Z) + MI(Y, Z), such that
associated diversity in this case is multiplicative. C shows the case of (5) in which
Z and X are conditionally independent on Y , i.e. MI(Z,X|Y ) = 0. In this case,
taking into account features X becomes irrelevant in computing diversity of Z
given feature pairs XY .
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