
Electronic supplementary material for “Invariant
predictions of epidemic patterns from radically different

forms of seasonal forcing”

Irena Papst*a and David J.D. Earnb,c

aCenter for Applied Mathematics, 657 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY,
14853, United States

bDepartment of Mathematics and Statistics, McMaster University, 1280 Main Street West,
Hamilton, ON L8S 4K1, Canada

cM. G. DeGroote Institute for Infectious Disease Research, 1280 Main Street West, Hamilton, ON
L8S 4K1, Canada

June 20, 2019, 13:22

Journal of the Royal Society Interface

*Corresponding author (email: ip98@cornell.edu)

Contents

S1 Supplementary Methods 2
S1.1 Definition of the family of forcing functions 2
S1.2 Computing bifurcation diagrams using xppaut and AUTO 4

S2 Supplementary Discussion 6
S2.1 Spectral power . 6
S2.2 Invariance of bifurcations in a seasonally-forced predator-prey model 15

S3 Supplementary Tables 21
S3.1 Initial conditions for R0 bifurcation diagrams 21

S4 Supplementary R0 bifurcation diagrams 24

S5 Supplementary Code 28
S5.1 Technical specifications . 28
S5.2 Sample code for generating brute force R0 bifurcation diagrams 28
S5.3 Script to extract AUTO initial conditions from brute force bifurcation data . . 33
S5.4 Sample code for generating AUTO R0 bifurcation diagrams in xppaut 42
S5.5 Sample code for α continuation in AUTO . 50

1

S1 Supplementary Methods

S1.1 Definition of the family of forcing functions

Our family of forcing functions, βp(t), is parameterized by the shape variable p ∈ [−1, 1] and
includes three important members: term-time forcing, p = −1, square wave forcing, p = 0,
and sinusoidal forcing, p = 1 (see panels 1, 3, and 5 of figure 2 of the main text, respectively).
In the main text, we also use the notation βtt(t) = β−1(t) and βcos(t) = β1(t)

1. Here we
describe how any one of these functions is transformed into the others as p varies.

S1.1.1 Shape function

We begin by defining a basic “shape function” for each part of the transformation: −1 ≤
p ≤ 0 (term-time to square wave), and 0 ≤ p ≤ 1 (square wave to sinusoid). These functions
are centred about the t-axis and have maximum and minimum values of ±1. Once we have
defined these shape functions, we will stretch and shift them accordingly to obtain the family
of forcing functions, βp(t).

The shape function for the term-time forcing to the square wave portion of our family
(−1 ≤ p ≤ 0) is defined as follows:

TTtoSquare(t, p) :=

{
1 school days,

−1 non-school days,
(S1)

where school days and non-school days get scaled linearly with p. This transformation is
most easily understood via the animation in figure S1 (also provided as the Supplementary
Video), but the details are as follows. All school holiday breaks start at their full width
when p = −1. As p increases, all breaks (except summer) shrink linearly in width such that
they disappear just as p = 0. The summer holiday starts at its full width when p = −1
and widens into a single half-year break centred at t = 0.5 just as p = 0 (as required for
the square wave). We use the UK calendar of school days to define our term-time forcing
function throughout this work (see table S1).

Table S1: School breaks in the UK. We use these dates to define the term-time forcing
function.

School Break Calendar Dates Model Days

Christmas December 21-January 6 356-6
Easter April 10-25 100-115

Summer July 19-September 8 200-251
Autumn Half-Term October 27-November 3 300-307

The shape function for the square wave to sinusoidal forcing portion of our family (0 <
p ≤ 1) is defined as follows:

SquaretoCos(t, p) := sign(cos(2πt))| cos(2πt)|p, (S2)

1Table S4 gives a complete list of symbols used in the analysis of the SIR model.

2

Figure S1: An animation of the family of shape functions, s(t, p), as p increases
from −1 to 2. The plus and minus buttons can be used to increase and decrease the frame
rate, respectively. This animation may not work unless this document is viewed using Adobe
Acrobat Reader.

where sign(x) is the signum function, which evaluates to 1 if x > 0, −1 if x < 0, and 0
otherwise. We piece together both parts of the transformation into one shape function:

s(t, p) :=

{
TTtoSquare(t, p) if − 1 ≤ p ≤ 0,

SquaretoCos(t, p) if 0 < p ≤ 1.
(S3)

Note that, for the purposes of connecting term-time to sinusoidal forcing, we only need
to consider p ∈ [−1, 1], but there is no reason we cannot consider p > 1 (and indeed we do).

S1.1.2 Seasonal beta

Now that we have the shape function defined, we can proceed to shifting and scaling it as
required. Firstly, it is important to ensure that the mean value of any forcing function over
one period, 〈β〉2, remains constant as we vary p, since R0 = 〈β〉/(γ +µ) (if 〈β〉 changes as p
varies, then we cannot compare different forcing functions using R0 bifurcation diagrams).

Note that, the average value of s(t, p) over one period for 0 ≤ p ≤ 1 is constant (equal to
zero), and simply shifting s(t, p) vertically by 〈β〉 would suffice to ensure that 〈βp(t)〉 = 〈β〉
for 0 ≤ p ≤ 1. However, for the term-time to square wave portion of the transformation, the
average value of s(t, p) is always greater than zero, since students are in school more than
they are on holiday, and so we must shift the shape function down by a value dependent on
p for −1 ≤ p ≤ 0. In particular, we shift s(t, p) down by 1 − 2ps(p), where ps(p) gives the
proportion of the school year spent in school.

Thus, we define a new function, oscp(t), which adjusts the shape function, s(t, p) to ensure
that 〈oscp(t)〉 = 0 for all p ∈ [−1, 1], as follows:

oscp(t) :=

{
s(t, p) + (1− 2ps(p)) if − 1 ≤ p ≤ 0,

s(t, p) if 0 < p ≤ 1.
(S4)

2We will use 〈·〉 to denote the average value of a periodic function over one period throughout this work.

3

https://get2.adobe.com/reader/
https://get2.adobe.com/reader/

Finally, we define βp(t) by vertically scaling oscp(t) with the amplitude of seasonality, α,
and by shifting it vertically by 〈β〉, as follows:

βp(t) = 〈β〉[1 + α oscp(t)]. (S5)

A plot of the members of this family used in figure 5 of the main text is given in figure 2.

To ensure that βp(t) ≥ 0, we require that [1]

α ≤ 1

2ps(p)
. (S6)

S1.2 Computing bifurcation diagrams using xppaut and AUTO

We use the xppaut [2] guide in [3] to create all R0 bifurcation diagrams in this paper. In
this section, we supplement the guide in [3] with further sample code, as well as instructions
on how to both run this code and interact with xppaut to create bifurcation diagrams. For
a guide to the theory of the bifurcations and stroboscopic (Poincaré) maps, see [4].

S1.2.1 One parameter bifurcation diagrams in R0

To create R0 bifurcation diagrams (such as those in figure 3 of the main text), we first
generate initial “brute force” R0 bifurcation diagrams. This method involves fixing an R0

value, solving the system numerically forward in time, and recording the value of I(t) after
enough time has passed that the solution has settled onto an attractor. Sample xppaut code
that generates data for one brute force bifurcation diagram can be found in §S5.2.

The brute force method is disadvantageous as it is computationally intensive and only
captures asymptotically stable solutions (attractors). However, in order to use AUTO (via
its interface in xppaut) to generate bifurcation diagrams that include both attractors and
repellors, we must start from an equilibrium. Also, since there are many different equilibria
in this system, it is useful to use the brute force method to generate specific initial conditions
for different attractors to ensure we can find them all in AUTO. These initial conditions are
extracted from brute force data using the script found in §S5.3 and then used in xppaut

to generate bifurcation diagrams in AUTO (following the detailed instructions in [3]). Sample
xppaut code for this purpose can be found in §S5.4.

Once the one parameter bifurcation diagram has been computed in AUTO, select the
bifurcation you wish to keep fixed in the AUTO window by using the (G)rab3 command. For
both the SIR and predator-prey models, we fixed the period doubling bifurcation off of the
main (period 1) branch. Once the bifurcation has been “grabbed”, note the value of all
parameters (in the Param menu of the main xppaut window) and the values of the state
variables (in the ICs menu of the xppaut main window). We will use these values in the
next step.

3Throughout this document, xppaut commands are in typerwriter font, with keyboard shortcuts in paren-
theses.

4

S1.2.2 Two parameter bifurcation diagrams in α and p

In order to extract the relationship between α(p) that produces the dynamical invariance we
have discovered (see figure 4 of the main text), we compute a bifurcation diagram in these
two parameters, while keeping all other parameters fixed. We use the initial conditions and
parameters noted at the end of the previous step, pasting them into an xppaut file set up
for continuation in α (see §S5.5 for sample code) and launch xppaut with this file. We run
the continuation in α just as we have for the R0 bifurcation diagrams (see §S1.2.1 and [3]),
although with a few modified and additional steps to produce the two-parameter bifurcation
in α and p:

1. Launch xppaut

• From the command line, type xppaut <filename>.ode, where <filename> is
replaced by the ode file name.

2. In the main xppaut window, load the parameter set with the R0 bifurcation you wish
you continue in α and p.

• (F)ile → (G)et par set

3. Integrate the system for this parameter set until it settles onto an equilibrium. (It is
helpful to check the Data window to ensure that the system has converged to a periodic
attractor.)

• (I)nitial cond → (G)o, (I)nitial cond → (L)ast, I → L → I → L →
...

4. Launch AUTO

• (F)ile → (A)UTO

All commands are now in AUTO.

5. Begin the continuation in α from the equilibirium point that was just settled on in
xppaut. Note that this starting point is actually the bifurcation in α that we would
like to follow in α and p, and in order to do so, AUTO needs to identify this point as a
bifurcation in α. It will not succeed in identifying this bifurcation when continuation
is started from this point. Instead, we need to have AUTO pass over this point during
a continuation, so we start the continuation in α, and then quickly stop it manually
so that there is a point from which start a continuation backwards and pass over the
bifurcation point.

