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1 Infinite population

1.1 Single Game Dynamics (SGD)
A two player replicator approach

Consider a 2 x 2 (two player two strategy) payoff matrix (A.1) : There are two players and
each of them can adopt two strategies. The two types of strategies they could employ are 1

and 2 and their respective frequencies are z; and x,.

1 2

1 (GL(LO) @1,(0,1) ) (A.1)

2 a2,(1,0) @2,0,1)
In matrix A.1, we write the elements in the form a; o, where ¢ is the strategy of the focal
player. Using multiindex notation, «, is a vector written as o = (ay, ap), together representing
the group composition. The average payoffs of the two strategies are given by f1 = ay,(1,0)21+

ai,o0,1)72 and fo = as (1,071 + az,0,1)T2. The replicator equation Eq. (A.2) [1, 2] describes the
change in frequency z; of strategy ¢ over time.

z; = zi[(fi — ¢)] (A.2)

where f; is the fitness of strategy ¢ and ¢ is the average fitness. For an infinitely large pop-

ulation size we have x; = x, o = 1 — x Thus the replicator equation for the change in the
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frequency of strategy 1 is,

i =z(l—-z)(fi — f2)

(A.3)
=z(1— 35)[(@1,(1,0) — Q1,(0,1) — A2,(1,0) T G2,(0,1))96’ + az,1,0) — 02,(0,1)]-

Apart from the trivial fixed points (x = 0 and = = 1), there is an internal equilibrium given

by,
% a2,(0,1) — 42,(1,0)

X" = (A4)

a1,(1,0) — a@1,(0,1) — @2,(1,0) + a2,(0,1)‘

Multiplayer games

We now extend the dynamics to multiplayer games [3]. The payoff matrix (A.5), represents a
three player (d = 3) two strategy (n = 2) game; a 2 X 2 X 2 game.

11 12 22

1 (al,(Z,O) a1,(1,1) al,(0,2)> (A.5)
2\ az20) G211) G202

The rows correspond to the focal player. Focal player interacting with two other players, both
with strategy 1 will receive a payoff a; (2 9). While interacting with a one strategy 1 player and
a strategy 2 player, he will get a; (1,1). When interacting with two other strategy 2 individuals,
the payoff is equal to a; (o2). Assuming that the order of players does not matter, the average
payoffs (or in this case, the fitnesses) will be,

fl = 51]'2@17(270) + 237(1 — Q?)CLL(LU + (1 — SC>2GL(072)

) ) (A.6)
fo = 2%az,20) + 22(1 — ¥)ag 1) + (1 — z) az,0,2)-
The replicator equation in this case is given by,
T =x(1 —x)((ai,02 — 2a1,1,1) + a1,2,0) — A2,0,2) + 2a2,(1,1) — 6l2,(2,0))5152 (A7)

+(—a1,(0,2) + a1,1,1) + 02,02 — a2,(1,1))2$ + a1,0,2) — CL2,(0,2))-

The quadratic 22 term in Eq. (A.7) can give rise to a maximum of two interior fixed points. In
general, for a d-player two strategy game, the replicator equation can result in d — 1 interior
fixed points (maximum). For an n strategy d-player game, the maximum number of internal

equilibria is (d — 1)("~Y as shown in [4].

1.2 Multi Game Dynamics (MGD)
Linear combination of two 2 x 2 games

To start looking into the dynamics of combinations of games i.e. Multi Game Dynamics
(MGD) in contrast with the Single Game Dynamics (SGD), consider the example: two games
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with two strategies in each. Let the payoff matrix of Game 1 and Game 2 be,

A A At A3
1 1 1 2 2 2
Al — A apa0) @10 A2 — AT @Y 0 @10
AL\ al al A2\ a? a’
2 \ %2,1,00 %0, 2\ %2,1,00 %0,

The individuals can be partitioned into four classes. Individuals playing strategy 1 in game
Al and game A2, strategy 1in A' and 2 in A?, strategy 2 in A' and 1 in A2, and strategy 2 in
Al and A?. So, there are four types of strategies, A} A%, Al A2, ALA? and AJA2. We refer to
them as “categorical types”. Their respective frequencies are written as =11, T12, T2 and xos.
We shall now use a new notation, p;;, or playing strategy ¢; in game j, which is just a variable
transformation that can be written as (here, i; € {1,2} and j € {1,2}),

