
Supplementary Methods – “Optimal foraging and the information theory of gambling” 
 

Further details on Kelly betting 

For full treatment see chapter 6 of Cover and Thomas (2006). A probability matching strategy is also 

optimal with ‘superfair’ odds when  ∑ "
#$
< 1. In both of these cases, the full capital or proportion of 

foragers should be allocated across foraging sites to maximise the long-term wealth, although the 

Kelly strategy may also be followed by betting a fixed proportion 𝛼 of full bets. This so-called 𝛼-Kelly 

strategy has a much slower rate of growth in wealth (MacLean et al., 2010), however, short-term 

volatility in wealth (or biomass) is reduced by a factor 𝛼( (Rising et al., 2012). Animals are often risk 

averse to variable rewards (Kacelnik and Bateson, 1996) and this may be seen at the level of the 

colony; in practice only a proportion of ants forage, with some staying purposefully inactive for 

significant periods of time (Charbonneau and Dornhaus, 2015). In a colony of, say, 200 workers, 50 

might forage, which would correspond to 𝛼 = 0.25; but for the purpose of this paper we do not 

consider this further. 

When ∑ "
#$
> 1 subfair odds are said to be available, and it is better to hold back some proportion of 

the ant foragers (or a gambler’s wealth) and try to bet on outcomes offering the most favourable 

expected return 𝑝0𝜎0. In this case the optimal betting amount is solved using a ‘waterfilling’ method 

and is dealt with in Erkip (1996). 

MCMC methods – resources  

Good introductions to Markov chain Monte Carlo (MCMC) methods can be found in Neal (1993), 

Mackay (2003), and Brooks et al. (2011). 

Metropolis-Hastings – further details and comparison with ant data 

The M-H method makes use of a proposal density 𝑄 (which depends on the current state 𝑥) to 

create a new proposal state to potentially sample from. Q can be simply a uniform distribution: in a 

discretized environment these can be 𝑥(5) + [−1,0,1] with equal probability. To decide whether to 

accept the new state as the next step in the sample, we compute the quantity 

𝑎 = 	
𝑃∗(𝑥@)
𝑃∗(𝑥(5))

𝑄(𝑥(5); 𝑥@)
𝑄(𝑥@; 𝑥(5))

 

If 𝑎 ≥ 1 then the new state is accepted; otherwise it is accepted with probability 𝑎. If the step is 

accepted, we set 𝑥(5C") = 𝑥@ ; if it is rejected then 𝑥(5C") = 𝑥(5) (the current state is taken forward 

to the next step). The M-H method is widely used for sampling from high-dimensional problems, but 



it has a major disadvantage that it explores the probability distribution by a random walk, which can 

take many steps to move through the space, according to √𝑇𝜖 where T is the number of steps and 𝜖 

is the step length.  

The Metropolis-Hastings algorithm was used to sample from a sparse probability 

distribution. This is generated by combining a gamma-distributed background noise (shape 

parameter=0.2, scale parameter=1) on a 100×100 grid given a Gaussian blur (𝜎 = 3, filter size 

100×100) Using 𝑁 = 18 simulated walkers exploring for 600 iterations, the exponent was found to 

be 0.487, 95% confidence interval (0.444 0.529), i.e. not significantly different to 0.5 and so engaging 

in a standard diffusive search, as expected. We can use the M-H walkers as a model of exploring 

ants, and so to assess its validity we can examine trajectory data of real ants exploring a uniform 

empty space (Hunt et al., 2016a) and compare it with simulations from this model, to see whether 

ants are engaged in a standard diffusive (Brownian) exploration of space. The root mean square 

(r.m.s.) displacement for 𝑁 = 18 ants was found for the first 60 seconds of their exploration of an 

unfamiliar arena (600 trajectory points with a sampling period of 0.1s, a time short enough that they 

would not reach the edge of the arena), and its log was regressed on log time. The gradient was 

found to be 0.59 with a 95% confidence interval of (0.55,0.63), which is greater than 0.5 and so the 

ants are engaged in superdiffusive search.  

Leapfrog method 

In two of the MCMC methods presented, HMC and PMR, there are two key parameters ε and 𝐿 that 

must be chosen suitably to generate a sample efficiently. See Brooks et al. (2011) for a full treatment 

of these issues. 

Although the dynamics of a system in Hamiltonian mechanics is described using differential 

equations for continuous time and space, for implementation on a computer the equations must be 

approximated by discretizing time using a small step length ε. We may assume a Hamiltonian of the 

form 𝐻(𝑞, 𝑝) = 𝑈(𝑞) + 𝐾(𝑝) and a kinetic energy 𝐾(𝑝) = 𝑝Q𝑀S"𝑝/2, and a diagonal M with 

elements 𝑚",… ,𝑚W  so that 𝐾(𝑝) = ∑ X$
Y

(Z$

W
0["  . Then the leapfrog method proceeds as follows: 

𝑝0 \𝑡 +
𝜀
2
_ = 𝑝0(𝑡) − (𝜀/2)

𝜕𝑈
𝜕𝑞0

a𝑞(𝑡)b, 

𝑞0(𝑡 + 𝜀) = 𝑞0(𝑡) + 𝜀
𝑝0(𝑡 + 𝜀/2)

𝑚0
, 

𝑝0(𝑡 + 𝜀) = 𝑝0(𝑡 + 𝜀/2) − (𝜀/2)
𝜕𝑈
𝜕𝑞0

a𝑞(𝑡 + 𝜀)b. 



We start with a half step for the momentum variables, a full step follows for the position variables 

using those new momentum variables, and finally we do another half step for the momentum 

variables using the new values for the position variables. This process is iterated a certain number of 

times 𝐿, and preserves volume exactly. It is also reversible by negating 𝑝 and applying the same 

number of steps 𝐿, then negating p again. It gains its name from the use of interleaved time points 

such that 𝑝0  and 𝑞0‘leapfrog’ over each other.  

The leapfrog step length was set to be ε = 0.3 in the simulations presented in the main text. 

Selecting a suitable step length is vital, because if it is too large there will be a very low acceptance 

rate for the states proposed by the simulated trajectories. If it is too small it will waste computation 

time, as the trajectories will make unnecessarily short progress through the space, or it can lead to 

slow exploration by a random walk through the space if the trajectory length ε𝐿 is too small, which 

defeats the object of the method. In the first instance reasonably effective ε and 𝐿 can be found 

through trial and error.  
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