The steps for this proceedure are as follows:

• (R)un the continuation

• Abort it before your trajectory leaves the display window and stops automatically
at the maximum α value specified

• (G)rab the point at which you aborted the continuation

5

• Change the sign of the step (N)umerics > Ds to continue backwards

• (R)un the continuation backwards

• (G)rab the newly-identified α bifurcation point

6. Set up a two-parameter bifurcation diagram (the min and max values of the vertical
axis to the range of p may need to be changed in this menu).

• (A)xes → (T)wo par

7. Run the two-parameter continuation. You may need to experiment with changing the
sign and/or size of the step size Ds to compute all parts of the α(p) curve. For instance,
if the continuation seems to stall, try aborting the continuation and then starting it
again after changing the sign of Ds. Alternatively, you can try a larger step size over
troublesome α intervals (with this family of forcing functions, there tends to difficulty
around p = 0).

The resulting a(p) curve for the period doubling R0 bifurcation off of the main branch
is plotted in figure 4 of the main text and figure S2 (with the latter including other curves
derived in §S2.1.1).

S2 Supplementary Discussion

S2.1 Spectral power

The family of forcing functions connecting term-time and sinusoidal forcing is constructed
arbitrarily; there are infinitely many ways of connecting these two functions. Thus, we hope
to find some way of characterizing these forcing functions in a more generic way beyond (p, α),
the parameters of this particular family. Ideally, this property would help explain why it
is that we are able to conserve bifurcation structure—by simply adjusting the amplitude of
forcing—despite significantly altering the shape of the forcing function. Previous work [5]
suggests that average spectral power could characterize periodic signals beyond their specific
shape.

S2.1.1 Average spectral power

We calculate the average spectral power, P(p, α), of each member of our family of forcing
functions by integrating the square of the signal over one period (for t ∈ [0, 1]) [6].

6

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
10

0.
15

0.
20

0.
25

0.
30

Shape Parameter, p

A
m
p
li
tu
d
e
of

S
ea
so
n
al
it
y,
α

Fix Stable PD Bifurcation at R0 = 15.12; (p, α) = (-1, 0.25)
Fix Average Power, P(p, α) = P(-1, 0.25)
Fix Average Power, P(p, α) = P(1, 0.1)

Figure S2: Several different relationships between the shape parameter, p, and
the amplitude of seasonality α. The thicker blue curve corresponds to the curve plotted
in figure 4 of the main text and is the continuation of the stable period doubling bifurcation
in the (p, α) plane, starting at term-time forcing (p = −1) with the amplitude estimated
from data α = 0.25 (see §S1.2.2). The points denoted by squares correspond to the forcing
functions used in figure 5 of the main text and §S4, and are plotted in figure 2. The other two
curves denote fixed average power (see §S2.1), where each point on these curves corresponds
to an R0 bifurcation diagram in §S2.1.1.

7

First, assume that −1 ≤ p ≤ 0:

P(p, α) =

∫ 1

0

(βp(t))
2 dt, (S7a)

=

∫ 1

0

(α[s(t, p) + (1− 2ps(p))])
2 dt, (S7b)

=

∫
school days

(α[1 + (1− 2ps(p))])
2 dt+

∫
non-school days

(α[−1 + (1− 2ps(p))])
2 dt,

(S7c)

=

∫
school days

(2− 2ps(p))
2α2 dt+

∫
non-school days

(−2ps(p))
2α2 dt, (S7d)

= α2

[
(2− 2ps(p))

2

∫
school days

dt+ (−2ps(p))
2

∫
non-school days

dt

]
, (S7e)

= α2[(2− 2ps(p))
2(ps(p)) + (−2ps(p))

2(1− ps(p))], (S7f)

= 4α2ps(p)(1− ps(p)). (S7g)

Now assume that 0 < p ≤ 1:

P(p, α) =

∫ 1

0

(βp(t))
2 dt, (S8a)

=

∫ 1

0

[α sign(cos(2πt)) | cos(2πt)|p]2 dt, (S8b)

= α2

∫ 1

0

[cos2(2πt)]p dt. (S8c)

Letting θ = 2πt, we have that dθ = 2πdt, and so from equation S8c, we get

P(p, α) =
α2

2π

∫ 2π

0

[cos2(θ)]p dθ. (S9)

Note that cos2(θ) is symmetric about θ = nπ
2

for every n ∈ Z, so over the interval [0, 2π], we
have the property that ∫ 2π

0

cos2(θ) dθ = 4

∫ π
2

0

cos2(θ) dθ. (S10)

This symmetry is preserved for any power p ≥ 0 in equation S9, and so we have that

P(p, α) =
α2

2π

∫ 2π

0

[cos2(θ)]p dθ, (S11a)

=
α2

2π

[
4

∫ π
2

0

[cos2(θ)]p dθ

]
, (S11b)

=
2α2

π

∫ π
2

0

cos2p(θ) dθ. (S11c)

8

Then, using defintion 5.12.1 and identity 5.12.2 from [7], we have that∫ π
2

0

sin2a−1(θ) cos2b−1(θ) dθ =
1

2

Γ(a)Γ(b)

Γ(a+ b)
, a, b > 0, (S12)

where Γ(x) =
∫∞
0
tx−1e−t dt is Euler’s gamma function, which can be applied to equa-

tion S11c by setting a = 1
2

and b = p+ 1
2

(for p > −1
2
) to get

P(p, α) =
2α2

π

∫ π
2

0

cos2p(θ) dθ (S13a)

=
2α2

π

[
1

2

Γ(1
2
)Γ(p+ 1

2
)

Γ(p+ 1)

]
(S13b)

=
α2

√
π

Γ(p+ 1
2
)

Γ(p+ 1)
. (S13c)

Thus, the average power of any member of our family of forcing functions can be calcu-
lated using the following formula:

P(p, α) =

4(1− ps(p))ps(p)α2 for − 1 ≤ p ≤ 0;

α2 Γ(p+ 1
2
)√

π Γ(p+ 1)
for p ≥ 0.

(S14)

The resultant average power surface is plotted in figure S3.
These expressions make it easy for us to compare the average power of forcing functions

that generate qualitatively equivalent dynamics (those used in figure 5 of the main text,
for instance) and we see that among such forcing functions, the average power varies (see
table S2).

Table S2: Average spectral power calculated for the forcing functions featured in
figure 5 of the main text per forcing period (one year).

p α Average Power

−1.00 0.250 0.0471
−0.50 0.101 0.0096

0.00 0.078 0.0061
0.25 0.084 0.0054
1.00 0.100 0.0050

Although these average power values are not equivalent, it is not clear how much variance
in average power would constitute a “large” difference with respect to the resultant dynamics.
Thus, we consider whether fixed average power among forcing functions could lead to an
invariance in bifurcation structure. We fix average power in two cases: term-time forcing
(p = −1) with α = 0.25 and sinusoidal forcing (p = 1) with α = 0.1. We then generate two

9

http://dlmf.nist.gov/5.12#E1
http://dlmf.nist.gov/5.12#E2

p

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

α

0.0

0.2

0.4

0.6

0.8

P
(p, α

)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

Figure S3: Average power, P(p,α), for our family of forcing functions, plotted for
a range of the shape parameter, p, and the amplitude of seasonality, α.

α(p) curves, one where P(p, α) = P(−1, 0.25) and another where P(p, α) = P(1, 0.1) (see
figure S2).

We check whether forcing functions with fixed average power could yield qualitatively
equivalent dynamics. In figure S4, we compare the R0 bifurcations diagrams of two forcing
functions with P(p, α) = P(−1, 0.25): term-time forcing with α = 0.25 and sinusoidal forcing
with α = 0.3070 (the latter is marked with a dark green point in figure S2). Similarly, in
figure S5, we consider the case where P(p, α) = P(1, 0.1) by comparing sinusoidal forcing
with α = 0.1 to that of term-time forcing with α = 0.0814 (marked with a purple point in
figure S2). We conclude that fixed average power cannot account for the observed dynamical
invariance.

S2.1.2 Power spectra

While average power is not invariant among forcing functions that yield qualitatively equiv-
alent dynamics, perhaps it is too crude of a measure to capture the observed relationship.

10

P
re

va
le

n
ce

,
I 0 5 10 15 20 25 30

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Term-time forcing (p = −1), Amplitude α = 0.25

Jan Jul Jan

0.6

1.0

1.3

β
p
(t
)/
〈β
〉

0 5 10 15 20 25 30

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Sinusoidal forcing (p = 1), Amplitude α = 0.307

Jan Jul Jan

0.6

1.0

1.3

β
p
(t
)/
〈β
〉

Basic Reproduction Number, R0

Figure S4: R0 bifurcation diagrams for term-time and sinusoidal forcing with fixed
total power, where P(p,α) = P(−1,0.25) (see figure S2).

11

P
re

va
le

n
ce

,
I 0 5 10 15 20 25 30

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Sinusoidal forcing (p = 1), Amplitude α = 0.1

Jan Jul Jan

0.9

1.0

1.1

β
p
(t
)/
〈β
〉

0 5 10 15 20 25 30

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Term-time forcing (p = −1), Amplitude α = 0.0814

Basic Reproduction Number, R0

Figure S5: R0 bifurcation diagrams for term-time and sinusoidal forcing with fixed
total power, where P(p,α) = P(1,0.1) (see figure S2).

12

Another, finer, property of a signal that could characterize these forcing functions beyond
their specific shape is the full power spectrum. In figure S6, we plot the power spectra for
the forcing functions used in figure 5 of the main text. However, just as with the average
power of each signal, the power spectra are too distinct to explain the dynamical invariance
we seek to understand.