P11 = T11 + T12

P12 = To1 + To2

(A.8)
D21 = T11 + T2
D22 = T12 + T22.
The fitnesses for playing strategy 7; in game j can be written out as,
Jii =1 ai(l,o) + T2 a%,u,o) + T2 ai(o,n + T2 ai(o,l)
Ji2 =1 C‘%,(170) + T2 a%,u,o) + T2 a%,(og) + T2 aé,(og) (A.9)

2 2 2 2
for = w11 a1 g) + T19 A7 (9 1) F T2 @7 (10) + P22 0T 01
2 2 2 2
far = w11 a3 1,0) + T12 G301y T T2 B 1,0) F T2 G20,
A crucial assumption here is that the effective average payoff is a linear composite of the

constituent games. The replicator dynamics will be given by the following set of coupled
different differential equations:

v = rul(fu + fa) — )
z12 = T12[(fu1 + fa2) — @] (A.10)
w1 = ro1[(frz + fa1) — @]
Ty = To2[(fr2 + faz) — ¢

The average fitness ¢ is given by,

¢ = z11(fu1 + fa1) + z12(fi1 + fo2) + a1 (frz + for) + 222 (fi2 + f22)
= fi1(z11 + 212) + fra(xor + 22) + for(z11 + z21) + foo (@12 + 292) (A.11)
= f11 P11 + fi2 P12 + fo1 pa1 + fa2 poo.
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The single games’ dynamics and their multi game dynamics will be the same or in other
words, an MGD can be separated back into all its SGDs if p;;, = w;; V i; in a game j, for all
N games. At times, even if this equality holds, the trajectories in the MGD space might be
different from the SGD space. Both these cases are shown in the examples in the main article.
A previous study with two player games with two strategies [5], showed that the SGDs can
be separated from their MGD. The dynamics lie on the generalized invariant manifold. [1, 6]
in the S, simplex which is given by Wy = {z € Sy | x11292 = K129} for K > 0. When
K =1,wehave W = {z € Sy | £11292 = 12721} Which is the Wright manifold. The Wright
manifold Wy [6, 1] is a population dynamic concept. The states belonging to the Wright
manifold are for the population in linkage equilibrium i.e. the games (or loci/traits, in biology)
are inherited completely independently in each generation. Thus, on this manifold, MGD can
be separated back into the SGDs of the constituent games. The attractor for a combination of
two 2-player games having two strategies each is a line £/, an evolutionarily stable set [5]. The
point where the line E intersects the Wright manifold indicates a rest point. All the trajectories
in the simplex depicting the MGD fall onto an attractor given by a line (ES set) on Wj. The
dynamics on W and the trajectories on each W were analyzed in the same study [5] using
methods used in dynamical systems to show they are qualitatively the same as on the Wright
manifold.

However, for multiple games having more than two strategies in at least one game, the
MGD cannot be separated even into a linear combination of the constituent SGDs unless they
are on W [7]. Increase in the number of games and the number of strategies increases the
dimension of MGD simplex. This high dimensional space of MGD, which would be equal
to XX, (m; — 1) (where N is the number of games and m; is the number of strategies in a
game j), is densely packed with manifolds. All the manifolds are non-intersecting while 1V
is the invariant. Even for a simplified example of 2 games each with m; and my number
of strategies the generalised invariant manifold is given by Wy = {x € A"™*™2 |z, yx;; =
Kiji xigrip V1 < 4,5 < my,1 < kI < my} where K = {Kj;;} is a set of positive
constants for which Wy is a non-empty set. When K, j; = 1, we have the Wright manifold
on which the MGD can be separated back into its SGDs. While combining two 2-player
games with three strategies [7], the evolutionarily stable set /2 would be in a four-dimensional
hyperplane [6]. So while combining many games, even if one individual game has more than
two strategies, the ES set may no longer be a line. It would be a hyperplane in the Wiy
hyperspace. Thus, it is important to know on which manifold the initial conditions are, for
only if they start from the Wright manifold W, will the dynamics be a perfect match to the
SGDs [7].

If the initial condition is not on W, if the strategies between the different games are allowed
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to recombine then the dynamics converges to 1. While the relationship between strategies
under recombination is genetically plausible, for phenotypic strategies, social learning or hor-

izontal adoption of traits could have a similar effect [8, 9].