13

Forcing Function Power Spectrum

-0
.4

-0
.1

0
.2

Jan Apr Jul Oct Jan

p = −1, α = 0.25

0 1 2 3 4 5 6 7 8 9 10

0
20

0
00

-0
.4

-0
.1

0
.2

Jan Apr Jul Oct Jan

p = −0.5, α = 0.101

0 1 2 3 4 5 6 7 8 9 10

0
10

00
0

-0
.4

-0
.1

0.
2

Jan Apr Jul Oct Jan

α
os
c p
(t
) p = 0, α = 0.078

0 1 2 3 4 5 6 7 8 9 10

0
10

00
0

S
p
ec
tr
al

P
ow

er

-0
.4

-0
.1

0.
2

Jan Apr Jul Oct Jan

p = 0.25, α = 0.084

0 1 2 3 4 5 6 7 8 9 10

0
10

00
0

-0
.4

-0
.1

0.
2

Jan Apr Jul Oct Jan

p = 1, α = 0.1

0 1 2 3 4 5 6 7 8 9 10

0
10

00
0

-0
.4

-0
.1

0.
2

Jan Apr Jul Oct Jan

p = 2, α = 0.118

0 1 2 3 4 5 6 7 8 9 10

0
10

00
0

Frequency (1/years)

Figure S6: Power spectra for the forcing functions used in figure 5 of the main
text (denoted by square points in figure S2).

14

S2.2 Invariance of bifurcations in a seasonally-forced predator-
prey model

Invariance of bifurcations similar to that shown for the SIR model in figure 5 of the main
text can be found in a seasonally-forced predator-prey model.

S2.2.1 Model

Let x, y represent the population of prey and predators, respectively (normalized to the
carrying capacity of prey). The growth and decay of each population is governed by two
coupled differential equations:

x′ = ε(1− x) + rx(1− x)− ρ(t)xy, (S15a)

y′ = δρ(t)xy − y. (S15b)

The prey population grows according to a combination of density-dependent immigration at
rate ε and logistic growth at maximum rate r, and decays due to consumption by predators at
a time-dependent rate ρ(t) (per predator). The predator grows due to consumption of prey,
though at a discounted rate δρ(t), with δ representing the efficiency of biomass conversion
from prey to predator. Similar models have previously been analyzed in [8–11].

Seasonal forcing occurs in the time-dependent interaction rate, ρ(t) and we assume the
same form as that of the family of forcing functions defined for the SIR model (see §S1.1):

ρ(t) = ρ0[1 + α oscp(t)]. (S16)

The parameter ρ0 represents the average value of the interaction rate between species, α is
the amplitude of forcing, and p is the forcing function shape parameter.

While there is an analogy between predator-prey and infective-susceptible models, we
emphasize that the two models we have considered are mathematically distinct. The formal
structural differences between the predator-prey model (equation S15) and the SIR model
(equation 1) are the nonlinear (logistic) prey growth term and the imperfect conversion of
prey biomass into predator biomass.

S2.2.2 Results

We observe a similar quantitative invariance in the structure of the ρ0 bifurcation diagrams
for this model as with the R0 bifurcation diagrams for the SIR model (see figure S7). When
the seasonal amplitude of forcing is adjusted according to the p(α) function for this model
(figure S8), which is derived by fixing the ρ0 value of the principal period doubling bi-
furcation, the four fold bifurcations listed in table S3 match to similar precision. Other
bifurcations are also compared in figure S9 for three forcing functions with amplitudes taken
from figure S8. While the “birth fold” bifurcation locations are invariant among the forcing
functions, corresponding “death folds” and intermediate period doubling bifurcations are not
(e.g., the period 6 branch in figure S9). Because many bifurcations occur in a small range of
ρ0, we show a stretched version of figure S9 in figure S10; the invariances remain apparent
in this diagram, and the non-invariances are much clearer.

15

Table S3: Invariance of fold bifurcations [12] in a seasonally forced predator-prey
model (equation S15, equation S16) at different ρ0 values when the principal
period doubling (PD) bifurcation at ρ0 = 22.5995 is matched. Fold (n) refers to a
fold bifurcation that gives rise to a period n attractor (an n-year population cycle) as ρ0 is
increased. The PD does not occur at precisely the same ρ for each (p, α) pair due to slight
inaccuracies of the numerical continuation software [2, 13]. The relative difference refers to
max[(x− xsqu)/xsqu], where x is the value of ρ0 at the bifurcation of interest and xsqu is its
value for square wave forcing (p = 0). All the data in this table are plotted in figure S9.

Forcing Function ρ0 Bifurcation Point
p α PD (2) Fold (3) Fold (4) Fold (5) Fold (6)

0.0 0.1170 22.5995 8.23380 4.87989 4.14535 3.95685
0.5 0.1344 22.5995 8.23231 4.87817 4.14287 3.94968
1.0 0.15 22.5995 8.23206 4.87764 4.14136 3.94474

Relative Difference 0.0000 0.00021 0.00046 0.00096 0.00306

16

0 10 20 30 40 50 60

10−11

10−9

10−7

10−5

10−3

10−1

Square-wave forcing (p = 0), Amplitude α = 0.117

Period

1
2
3
4
5
6

0 10 20 30 40 50 60

P
re
va
le
n
ce
,
I

10−11

10−9

10−7

10−5

10−3

10−1

Sinusoidal forcing (p = 1), Amplitude α = 0.117

0 10 20 30 40 50 60

10−11

10−9

10−7

10−5

10−3

10−1

Sinusoidal forcing (p = 1), Amplitude α = 0.15

Average Interaction Rate, ρ0

Figure S7: ρ0 bifurcation diagrams for the annual stroboscopic map of the sea-
sonally forced predator-prey model (equation S15) with different patterns and
amplitudes of forcing. In the top two panels, the forcing pattern is different but the
associated amplitudes are the same. In the bottom two panels, the forcing pattern is the
same but the amplitudes are different. For all panels, ε = 10−3, r = 10−2, δ = 1/2. The
values of parameters that vary are indicated in each panel. Thick lines show stable periodic
solutions (attractors) and thin lines show unstable periodic solutions (repellors). At each
ρ0, the number of points of a given colour indicates the period of the associated attractor
or repellor. The qualitative similarity of the top and bottom panels shows that different
forcing patterns can yield the same bifurcation structure (for different forcing amplitudes).
A precise quantitative correspondence of bifurcation points is demonstrated in figure S9 and
table S3. The points highlighted with squares in the top and bottom panels (at ρ0 = 22.5995)
correspond to the similarly highlighted points in the two-dimensional bifurcation diagram in
figure S8.

17

0.00 0.25 0.50 0.75 1.00

0.11

0.12

0.13

0.14

0.15

0.16

Shape Parameter, p

A
m
p
li
tu
d
e
of

S
ea
so
n
al
it
y,
α

Figure S8: Continuation of the stable period doubling (PD) bifurcation in the
two-dimensional (p,α) parameter plane (see Methods and §S1.2.2). The continuation
was initated at sinusoidal forcing (p = 1) with the amplitude α = 0.15 and extends to square
wave forcing (p = 0). The resulting function, α(p), shows how the amplitude of seasonality
(α) must change as the forcing pattern (p) is changed, if we wish to fix the values of all the
other model parameters (in particular, ρ0 = 22.5995). The points highlighted with squares
correspond to the similarly highlighted points in the top and bottom panels of figure S7.

18

0 10 20 30 40 50 60

Average Interaction Rate, ρ0

S
h
ap

e
P
ar
am

et
er
,
p

0

0.5

1

0.117

0.134

0.15

F
or
ci
n
g
A
m
p
li
tu
d
e,
α
(p
)

Figure S9: Graphical representation of bifurcation invariance in the seasonally
forced predator-prey model (equation S15). For three forcing patterns (p, left vertical
axis) and amplitudes determined by the function shown in figure S8 (α(p), right vertical axis),
the values of ρ0 (horizontal axis) at which bifurcations occur are indicated (with colours that
correspond to those used in figure S7). Period doubling (PD) bifurcations are shown with
squares and fold bifurcations are shown with circles. The PD that is fixed by construction
is shown with solid black squares. Folds that turn out to be invariant are marked with solid
circles (these are all of the “birth folds”). Other non-invariant bifurcations (“death folds”
and intermediate PDs) are marked with open symbols. The full ρ0 bifurcation diagrams for
p = 0 (square wave forcing) and p = 1 (sinusoidal forcing) are shown in the top and bottom
panels of figure S7.

19

4 6 8 10

Average Interaction Rate, ρ0

S
h
ap

e
P
ar
am

et
er
,
p

0

0.5

1

0.117

0.134

0.15

F
or
ci
n
g
A
m
p
li
tu
d
e,
α
(p
)

Figure S10: The same bifurcation data as in figure S9, but for a smaller interval
in ρ0.

20

S3 Supplementary Tables

Table S4: List of symbols used in the SIR model, their meanings, and units.

Symbol Meaning Units

t time years
S proportion of susceptible individuals —
I proportion of infected individuals —
R proportion of removed individuals —
β disease transmission rate 1/years
γ disease recovery rate 1/years
µ per capita birth rate, natural death rate 1/years
R0 basic reproduction number —
α amplitude of seasonality —
〈β〉 mean disease transmission rate 1/years
ps proportion of the year children spend in school —
p forcing function shape parameter —

βcos(t) sinusoidal disease transmission rate 1/years
βtt(t) term-time disease transmission rate 1/years
βhigh high disease transmission rate 1/ years
βlow low disease transmission rate 1/ years

osctt(t) term-time oscillation function —
oscp(t) oscillation function, parameterized by the shape parameter, p —
βp(t) disease transmission rate, parameterized by the shape parameter, p 1/years
P(p, α) average power in forcing function 1/years

S3.1 Initial conditions for R0 bifurcation diagrams

The following tables give the xppaut initial conditions used to generate the R0 bifurcation
diagrams in §S4.

Table S5: Initial conditions for figure S11, where (p,α) = (−1,0.25).

Branch log (S0) log (I0) R0

Period 1 −0.9216724 −3.3829732 8.3999996
Period 2 −1.2411177 −3.2906444 20.9699990
Period 3 −1.006153 −3.1036749 12.2100000
Period 4 −1.0476377 −4.1699929 8.9600000
Period 5 −0.95821649 −4.15801 7.1399999
Period 6 −0.79773831 −7.3171558 6.1399999
Period 7 −0.8987931 −4.5482569 5.8400002

21

Table S6: Initial conditions for figure S12, where (p,α) = (−0.5,0.101).

Branch log (S0) log (I0) R0

Period 1 −0.93079025 −3.2840197 8.6099997
Period 2 −1.2075626 −3.057709 18.4950010
Period 3 −1.0044775 −4.3511157 10.6650000
Period 4 −0.95428139 −5.5148168 8.7600002
Period 5 −0.69504982 −4.2612557 5.5349998
Period 6 −0.81840485 −7.6078467 6.4949999
Period 7 −0.89881647 −4.7360983 5.8800001

Table S7: Initial conditions for figure S13, where (p,α) = (0,0.078).

Branch log (S0) log (I0) R0

Period 1 −0.73213571 −3.2581513 5.4299998
Period 2 −1.2447836 −2.8120999 20.4000000
Period 3 −1.149428 −4.3156195 12.2100000
Period 4 −0.94534254 −5.2238641 10.3050000
Period 5 −0.66928089 −3.9008913 5.1900001
Period 6 −0.6259011 −5.1727471 4.5000000
Period 7 −0.64729881 −5.3032851 4.0200000

Table S8: Initial conditions for figure S14, where (p,α) = (0.25,0.084).

Branch log (S0) log (I0) R0

Period 1 −0.9165343 −3.2248225 8.3400002
Period 2 −1.2146921 −2.8767755 18.5550000
Period 3 −1.053017 −3.8600008 10.1700000
Period 4 −1.1204562 −4.8990722 10.4850000
Period 5 −0.90001303 −2.1649606 8.8800001
Period 6 −0.8862555 −8.7333384 7.7100000
Period 7 −0.74673504 −8.0441036 6.4949999

22

Table S9: Initial conditions for figure S15, where (p,α) = (1,0.1).

Branch log (S0) log (I0) R0

Period 1 −0.87659162 −3.2304842 7.5999999
Period 2 −1.2681592 −2.7434311 21.7800010
Period 3 −1.0293249 −2.6030924 12.3600000
Period 4 −1.0524955 −4.4974136 9.2399998
Period 5 −0.70523274 −4.2141695 5.7199998
Period 6 −0.70315689, −3.7062016 4.3800001
Period 7 −0.97648102 −5.562336 6.7350001

Table S10: Initial conditions for figure S16, where (p,α) = (2,0.118).

Branch log (S0) log (I0) R0

Period 1 −0.87659162 −3.2304842 7.5999999
Period 2 −1.2681592 −2.7434311 21.7800010
Period 3 −1.0293249 −2.6030924 12.3600000
Period 4 −0.94534254 −5.2238641 10.3050000
Period 5 −0.70523274 −4.2141695 5.7199998
Period 6 −0.70315689, −3.7062016 4.3800001
Period 7 −0.97648102 −5.562336 6.7350001

23

S4 Supplementary R0 bifurcation diagrams

The following plots are the full R0 bifurcation diagrams for the forcing functions used in
figure 5 of the main text (marked with squares points in figure S2). These are also the forcing
functions for which both the average spectral power and power spectra have been computed
(see table S2 and figure S6, respectively). The xppaut initial conditions used to compute
each R0 bifurcation diagram are given in §S3.1.

0 5 10 15 20 25 30

Basic Reproduction Number, R0

P
re
va
le
n
ce
,
I

10−9

10−7

10−5

10−3

10−1

Jan Jul Jan

0.6

1
1.1

Figure S11: R0 bifurcation diagram for (p,α) = (−1,0.25).

24

0 5 10 15 20 25 30

Basic Reproduction Number, R0

P
re
va
le
n
ce
,
I

10−9

10−7

10−5

10−3

10−1

Jan Jul Jan

0.9

1
1.1

Figure S12: R0 bifurcation diagram for (p,α) = (−0.5,0.101).

0 5 10 15 20 25 30

Basic Reproduction Number, R0

P
re
va
le
n
ce
,
I

10−9

10−7

10−5

10−3

10−1

Jan Jul Jan

0.9
1

1.1

Figure S13: R0 bifurcation diagram for (p,α) = (0,0.078).

25

0 5 10 15 20 25 30

Basic Reproduction Number, R0

P
re
va
le
n
ce
,
I

10−9

10−7

10−5

10−3

10−1

Jan Jul Jan

0.9

1

1.1

Figure S14: R0 bifurcation diagram for (p,α) = (0.25,0.084).

0 5 10 15 20 25 30

Basic Reproduction Number, R0

P
re
va
le
n
ce
,
I

10−9

10−7

10−5

10−3

10−1

Jan Jul Jan

0.9

1

1.1

Figure S15: R0 bifurcation diagram for (p,α) = (1,0.1).

26

0 5 10 15 20 25 30

Basic Reproduction Number, R0

P
re
va
le
n
ce
,
I

10−9

10−7

10−5

10−3

10−1

Jan Jul Jan

0.9

1

1.1

Figure S16: R0 bifurcation diagram for (p,α) = (2,0.1118).

27

S5 Supplementary Code

S5.1 Technical specifications

The code used for this project was prepared most recently on a Macintosh computer running:

• Mac OS X version 10.13.6

• XPPAUT version 7.0

• version 3.4.4 (2018-03-15) – “Someone to Lean On”

• Apple LLVM version 10.0.0 (clang-1000.11.45.2)

S5.2 Sample code for generating brute force R0 bifurcation dia-
grams

This .ode file can be run silently in xppaut from the command line using the following
command:

xppaut bruteforce_forcedSIR_p -1a025.ode -silent

###

bruteforce_forcedSIR_p -1a025.ode

Author: Irena Papst

Based on XPPAUT Guide from Krylova and Earn (2013)

##

Brute force bifurcation diagram for the seasonally forced

SIR model using a family of seasonal forcing functions

(with shape parameter p)

ranging from term -time forcing (p=-1)

to sinusoidal forcing (p=1)

with a square wave in between (p=0)

###

############

OUTPUT

############

filename for output to be saved

@ output=bruteforce_forcedSIR_p -1a025.dat

################

PARAMETERS

################

For the Forcing Function

p determines shape of forcing function

where p=-1 is ttf , p=0 is the square wave , p=1 is sinusoidal

28

par p=-1

For the ODEs

mean lifetime 1/mu = 50 years

mean infectious period 1/gamma = 13 days = 0.0356 years

amplitude of seasonality alpha = 0.25

par mu=0.02 , gamma =28.08 , Rzero=17, a=0.25

#######################

FORCING FUNCTIONS

#######################

PART 1. TERM TIME FORCING TO SQUARE WAVE

###

Define endpoints of breaks for term -time forcing

###

Number of breaks in ttf

numbreaks =5

Easter Break

b1=99

e1=114

Summer Break

b2=195

e2=250

Autumn Break

b3=299

e3=306

Christmas Break , Part 1

b4=355

e4=365

Christmas Break , Part 2

b5=0

e5=5

Calculate widths and centers for breaks &

define waves for each break

###

Formulas

29

Width of Break

w(b,e)=(e-b)/365

Center of Break

c(b,e)=(b+e)/(2*365)

Break Wave

break(t,p,wid ,cent)=sign(abs(mod(t,1)-cent)+p*wid/2)

Easter Break

w1=w(b1,e1)

c1=c(b1,e1)

eas(t,p)=break(t,p,w1 ,c1)

Summer Break

wSum=w(b2 ,e2)

cSum=c(b2 ,e2)

Autumn Break

w3=w(b3,e3)

c3=c(b3,e3)

aut(t,p)=break(t,p,w3 ,c3)

Christmas Break , Part 1

w4=w(b4,e4)

c4=c(b4,e4)

chr1(t,p)=break(t,p,w4 ,c4)

Christmas Break , Part 2

w5=w(b5,e5)

c5=c(b5,e5)

chr2(t,p)=break(t,p,w5 ,c5)

Square Wave Summer Break

wSqu =0.5

cSqu =0.5

squsum(t,p)=sign(abs(mod(t,1) -(abs(p)*cSum+(1-abs(p))*cSqu))

-((abs(p))*wSum+(1-abs(p))*wSqu)/2)

Term Time to Square Wave

ttftosqu(t,p)=sign(eas(t,p)+aut(t,p)+chr1(t,p)+chr2(t,p)+squsum(t

,p) -(numbreaks -1))

need to shift sum of all breaks down by numbreak -1 to ensure

the sum

of waves is centred about the x-axis before taking the sign of

them all

30

PART 2. SQUARE WAVE TO COSINE

##################################

squtocos(t,p)=sign(cos(2*pi*t))*abs(cos(2*pi*t))^p

PART 3. TTF TO COSINE SHAPE FUNCTION

###

trans(t,p)=(1-heav(p))*ttftosqu(t,p)+(heav(p))*squtocos(t,p)

Shift and Scale to get beta(t,p)

#####################################

Calculate the proportion of the year spent in school

(used in shifting the forcing functions to ensure that

the average value of each forcing function is always

beta0 = mean beta)

ps(p)=1-abs(p)*(w1+wSum+w3+w4+w5) -(1-abs(p))*wSqu

Family of Forcing Functions

beta0=Rzero*(gamma+mu)

beta=beta0 *(1+a*((1- heav(p))*(trans(t,p)+(1 -2*ps(p)))+(heav(p))*(

trans(t,p))))