2 Finite population

2.1 Single game dynamics

In a population of size Z consisting of strategy 1 and strategy 2 players, the probability that
one of the strategies, say 1, fixates, is given by the fixation probability p;. An individual
is chosen proportional to its fitness to reproduce an identical offspring. Another individual
is chosen randomly and discarded from the group. Therefore, the group size is kept at a
constant value Z. Fitness of a strategy s can be a linear function of its average payoff 75 i.e
fs = 1 —w + wm,. In a population that has 7 strategy 1 players, the fitnesses can be used to
calculate the transition probabilities 7" and 7T} for the number of type 1 players to increase
and decrease by one, respectively.

T _ 1f1 Z —1
E i+ (Z—i)fa Z
T (Z—i)fa i

T A+ (Z -0 Z

(A.12)

With probability 1 — 7;" — T the system does not change. Using the transition probabilities,
the fixation probability can be calculated [2, 10] to be,

1
pL = —. (A.13)
Z—1 m T
1+ Zm:l i=1 f
Since ;; = % = % ~ 1 —w(m —me) for selection intensity w < 1 i.e. weak selection.
Theref(;re, ]
p1 (A.14)

1"’251_:11 ol —w(m — )

For a d-player game, the payoffs are obtained using a hypergeometric distribution given by,

i—1 Z—1
H(k,dyi, Z) = M (A.15)

4
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Figure A.1: Fixation probability for a single individual playing strategy 1 varying with
selection intensity for a three player game having two strategies. For the game shown in
this figure, the payoff of strategy 2 is greater than strategy 1 (m > ), the fixation probability
decreases, according to equation (A.17). The results from analytics and simulations (averaged

over 10° realizations) are plotted as solid lines and solid circles, respectively.

Thus,
e (D65
™ = (Z,l) 1
R=0 Al (A.16)
d—1 Z—i1—1
o« WELD
g = 71 a2 o
k=0 (dq)
Maintaining weak selection, then from [4] we have,
w Z—1 m
L~ 5 ?m:“g; ™ — ). (A.17)

Figure A.l contains the fixation probabilities of strategy 1 with respect to varying selection

intensities for a three player game with two strategies.

2.2 Multiple game dynamics

We begin with the same example that was used to explain the combination of two d-player
games where both games have two strategies; and use the same notations for a finite population
of size Z. The population consists of individuals of four types : A}A?, AlA2, AlA? and
ALAZ. The combined dynamics results in an S, simplex as shown in Fig. A.2. We perform

pairwise comparisons for all the edges of the simplex. On a particular edge, only the two
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Figure A.2: Fixation probabilities over pure strategies. Figure shows the fixation probabil-
ities and the direction of selection between the vertices in a tetrahedron (which contains the
MGD of the two games A' and A? shown in the matrices). Here selection intensity w = 0.01
and population size Z = 100. It has been assumed that both the games have the same selection
intensity and hence the average payoffs have been added first and then the mapping (linear or
exponential mapping from payoffs to fitness) has been performed i.e. Method II (Method 1
would produce a different figure). For the edges where one of the games does not change
(e.g. Al A2 = Al A2), only one of the game (here game 2) matters and hence the fixation

probabilities are the same as if only one game.
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vertex strategies are present. Let us start with the edge containing xq; and x5 vertices. If
there are 7y, individuals playing strategy AlA?, then there are v = Z — 711 individuals
of type A}AZ2. The number of A}A? and AlAZ individuals i.e. o, and 7oy is zero. In the
individual games, the number of players adopting strategy i; in a game j is given by pj;..
Since we are looking at the edge with A A? and Al A3 individuals, we have

Pi1="11+Ye2=2

P12 = Y21 + Y22 =0 (A18)