############################

DIFFERENTIAL EQUATIONS

############################

s'=mu-beta*s*i-mu*s
i'=beta*s*i-(gamma+mu)*i

########################

INITIAL CONDITIONS

########################

init S=0.9, I=0.001

#########################

AUXILIARY VARIABLES

#########################

aux R0=Rzero

aux log10s=log10(s)

aux log10i=log10(i)

##################

PLOT OPTIONS

31

##################

xp=variable on x axis , yp=variable on y axis

@ xp=R0 , yp=log10i

limits on plot

@ xlo=0, xhi=40, yhi=0, ylo=-25

background colour for plot

@ back=white

#########################

POINCARE MAP SET UP

#########################

@ poimap=section , poivar=t, poipln =1

#####################

BIF DIAG SET UP

#####################

@ range=1, rangeover=Rzero , rangestep =1500

@ rangelow=0, rangehigh =30, rangereset=no

#########################

INTEGRATION OPTIONS

#########################

total time of integration

@ total =650

transient time

@ trans =600

time step for integration

@ dt =0.001

#####################################

STORAGE and DATA SAVING OPTIONS

#####################################

max number of time points to store (default 5000)

@ maxstor =2000000

done

32

S5.3 Script to extract AUTO initial conditions from brute force bi-
furcation data

The following script takes brute force simulation data and generates an .ode file for comput-
ing full bifurcation diagrams in AUTO. The script first scans the brute force data for equilibria
of each period present, and extracts initial conditions and other parameter values, pasting
them into xppaut-formatted parameter sets. The script then writes an .ode file ready to
use in xppaut. In order to write this file, the script must be able to access the remaining file
parts (that stay the same between parameter sets), included here below the main script.

Main script:

###

ExtractAutoIC.R

Author: Irena Papst

Based on XPPAUT Guide from Krylova and Earn (2013)

##

Read a brute force bifurcation diagram output file and

for each period that occurs , save a single point to be

used as an initial condition in AUTO

###

Set where data is coming from (either "bruteforce" or "xpp

")

bruteforce: initial bruteforce simulations

xpp: converged initial conditions exported from xppaut

type <- "bruteforce"

type <- "xpp"

Set arguments bruteforce data function

this_date <- "180821"

datdir <- paste0("../../bruteforce/dat -", this_date)

bfdatfile_prefix <- "bf_mm_run"

odefile_prefix <- paste0(this_date , "-run")

jobslist <- 1 # empty string does all jobs;

otherwise provide list of job numbers

bifrange <- c(1,10) # no trimming , by default

bifrange <- c(10,15)

Set argument for xpp data function

jobno <- 1

brnos <- c(1,3)

params <- data.frame(p=1,alpha=0.101717, delta=0.75, eps

=0.0007117438)

Get p-alpha pairs

33

i <- 1 # desired row number in p-alpha pairs array

load("../bf_alpha/run13/p_alpha_pairs.Rdata")

params <- data.frame(p=palpha.pairs$p[i], alpha=palpha.

pairs$alpha[i], delta=0.75, eps=0.0007117438)

####################

MAIN FUNCTIONS

####################

GENERATE ODE FILE FOR USE WITH AUTO FROM BRUTEFORCE

SIMULATION DATA

extractAutoIC_bf <- function(datdir ,

bfdatfile_prefix , odefile_prefix

,

this_date , bifrange=c(),

jobslist="", maxper =6){

datdir: directory containing the .dat files

and the .Rdata file (path relative to location of this

script)

omit trailing "/"

bfdatfile_prefix: filename prefix for the bruteforce .

dat files

(everthing before the run number)

odefile_prefix: filename prefix for the .ode files that

are being generated

for use with AUTO

(everything before the run number)

this_date: date in yymmdd -x from data directory

(where -x is optional for multiple jobs on the same date

; x is 1

for the second job , 2 for the third , etc)

bifrange: range in bifurcation parameter for which to

extract ICs;

should be a list of length two: c(bifmin , bifmax)

an empty list means we look at the entire range of the

bif par from

simulations

jobslist: (optional) list of integers denoting job

34

numbers for which to create .ode file

by default , if no jobslist is provided ,

loop through all jobs found in in parameter .Rdata file

maxper: largest period for which to generate an IC set

###############################

Load parameters for each run (job info)

load(paste0(datdir , "/jobsLegend.Rdata"))

if (jobslist ==""){ ## if no specific jobslist is provided ,

loop through all of them

jobslist <- jobs$jobno
} ## otherwise , use jobslist passed as argument

loop through the job numbers

for (jobno in jobslist){

LOAD DATA

Get parameter values

params <- jobs[jobno ,]

Generatee filename for this particular bruteforce .dat

file

file <- paste0(datdir , "/", bfdatfile_prefix , jobno , ".

dat")

Read data

bfd <- read.table(file ,

col.names=c("time", "s", "i", "rho", "

log10s", "log10i"))

If bifrange is given as nonempty , trim bfd to only

include given range of the bifurcation parameter

if (length(bifrange >0)){

bfd <- bfd[(bfd$rho >bifrange [1])&(bfd$rho <bifrange [2])
,]

}

EXTRACT INITIAL CONDITIONS

Calculate period of attractor for each rho

bfd.last <- last.point.with.period(bfd , max.period=maxper

35

)

Extract all periods that are not NA:

all.periods <- with(bfd.last , period[!is.na(period)])

(unique.periods <- unique(all.periods))

nper <- length(unique.periods)

Create data frame for list of initial conditions:

ic.set <- bfd.last[1,]

For each period that occurs , save a final condition:

for (iper in 1:nper) {

select the rows in the data frame with this period:

df.iper <- subset(bfd.last ,period == unique.periods[iper

])

choose a random initial condition:

ic.set[iper ,] <- df.iper[round(sample (1: nrow(df.iper),

1)),]

}

Replace original row names with ic number:

row.names(ic.set) <- 1:nrow(ic.set)

Save IC data in an xppaut -ready format (as loadable

parameter sets)

icsets <- vector(mode="character", length=maxper)

for(i in 1: maxper)

{

icsets[i] <- paste0("set p", i, " {init s=", ic.set[

which(ic.set$period ==i),"log10s"], ", init i=", ic.

set[which(ic.set$period ==i),"log10i"], ", rho=", ic.

set[which(ic.set$period ==i),"rho"], ", p=", params$p
, ", alpha=", params$alpha , ", delta=", params$delta
, ", eps=", params$eps , ", r=", params$r, ", nout=",

i, "}")

}

CREATE FILES AND DIRECTORIES

Write .ode file

odepath <- paste0(this_date , "/")

odefilename <- paste0(odefile_prefix , jobno)

writeODE(odepath , odefilename , icsets)

36

Save jobs info with corresponding ode file

save(params , file = paste0(odepath , odefilename , ".Rdata"

))

Make directory to store AUTO allinfo data

cmd <- paste0("mkdir -p ", odepath , "allinfo")

system(cmd)

Make directory to store converged solution data

for use with extractAutoIC_xpp

cmd <- paste0("mkdir -p ", odepath , "/convergedIC")

system(cmd)

}

}

REGENERATE ODE FILE FOR USE WITH AUTO USING IC FROM

CONVERGED SOLUTION DATA

extractAutoIC_xpp <- function(jobno , odefile_prefix ,

branchlist , params=c()){

jobno: run number for which we want to regenerate ICs

from converged xppaut data

odefile_prefix: filename prefix for the existing .ode

files used with Auto

where we want to replace the ICs with converged data

(everything before the run number)

branchlist: list of branches for which we have converged

solution data

params: named list of parameters (p, alpha , delta , eps)

to use to generate

initial condition sets

Generate filepath (location of existing .ode file , .

Rdata file , and convergedIC data)

filepath <- paste0("run", jobno , "/")

Load parameters for this run (unless they are provided)

if (length(params)==0){

load(paste0(filepath , odefile_prefix , jobno , ".Rdata"))

}

37

Save data in an xppaut -ready format (as parameter sets)

icsets <- vector(mode="character", length=length(branchlist

))

j <- 0

for (i in branchlist){

j <- j+1

if (length(params)==0){

this.filename <- paste0("convergedIC_p1a0.1/br",i,"-IC.

dat")

} else {

this.filename <- paste0("convergedIC_p", params$p, "a",

params$alpha , "/br",i,"-IC.dat")

}

xppd <- as.data.frame(read.table(paste0(filepath ,this.

filename),

col.names = c("time", "

log10s", "log10i", "

rho")))

Grab initial conditions from first row of xpp data

icsets[i] <- paste0("set p", j, " {init s=", xppd[1,"

log10s"], ", init i=", xppd[1,"log10i"], ", rho=",

xppd[1,"rho"], ", p=", params$p, ", alpha=", params$
alpha , ", delta=", params$delta , ", eps=", params$eps ,
", nout=", i, "}")

}

Write .ode file

odepath <- paste0("run", jobno , "/")

odefilename <- paste0(odefile_prefix , jobno)

writeODE(odepath , odefilename , icsets)

}

##########################

SUPPORTING FUNCTIONS

##########################

Function to calculate period of attractor for each rho

last.point.with.period <- function(df , dop=5, rholim=4, max.

period =7) {

data frame with only the last pt on each soln:

df.last <- subset(df, time==max(time))

nrho <- nrow(df.last) # number of rho values

df.last$period <- rep(0,nrho) # add period column

38

for (i in 1:nrho) {

data frame with all pts on soln with given rho:

rhoi <- df.last[i,"rho"]

df.rhoi <- subset(df,rho==rhoi)

compute period of this solution:

if (rhoi < rholim) {

period <- 1

} else {

period <- length(unique(round(df.rhoi[,"log10i"],dop)))

if (period > max.period) period <- NA

}

df.last$period[i] <- period

}

return(df.last)

}

Function to write custom .ode file for use with AUTO

writeODE <- function(odepath , odefilename , parsets){

odepath: path for ode file (include trailing "/")

odefilename: name of resulting .ode file

parsets: sets of parameters to write

(stored as character vector with each entry to be

written as a new line)

Create directory to store new ode file

cmd <- paste0("mkdir -p ", odepath)

system(cmd)

Create all blank ode file

newfile <- paste0(odepath , odefilename , ".ode")

file.create(newfile)

Append first part of generic ode file

file.append(newfile ,"fileparts/AUTO_mm_part1.ode")

Write extracted initial conditions

write(parsets , file=newfile , sep="\n", append=TRUE)

Append second part of generic ode file

file.append(newfile ,"fileparts/AUTO_mm_part2.ode")

}

###

EXTRACT AUTO IC AND GENERATE ODE FILE

###

39

if (type=="bruteforce"){

extractAutoIC_bf(datdir , bfdatfile_prefix , odefile_prefix ,

this_date , bifrange , jobslist)

} else if (type=="xpp"){

extractAutoIC_xpp(jobno , odefile_prefix , brnos , params)

}

.ode file part 1 (header):

###

ODE file for Poincare map of seasonally forced SIR model

(used with AUTO_mm.c library)

Used to create bifurcation diagrams with respect to rho_0 in

AUTO

Author: Irena Papst

Based on XPPAUT Guide from Krylova and Earn (2013)

###

DEFINE LEFT HAND -SIDE

s' = sp

i' = ip

sp = 0

ip = 0

LINK TO THE C-LIBRARY

i.e. pass the values {s, i, rho , p, alpha , delta , eps , r}

and ask it to return {sp , ip}

Note that the order of export must agree with

the order of in[] and out[] in arrays in the C function

export {s, i, rho , p, alpha , delta , eps , r} {sp , ip}

define a library to be used and a corresponding function

@ dll_lib =../ AUTO_mm.so dll_fun=modelmap

SET INITIAL CONDITIONS for each periodic orbit

Note that , for convenience , s and i below

are really log(s) and log(i)

nOut sets the number of iterations of the map

it should be changed for each periodic orbit depending on the

period

40

.ode file part 2 (footer):

PARAMETER VALUES

Note the order here determines the "main" parameter for AUTO

rho = avg transmission/interaction rate

p = power of |cos (2*pi*t)| in our modified seasonal forcing

function ,

which transforms the square wave into the cosine wave as p

varies between 0 and 1

alpha = amplitude of seasonal forcing

delta = model selection parameter

eps = birth rate

r = logistic growth rate

par rho=26, p=1, alpha =0.1, delta=1, eps =0.0007 , r=3

aux rhozero=rho

XPP SETUP

this is a discrete map not an ODE

@ meth=discrete

total =60 means 60 iterations of the map in total

@ total=60, yp=i

line type = dots

@ lt=0

plotting options

@ xlo=-1, xhi=61, ylo=-9, yhi=-1

AUTO SETUP

set range for rho , our control parameter:

@ parmin =1.1, parmax =70

set range of vertical axis variable and set which variable it

is:

@ autoymin =-12, autoymax=-1,autovar=i

set horizontal axis plot range:

@ autoxmin=0, autoxmax =70

set step size for continuation of the control parameter:

(here , ds=standard step size , others are max and min step size

)

(the sign of ds controls the direction of continuation)

STANDARD TIME STEPS:

@ dsmax =0.01 , ds=0.003 , dsmin =0.0000003

MORE PRECISE TIME STEPS: @ dsmax =0.001 , ds=0.00003 , dsmin

=0.000000003

SLIGHTLY MORE PRECISE TIME STEPS: @ dsmax =0.001 , ds=0.003 ,

dsmin =0.0000003

set a few other techinical aspects of the continuation:

41

@ Nmax =20000 , Npr=2000 , epsl=1e-6, epsu=1e-6, epss=1e-4

above:

Nmax = maximum number of steps to take along a branch before

stopping

Npr = number of steps before labelling a point (which can help

with

continuing from points without having to start everything

all over)

eps ... = various tolerances

done

S5.4 Sample code for generating AUTO R0 bifurcation diagrams in
xppaut

In order to generate R0 bifurcation diagrams in AUTO via xppaut, we first set up a C function
that integrates the system numerically with a Poincaré map. This function is stored in a C

library that has been created by compiling the following code:

/**

Poincare map of the seasonally forced SIR model

to be called from XPPAUT for bifurcation analysis.

Author: Irena Papst

Based on XPPAUT Guide from Krylova and Earn (2013)

Under MacOSX , compile this function via:

gcc -dynamiclib -m32 -o SIRmap_p.so SIRmap_p.c

***/

#include <math.h>

/*** Compile -time definitions ***/

#define Time_step 0.0005 /* in units of years */

#define DAYS_PER_YEAR 365

#define TWO_PI 6.2831853071795864769252867665590

#define Real double

#define NDIM 2 /* dimension of the dynamical system */

/**/

/*** FUNCTIONS CALLED BY THE MAIN ROUTINE ***/

/**/

/*** Euler integrator ***/

42

void Euler(Real *x, Real *dx, Real dt, int ndim) {

int i;

for (i=0; i<ndim; i++) {

x[i] = x[i] + dx[i]*dt;

}

}

// Define the signum function -- used in the squaretocos

transformation

Real sgn(Real val){

return(val <=0 ? -1: 1);

}

// Define the unit step i.e. heaviside function -- used as a

switch

// between the ttftosquare and squaretocos transformations

Real heav(Real val){

return(val <0 ? 0: 1);

}

/**/

/** Define the Seasonal_beta family of forcing functions **/

/**/

Real Seasonal_beta(Real beta0 , Real alpha , Real p, Real time)

{

/**/

/** Part 1. Term Time Forcing to Square Wave **/

/**/

// define term begin and end days (where t=0 is Jan 1)

// order in each array:

// christmas 1, easter , summer , autumn , christmas 2

Real b[5] = {0, 99, 195, 299, 355};

Real e[5] = {5, 114, 250, 306, 365};

// calculate centre and width of each break

// to be used in the break function

// (indicator function which is -1 during a break and 1

otherwise)

// easter

43

Real cEas;

Real wEas;

cEas = (b[1]+e[1]) /(2* DAYS_PER_YEAR);

wEas = (e[1]-b[1])/DAYS_PER_YEAR;

// summer

Real cSumr;

Real wSumr;

cSumr = (b[2]+e[2]) /(2* DAYS_PER_YEAR);

wSumr = (e[2]-b[2])/DAYS_PER_YEAR;

// autumn

Real cAut;

Real wAut;

cAut = (b[3]+e[3]) /(2* DAYS_PER_YEAR);

wAut = (e[3]-b[3])/DAYS_PER_YEAR;

// christmas 1

Real wChr1;

wChr1 = (e[0]-b[0])/DAYS_PER_YEAR;

// christmas 2

Real wChr2;

wChr2 = (e[4]-b[4])/DAYS_PER_YEAR;

/* since the christmas break has to be defined in two parts

due to

the modular arithmetic in time that makes this wave

periodic ,

we take the centre as t=0(mod1) and make both parts of

the break shrink

and eventually vanish at this point. thus , we do not

calculate

the centre of this break like we do for the other breaks

*/

44

// define width and centre of square wave break

Real wSqu =0.5;

Real cSqu =0.5;

/* calculate the beginning and end points of each break

depending on p */

/* as p increases from -1 to 0

summer break widens and shifts to give the square wave

break

while all other breaks shrink and vanish */

Real easB = cEas -fabs(p)*(wEas /2);

Real easE = cEas+fabs(p)*(wEas /2);

Real sumB = fabs(p)*(b[2]/ DAYS_PER_YEAR)+(1-fabs(p))*0.25;

Real sumE = fabs(p)*(e[2]/ DAYS_PER_YEAR)+(1-fabs(p))*0.75;

Real autB = cAut -fabs(p)*(wAut /2);

Real autE = cAut+fabs(p)*(wAut /2);

Real chrB = 1-fabs(p)*(DAYS_PER_YEAR -b[4])/DAYS_PER_YEAR;

Real chrE = fabs(p)*e[0]/ DAYS_PER_YEAR;

/* use modular arithmetic to make the waves periodic (with

period of 1 year) */

Real modtime = fmod(time ,1); /* to make the ttftosquare

function easier to read */

modtime = (0 <= modtime ? modtime : modtime +1);

/* define the ttftosquare indicator function that depends

on p*/

Real ttftosquare;

ttftosquare = (((0 <= modtime && modtime < chrE) || /*

christmas break , part 1 */

(easB <= modtime && modtime <= easE) || /*

easter break */

(sumB <= modtime && modtime <= sumE) || /*

summer break */

45

(autB <= modtime && modtime <= autE) || /*

autumn break */

(chrB < modtime && modtime <= 1) /*

christmas break , part 2 */

)? -1: 1);

/***********************************/

/** Part 2. Square Wave to Cosine **/

/***********************************/

Real c2pt;

Real squaretocos;

c2pt = cos(TWO_PI*time);

squaretocos = sgn(c2pt)*pow(fabs(c2pt),p);

/**/

/** Part 3. TTF to Cos Shape Transformation Function **/

/**/

Real trans; /* use a "switch" to change between the two

transformations defined above as p goes from -1 to 1 */

trans=(1-heav(p))*ttftosquare +(heav(p))*squaretocos;

Real ps; /* proportion of year spent in school , used in

shifting of forcing function to ensure that average

value of the forcing function is always beta0 = mean

beta */

ps = 1-fabs(p)*(wEas+wAut+wChr1+wChr2+wSumr) -(1-fabs(p))*

wSqu;

Real seasbeta; /* full transformation from ttf to cos ,

shifted and scaled using model parameters */

seasbeta = beta0 *(1+ alpha *((1- heav(p))*(trans +(1-2*ps))+

heav(p)*trans));

return(seasbeta);

}

/************************/

/*** THE MAIN ROUTINE ***/

46

/************************/

/*** The function SIRmap is what XPPAUT calls ***/

void SIRmap(Real *in, Real *out , int nin ,

int nout , Real *var , Real *con)

/*

in = initial and parameter values we get from the ode file

(s0, i0, R0, alpha , gamma , mu, p)

out = what we are returning (sp,ip):

calculated values of S and I after one year

nin = dimension of in[]

nout = dimension of out[]

var and con are arrays that Bard said to include...