P21 = Y11+ Y21 = Y11

P22 =2+ 722 = Z — 7.
In contrast to the binomial distribution which is used for infinite populations where the draws
can be considered independent, the hypergeometric distribution was used for sampling with-
out replacement in the case of finite populations [4, 11]. For infinite population, we used the
multinomial distribution to calculate the average payoffs for a combination of /N multiplayer
games in an infinite population size. Therefore, for finite populations, we shall use the multi-
variate hypergeometric distribution. For a population of size Z containing 71, type A} A? and
Z — 711 type A} A2 individuals, the average payoffs 7ji; for playing strategy i; in game j (in
our example, 7; € {1,2} and j € {1,2}) are

v e,

T = —z 1y %1k
wizars (@)
p11 pP12—-1
e S WO
|k|=d1—1 (dl—l)
(le—l) (p22) (A.19)
M1 = Z %aik
|k|=d2—1 (d2—1>
p21Y (p22—1
e S WD,
|k|=d2—1 (dQ—l)
In general, for N multi-strategy d-player games,
(Pjij._l) H?i i (pj:) |
= Y RPN (A.20)

(Z—l) ij,k

|k|=d;—1 dj—1

We can calculate the fitnesses using linear or exponential mapping. If w; is the intensity
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of selection in game j, then

1 — w; + wjm;;;  for linear mapping

fir, = (A.21)

W5 T3

e 7" for exponential mapping.

Thus, in the combined dynamics, the fitness (assuming it to be additive) of type A} A?Q...Af\fv

is

N
Fiisin = > Fiiy- (A.22)
j=1

If we are looking at an edge with types A} A? .. A and A} A7 .. A} | the transition prob-
ability 7.7 for type A} A7, ...A]\ to increase from v to v + 1 (and type A} A7 ...A} to be

randomly selected for death) is

YEiig..i Z—7
T+ = L2 N . (A.23)
7 fYF;:lZ'Q?)....iN + (Z - 7)Fh1h2....hN Z
Likewise, T,Y* will be
Z — ) F
T = Gty L NP (A.24)

7 ’yFiliQ.“.iN + (Z - V)Fhlhz.“.hN Z

So, for a Aj A7... Al and A} A} ..A} edge, the fixation probability p at Az .y of type
Al A2 AN s

1
1 2 N 1 2 N — . A.25
Pal A2 AN AL AR AN ' szl m T ( )
m=1 y=1 Taf
Method I
T, Fringhg...hpy :
As - = 123N Eq. (A.25) can be written as,
T+ B .
o' Zl’LQlS....ZN
1
1 2 N 1 2 N =
pAilAiQ“‘AiN’AhlAhQ"‘AhN 1+ ZZ—l m  Fhinghg...hy
m=1Lly=1" Fi ijis. .y
1
- N
1 + szl m Ej:l fjhj (A26)
m=11Iy=1 ¥ | fji;

1

~ )
14 22—1 m N+3 2501 —wi+w;mn,
m=1 v=1 N+Z§V:1 —wj+wj7rji.

J




13e  where the fitness is obtained using a linear mapping. In order to further simplify the model,
140 we consider that all games have the same selection intensity. In this case,

1
1 2 N 1 2 N —
Pal A2 AN AL AR LA 1 e (N Nw+w(SY, ))

Z—1
1 =+ Zm:l N—Nw-i—w(z:;\il W]zg)
1

- Z—1 ym 1wt (253 ) '
1+ Zmzl y=1 <1w+}t\;(zé\f_lﬁﬂj)

141 It is worth mentioning here that the assumption of having equal intensities for all games is

(A.27)

142 strong. Many times, the selection on one game may be more intense than others. These have
13 to be taken into account as it strengthens the precision of the model and Eq. (A.26) must be
144 used in these scenarios. However for the sake of our analysis, we shall assume w; = w for all
us 7 € [0, N].

146 For weak selection intensity,

1
PAl A2 AN Al A2 AN N N N
17722 N’ “Th1Thg hn 1+ Zi_zll :’1:1[1 N w{l - (21:11\[ th)}] « [1 + w{l . (ZJ:;] Jl])}]
N 1
~ Z—1 ym w N :
14+ 7:1[1 - N(Zj:1(7rjij — Tjn,))]
(A.28)
147 Eq. (A.28) can be written as,
1
PAl A2 ..AN AL A2 AN W ~~Z—1 —m N : (A.29)
b " Z - N Zam=1 ~/=1<Ej:1<7rjij - ﬂ_jhj))]
148 Following Taylor expansion and since w < 1, we get
1 w Z—1 m N
PAL A2 AN AL AZ AN Z +NZQ[E:12 2 Tji; — Tih,) (A.30)
m=1 y= =
Under neutrality (w=0) ’
149 For w = 0 and N = 1 i.e. neutrality condition while there is only one game, the above

150 equation is also equal to the classic neutral fixation probability % for single games. For NV =1

1

a

in Eq. (A.30) , we can retrieve Eq. (A.17) for a single multiplayer game i.e.