*/

{

/* define starting values in log base 10 */

Real s=in[0], i=in[1];

Real x[NDIM], dx[NDIM]; /* for Euler integrator */

/* converting back to the original values , not in log */

s=pow (10,s);

i=pow (10,i);

/* define parameter values */

Real R0=in[2], alpha=in[3], gamma=in[4], mu=in[5], p=in[6]

;

Real ds, di;

Real beta0 , nonlin_term;

Real time; /* in units of years */

long istep , nsteps;

/* number of steps in a year */

nsteps = (int)(1/ Time_step + 0.5);

/* integrating for one year */

for (istep =0; istep < nsteps; istep ++) {

time=(Real)(istep)*Time_step;

/* compute the vector field */

/* FIXME: this would be better as a called function */

beta0 = R0*(gamma+mu); /* mean transmission rate */

nonlin_term = Seasonal_beta(beta0 ,alpha ,p,time) * s * i;

ds = mu - nonlin_term - mu*s;

di = nonlin_term - (mu + gamma)*i;

47

/* integrate using euler's method */

/* FIXME: there should be a compile -time option to use

RK4 instead */

x[0] = s; x[1] = i; dx[0]=ds; dx[1]=di;

Euler(x, dx, Time_step , NDIM);

s = x[0]; i = x[1];

}

s = log10(s);

i = log10(i);

out [0] = s; /* output in log_10 */

out [1] = i;

}

This C library is then compiled on the command line using the command

gcc -dynamiclib -m32 -o SIRmap_p.so SIRmap_p.c

and is then referenced in an .ode file that is used to generate AUTO R0 bifurcation data,
such as the following:

###

ODE file for Poincare map of seasonally forced SIR model

(used with SIRmap_p.c library)

Used to create bifurcation diagrams with respect to R0 in AUTO

Author: Irena Papst

Based on XPPAUT Guide from Krylova and Earn (2013)

###

DEFINE LEFT HAND -SIDE

s' = sp

i' = ip

sp = 0

ip = 0

LINK TO THE C-LIBRARY

i.e. pass the values {s0 , i0 , R0 , alpha , gamma , mu , p

eventually}

and ask it to return {sp , ip}

Note that the order of export must agree with

the order of in[] and out[] in arrays in the C function

export {s, i, R0 , alpha , gamma , mu , p} {sp , ip}

define a library to be used and a corresponding function

@ dll_lib=SIRmap_p.so dll_fun=SIRmap

SET INITIAL CONDITIONS for each periodic orbit

Note that , for convenience , s and i below

are really log(s) and log(i)

nOut sets the number of iterations of the map

48

it should be changed for each periodic orbit depending on the

period

set p1 {init s= -0.87659162 , init i= -3.2304842 , R0 =7.5999999 , p=2,

alpha =0.118239 , nout =1}

set p2 {init s= -1.2681592 , init i= -2.7434311 , R0 =21.780001 , p=2,

alpha =0.118239 , nout =1}

set p3 {init s= -1.0293249 , init i= -2.6030924 , R0=12.36 , p=2,

alpha =0.118239 , nout =1}

set p4 {init s= -0.94534254 , init i= -5.2238641 , R0=10.305 , p=2,

alpha= 0.118239 , nout =1}

set p5 {init s= -0.70523274 , init i= -4.2141695 , R0 =5.7199998 , p=2,

alpha =0.118239 , nout =1}

set p6 {init s= -0.70315689 , init i= -3.7062016 , R0 =4.3800001 , p=2,

alpha =0.118239 , nout =1}

set p7 {init s= -0.97648102 , init i= -5.562336 , R0 =6.7350001 , p=2,

alpha =0.118239 , nout =1}

PARAMETER VALUES

Note the order here determines the "main" parameter for AUTO

alpha = amplitude of seasonal forcing

R0 = basic reproduction number

gamma = recovery rate; 1/ gamma = mean infectious period

mu = mean death/birth rate; 1/mu = average life time

p = power of |cos (2*pi*t)| in our modified seasonal forcing

function ,

which transforms the square wave into the cosine wave as p

varies between 0 and 1

par R0=26, alpha =0.25 , gamma =28.076923 , mu=0.02 , p=-1

aux Rzero=R0

XPP SETUP

this is a discrete map not an ODE

@ meth=discrete

total =20 mean 20 iterations of the map in total

@ total=20, yp=i

line type = dots

@ lt=0

plotting options

@ xlo=-1, xhi=21, ylo=-9, yhi=-1

AUTO SETUP

set range for R0, our control parameter:

@ parmin =1.1, parmax =40

set range of vertical axis variable and set which variable it

is:

@ autoymin=-9,autoymax=-1,autovar=i

49

set horizontal axis plot range:

@ autoxmin=0, autoxmax =30

set step size for continuation of the control parameter:

(here , ds=standard step size , others are max and min step size

)

(the sign of ds controls the direction of continuation)

STANDARD TIME STEPS:

@ dsmax =0.1, ds=0.003 , dsmin =0.0000003

MORE PRECISE TIME STEPS: @ dsmax =0.001 , ds=0.00003 , dsmin

=0.000000003

SLIGHTLY MORE PRECISE TIME STEPS:

@ dsmax =0.001 , ds=0.003 , dsmin =0.0000003

set a few other techinical aspects of the continuation:

@ Nmax =20000 , Npr=2000 , epsl=1e-6, epsu=1e-6, sepss =1e-4

above:

Nmax = maximum number of steps to take along a branch before

stopping

Npr = number of steps before labelling a point (which can help

with

continuing from points without having to start everything

all over)

eps ... = various tolerances

done

S5.5 Sample code for α continuation in AUTO

The sample code from §S5.4 can be easily adapted to run a continuation in α in order to
create two parameter bifurcation diagrams in α and p. Namely, we must change the order of
arguments input to the C library, such that α is the first parameter, instead of R0. Here, we
include sample code reflecting this change. The same goes for the xppaut code calling the
compiled C library: α must be made the primary bifurcation parameter by being the first
parameter listed in the array exported to the C library (as well as being the first parameter
defined in the xppaut code).

This code generates the C library, followed by the corresponding xppaut code:

/**

Poincare map of the seasonally forced SIR model

to be called from XPPAUT for bifurcation analysis.

Author: Irena Papst

Based on XPPAUT Guide from Krylova and Earn (2013)

Under MacOSX , compile this function via:

gcc -dynamiclib -m32 -o SIRmap_alpha.so

SIRmap_alpha.c

***/

50

#include <math.h>

/*** Compile -time definitions ***/

#define Time_step 0.0005 /* in units of years */

#define DAYS_PER_YEAR 365

#define TWO_PI 6.2831853071795864769252867665590

#define Real double

#define NDIM 2 /* dimension of the dynamical system */

/**/

/*** FUNCTIONS CALLED BY THE MAIN ROUTINE ***/

/**/

/*** Euler integrator ***/

void Euler(Real *x, Real *dx, Real dt, int ndim) {

int i;

for (i=0; i<ndim; i++) {

x[i] = x[i] + dx[i]*dt;

}

}

// Define the signum function -- used in the squaretocos

transformation

Real sgn(Real val){

return(val <=0 ? -1: 1);

}

// Define the unit step i.e. heaviside function -- used as a

switch

// between the ttftosquare and squaretocos transformations

Real heav(Real val){

return(val <0 ? 0: 1);

}

/**/

/** Define the Seasonal_beta family of forcing functions **/

/**/

Real Seasonal_beta(Real beta0 , Real alpha , Real p, Real time)

{

/**/

51

/** Part 1. Term Time Forcing to Square Wave **/

/**/

// define term begin and end days (where t=0 is Jan 1)

// order in each array:

// christmas 1, easter , summer , autumn , christmas 2

Real b[5] = {0, 99, 195, 299, 355};

Real e[5] = {5, 114, 250, 306, 365};

// calculate centre and width of each break

// to be used in the break function

// (indicator function which is -1 during a break and 1

otherwise)

// easter

Real cEas;

Real wEas;

cEas = (b[1]+e[1]) /(2* DAYS_PER_YEAR);

wEas = (e[1]-b[1])/DAYS_PER_YEAR;

// summer

Real cSumr;

Real wSumr;

cSumr = (b[2]+e[2]) /(2* DAYS_PER_YEAR);

wSumr = (e[2]-b[2])/DAYS_PER_YEAR;

// autumn

Real cAut;

Real wAut;

cAut = (b[3]+e[3]) /(2* DAYS_PER_YEAR);

wAut = (e[3]-b[3])/DAYS_PER_YEAR;

// christmas 1

Real wChr1;

wChr1 = (e[0]-b[0])/DAYS_PER_YEAR;

52

// christmas 2

Real wChr2;

wChr2 = (e[4]-b[4])/DAYS_PER_YEAR;

/* since the christmas break has to be defined in two parts

due to

the modular arithmetic in time that makes this wave

periodic ,

we take the centre as t=0(mod1) and make both parts of

the break shrink

and eventually vanish at this point. thus , we do not

calculate

the centre of this break like we do for the other breaks

*/

// define width and centre of square wave break

Real wSqu =0.5;

Real cSqu =0.5;

/* calculate the beginning and end points of each break

depending on p */

/* as p increases from -1 to 0

summer break widens and shifts to give the square wave

break

while all other breaks shrink and vanish */

Real easB = cEas -fabs(p)*(wEas /2);

Real easE = cEas+fabs(p)*(wEas /2);

Real sumB = fabs(p)*(b[2]/ DAYS_PER_YEAR)+(1-fabs(p))*0.25;

Real sumE = fabs(p)*(e[2]/ DAYS_PER_YEAR)+(1-fabs(p))*0.75;

Real autB = cAut -fabs(p)*(wAut /2);

Real autE = cAut+fabs(p)*(wAut /2);

Real chrB = 1-fabs(p)*(DAYS_PER_YEAR -b[4])/DAYS_PER_YEAR;

Real chrE = fabs(p)*e[0]/ DAYS_PER_YEAR;

/* use modular arithmetic to make the waves periodic (with

period of 1 year) */

53

Real modtime = fmod(time ,1); /* to make the ttftosquare

function easier to read */

modtime = (0 <= modtime ? modtime : modtime +1);

/* define the ttftosquare indicator function that depends

on p*/

Real ttftosquare;

ttftosquare = (((0 <= modtime && modtime < chrE) || /*

christmas break , part 1 */

(easB <= modtime && modtime <= easE) || /*

easter break */

(sumB <= modtime && modtime <= sumE) || /*

summer break */

(autB <= modtime && modtime <= autE) || /*

autumn break */

(chrB < modtime && modtime <= 1) /*

christmas break , part 2 */

)? -1: 1);

/***********************************/

/** Part 2. Square Wave to Cosine **/

/***********************************/

Real c2pt;

Real squaretocos;

c2pt = cos(TWO_PI*time);

squaretocos = sgn(c2pt)*pow(fabs(c2pt),p);

/**/

/** Part 3. TTF to Cos Shape Transformation Function **/

/**/

Real trans; /* use a "switch" to change between the two

transformations defined above as p goes from -1 to 1 */

trans=(1-heav(p))*ttftosquare +(heav(p))*squaretocos;

Real ps; /* proportion of year spent in school , used in

shifting of forcing function to ensure that average

value of the forcing function is always beta0 = mean

beta */

54

ps = 1-fabs(p)*(wEas+wAut+wChr1+wChr2+wSumr) -(1-fabs(p))*

wSqu;

Real seasbeta; /* full transformation from ttf to cos ,

shifted and scaled using model parameters */

seasbeta = beta0 *(1+ alpha *((1- heav(p))*(trans +(1-2*ps))+

heav(p)*trans));

return(seasbeta);

}

/************************/

/*** THE MAIN ROUTINE ***/

/************************/

/*** The function SIRmap is what XPPAUT calls ***/

void SIRmap(Real *in, Real *out , int nin ,

int nout , Real *var , Real *con)

/*

in = initial and parameter values we get from the ode file

(s0, i0, alpha , p, R0, gamma , mu)

out = what we are returning (sp,ip):

calculated values of S and I after one year

nin = dimension of in[]

nout = dimension of out[]

var and con are arrays that Bard said to include...

*/

{

/* define starting values in log base 10 */

Real s=in[0], i=in[1];

Real x[NDIM], dx[NDIM]; /* for Euler integrator */

/* converting back to the original values , not in log */

s=pow (10,s);

i=pow (10,i);

/* define parameter values */

Real alpha=in[2], p=in[3], R0=in[4], gamma=in[5], mu=in[6]

;

Real ds, di;

Real beta0 , nonlin_term;

Real time; /* in units of years */

55

long istep , nsteps;

/* number of steps in a year */

nsteps = (int)(1/ Time_step + 0.5);

/* integrating for one year */

for (istep =0; istep < nsteps; istep ++) {

time=(Real)(istep)*Time_step;

/* compute the vector field */

/* FIXME: this would be better as a called function */

beta0 = R0*(gamma+mu); /* mean transmission rate */

nonlin_term = Seasonal_beta(beta0 ,alpha ,p,time) * s * i;

ds = mu - nonlin_term - mu*s;

di = nonlin_term - (mu + gamma)*i;

/* integrate using euler's method */

/* FIXME: there should be a compile -time option to use

RK4 instead */

x[0] = s; x[1] = i; dx[0]=ds; dx[1]=di;

Euler(x, dx, Time_step , NDIM);

s = x[0]; i = x[1];

}

s = log10(s);

i = log10(i);

out [0] = s; /* output in log_10 */

out [1] = i;

}

###

ODE file for Poincare map of seasonally forced SIR model

(used in conjunction with SIRmap_alpha.c library)

Used to create bifurcation diagrams wrt alpha in AUTO

Author: Irena Papst

Based on XPPAUT Guide from Krylova and Earn (2014)

###

DEFINE LEFT HAND -SIDE

s' = sp

i' = ip

sp = 0

ip = 0

LINK TO THE C-LIBRARY

i.e. pass the values {s0 , i0 , alpha , p, R0 , gamma , mu}

and ask it to return {sp , ip}

56

Note that the order of export must agree with

the order of in[] and out[] in arrays in the C function

export {s, i, alpha , p, R0 , gamma , mu} {sp , ip}

define a library to be used and a corresponding function

@ dll_lib=SIRmap_alpha.so dll_fun=SIRmap

SET INITIAL CONDITIONS for each periodic orbit

Note that , for convenience , s and i below

are really log(s) and log(i)

nOut sets the number of iterations of the map

it should be changed for each periodic orbit depending on the

period

Branch 1, Bifurcation 1

set p1 {init s= -1.17372 , init i= -3.37877 , R0=15.1198 , p=-1, alpha

=0.25 , nout =1}

PARAMETER VALUES

Note the order here determines the "main" parameter for AUTO

alpha = amplitude of seasonal forcing

R0 = basic reproduction number

gamma = recovery rate; 1/ gamma = mean infectious period

mu = mean death/birth rate; 1/mu = average life time

p = power of |cos (2*pi*t)| in our modified seasonal forcing

function ,

which transforms the square wave into the cosine wave as p

varies between 0 and 1

par alpha =0.08 , p=1, R0=21.9863 , gamma =28.076923 , mu =0.02

aux a=alpha

XPP SETUP

this is a discrete map not an ODE

@ meth=discrete

total =20 mean 20 iterations of the map in total

@ total=20, yp=i

line type = dots

@ lt=0

plotting options

@ xlo=-1, xhi=21, ylo=-9, yhi=-1

AUTO SETUP

set range for alpha , our control parameter:

@ parmin=0, parmax =1

set range of vertical axis variable and set which variable it

is:

@ autoymin=-9,autoymax=-1,autovar=i

57

set horizontal axis plot range:

@ autoxmin=0, autoxmax =1

set step size for continuation of the control parameter:

(here , ds=standard step size , others are max and min step size

)

(the sign of ds controls the direction of continuation)

for p=-1 (term time forcing)

@ dsmax =0.5, ds=0.055 , dsmin =0.00003

set a few other techinical aspects of the continuation:

@ Nmax =20000 , Npr=2000 , epsl=1e-6, epsu=1e-6, sepss =1e-4

above:

Nmax = maximum number of steps to take along a branch before

stopping

Npr = number of steps before labelling a point (which can help

with

continuing from points without having to start everything

all over)

eps ... = various tolerances

done

58

References

[1] Bauch CT, Earn DJD. Interepidemic intervals in forced and unforced SEIR models. In:
Ruan S, Wolkowicz G, Wu J, editors. Dynamical Systems and Their Applications in
Biology. vol. 36 of Fields Institute Communications. Toronto: American Mathematical
Society; 2003. p. 33–44.

[2] Ermentrout B. Simulating, analyzing, and animating dynamical systems: a guide to
XPPAUT for researchers and students. Software, Environments, and Tools. Philadel-
phia: Society for Industrial and Applied Mathematics; 2002.

[3] Krylova O, Earn DJD. Effects of the infectious period distribution on predicted transi-
tions in childhood disease dynamics. J. R. Soc. Interface. 2013;10:20130098.

[4] Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. CRC Press; 2018.

[5] Bauch CT, Earn DJD. Transients and attractors in epidemics. Proc. R. Soc. Lond. B.
2003;270(1524):1573–1578.

[6] Nahvi M. Signals and Systems. 1st ed. New York: McGraw-Hill; 2014.

[7] Olver FWJ, Lozier DW, Boisvert RF, Clark CW, editors. NIST Handbook of Mathe-
matical Functions. New York: National Institute of Standards and Technology (NIST)
and Cambridge University Press; 2010.

[8] Rinaldi S, Muratori S, Kuznetsov Y. Multiple attractors, catastrophes and chaos in
seasonally perturbed predator-prey communities. Bull Math Biol. 1993;55(1):15–35.

[9] Gragnani A, Rinaldi S. A universal bifurcation diagram for seasonally perturbed
predator-prey models. Bull Math Biol. 1995;57(5):701–712.

[10] Scheffer M, Rinaldi S, Kuznetsov YA, van Nes EH. Seasonal dynamics of Daphnia and
algae explained as a periodically forced predator-prey system. Oikos. 1997;p. 519–532.

[11] Kuznetsov YA, Muratori S, Rinaldi S. Bifurcations and chaos in a periodic predator-prey
model. Int J Bifurc Chaos. 1992;2(01):117–128.

[12] Kuznetsov YA. Elements of applied bifurcation theory. vol. 112 of Applied Mathematical
Sciences. 3rd ed. New York: Springer-Verlag; 2004.

[13] Doedel EJ, Oldeman BE. AUTO-07P: Continuation and bifurcation software for ordi-
nary differential equations. Montreal, Canada: Concordia University; 2011.

59

	Supplementary Methods
	Definition of the family of forcing functions
	Computing bifurcation diagrams using xppaut and AUTO

	Supplementary Discussion
	Spectral power
	Invariance of bifurcations in a seasonally-forced predator-prey model

	Supplementary Tables
	Initial conditions for R0 bifurcation diagrams

	Supplementary R0 bifurcation diagrams
	Supplementary Code
	Technical specifications
	Sample code for generating brute force R0 bifurcation diagrams
	Script to extract AUTO initial conditions from brute force bifurcation data
	Sample code for generating AUTO R0 bifurcation diagrams in xppaut
	Sample code for alpha continuation in AUTO

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