N

-1

1 w “
paran A 5t > (w1 — ). (A.31)
~~ Ly=1

Under neutrality

3
[

10
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For N = 2 Eq. (A.28) becomes,

1
Z—1 m w
L+ o T2 1= (s + m2iy) — (T1ny + Tany)]

Pal A2 Al A2 (A.32)
117 ig” TThy T ha

While looking at an edge for which, say, game 1 in both vertices has the same strategy and
thus, we need to only look at differences in one game i.e. only game 2 matters (my;, = T1p,)s

1
PAL A2 Al A2 R - ooy "
i1 igr Phy Phy 1+ me:ll N1 1— 5[(71'21'2 — 7T2h2)]
1 w Ziom (A.33)
=7+ 577 2 2 (i = ana)

m=1 i=1

We can make pairwise comparisons between all categorical types (all the edges of the Sy
simplex in containing the MGD of the two games with two strategies). Using these compar-
ative fixation probabilities we can determine the flow of the dynamics over pure strategies as
shown Fig. A.2.

Method II

If all games have the same intensity, we could also add the payoffs first and then perform the

fitness mappings, then F; ;. iy = 1 —w +w <Z;V:1 7Tjij> and Fiy nohg. hy = 1 —w +

w (Zj\le thj>. Thus, the combined fitness (of a vertex) is not just a sum of the fitnesses
of strategies used in the inherent games (in that vertex). The combined fitness is obtained
by summing the average payoffs of playing the respective strategies in the games involved in
a particular vertex and using that to calculate the fitness of that vertex. Only the payoffs of
the games that have the same selection intensity can be added together and mapped to fitness
through this method. An example of a situation where the combined effect of the payoffs for
the strategies of the games on that vertex leads to the combined fitness, would be in models of
mating and sexual selection. Numerous interactions (parenting, mating, brooding) or games
during a mating season decides the reproductive success or fitness of an individual during that
period. This combination of games is not trivial as bringing all the smaller games into one
larger game but we cannot always deconstruct the multi-game back to all the inherent single
games. The fixation probability, Eq. (A.25), in this case will be,

1

1 42 N A1 42 N = .
pAﬁAiz'”AiN’ AhlAhz"'AhN 1+ ZZ_l m 17w+w(2§\7:1 7"jhj)
m=1 L=t \ T30 ruE T, 7))

(A.34)

11



172 For weak selection intensities,

1
PAl A2 AN Al A2 AN R PaTE— N N
VRIS (1wl = (S )]+l = (2 )
1

AT (1wl — ()

(A.35)
175 and this can be further written as,

1 ’lU Z—1 m N
PAL A2 AN AL A2 AN R - ﬁ Z Z Tji; — i) (A.30)
m=1vy=1 j=1
Under neutrality (w=0)
176 If we consider two games, then Eq. (A.35) will be reduced to
1
pAl A2 Al A2 ~ . (A.37)

afi T ST T (1= w(mn, + 7ai,) — (Tamy + Tany)])
177 Here, if we look at an edge for which, say, game 1 in both vertices has the same strategy

178 (14, = T1p,), then looking at differences in game 2 is what matters. In this scenario,

1
L , (A.38)
Pal Az A A7, + 7! Ty (1= w(mai, — Tony))

179 This corresponds to equation Eq. (A.14) for a single game with two strategies ¢; and h;. This

180 can also be written as ,

Z—1 m
PAL A2, A} Ah2 Z Zg E E iy — M2hs) (A.39)
m=1 i=1

1s1 and this is similar to Eq. (A.17) for single game dynamics. We can make pairwise comparisons
1.2 between all categorical types (all the edges of the S, simplex in containing the MGD of the two
183 games with two strategies). Using these comparative fixation probabilities we can determine

1« the flow of the dynamics over pure strategies as shown Fig. A.2.

185 Difference between Method I and 11

1ss The difference between Method I and II is given by,
Z-1 m N Z-1

(5 + 7l (i, =) = (5 + 59

m=1~vy=1 j=1

S
™
NE

.@2
3
§>]

QD‘

12
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Figure A.3: Fixation probability of a single individual playing A{ A? strategy on the edge
Al A? = Al A2 varying with selection intensity for a combination of two games having
two strategies each (special case A'). For a population of Z = 10 the fixation probabilities
are normalised according to the neutral fixation probability, % = 0.1. We look at the edge
ALA? = Al A2 where Al is the same for both vertices i.e. neutral in both the vertices, and A>
is what matters. The payoffs in Game A' are zero. Since the payoff of playing strategy
2 in A? is greater than playing strategy 1 (w2 > o), the fixation probability decreases
as shown in the earlier sections of the ESM. The line labeled ‘single game’ corresponds to
single game dynamics of A2. The plots from Method I (mapping payoffs to fitnesses and then
adding the fitnesses) and Method II (adding the payoffs first, and then mapping to fitness) for
a combination of the two games A! and A2. Since 71 (= m12) = 0, results from Method II and
the SGD of A? are the same. However, Method I shows a different result. Here, MGD differs
from the SGD. Adding another game to A% modifies the dynamics. Thus, within the MGD,
the two methods of mapping from payoffs to fitness i.e. Method I and Method II differ from
each other (by Eq. A.41 shaded region). The difference is due to the different baseline payoffs
that the different mappings produce. The results from analytics and stochastic simulations
are plotted as solid lines and symbols, respectively. The simulations are averaged over 10°
realisations. Thus while looking at a combination of various games, there can be different
methods of mapping and one needs to choose a mapping method that reflects their model best

as they can bring about different results.

As N increases, the difference between the two methods becomes independent of the number
of games. For N = 2, if we look at an edge where game 1 at both vertices has the same strategy
(71, = m1p,) then game 2 is what matters. Here, the difference between Methods [ and Il is the
difference between the equations (A.39) and (A.33) which is equal to 3 [Ei_:ll :1=1 (Tr9i, —
Tong)].3- In the main text Fig. 6 shows the fixation probability p a4z, ataz (both Method

I and Method IT) with respect to varying selection intensities in the Al A%, A] A3 edge of the

13
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tetrahedron simplex that contains the multiple game dynamics for a combination of two games
with two strategies each. While this is the general case where both the games matter, Fig. A.3
is a particular case where the payoff in game A' is zero. Here, there is no difference between
Method II and SGD. However, in Method I, its results differ from SGD. Eq. A.40 becomes,

Z—1 m Z—1 m
w 1 w
E Z_ 2721—722 ( 722”21—722
m=1 y=1 m=1 y=1
(A4l)
w Z—1 m 1
=| (?[m 1;(7@1 —722)]-5) |

Thus the kind of mapping method that one chooses becomes important in multi game dynam-
ics as there are various ways of mapping payoffs to fitness especially when we remove the
assumption that the selection intensity are the same value w for all N games i.e. the value w;

would be different from one game j to another.
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Figure A.4. Two games with two strategies. The SGD of a 2-player and a 3-player game from equations (3.1) are shown in the top panel. Initial conditions of the
highlighted trajectories correspond to the ones used in the MGD. The vertices of an S, simplex (tetrahedron) denote these ‘categorical strategies’. The asterisks depict
the initial conditions (ic,, ic,, and ic) chosen to correspond to the initial conditions from the SGD. Other random initial conditions are plotted in grey. Recovering the
SGDs from the MGD, we see that pq; (playing strategy 1 in game 1, dashed lines) converges to g7 = 0.5 which is the equilibrium solution for strategy 1 in game
1. If we start above the unstable equilibrium solution for game 2, i.e. g5 = 0.27, then py; (playing strategy 1in game 2, dashed lines) converges to g5, = 0.73,
the stable equilibrium solution. For trajectories commencing below the unstable equilibrium, strategy 1 goes extinct. Comparing the recovered (dashed) dynamics to
the SGD (solid), we see that while the equilibria of the recovered dynamics are the same as that of the SGD, the trajectories do not follow the same path. This is
because the trajectories traverse a higher dimension which offers optional paths to the same equilibrium solutions. The initials conditions for (x;q, X1, X21, X27) used
in these plots are: ic; = (0.1, 0.1, 0.6, 0.2), ic, = (0.2, 0.1, 0.2, 0.5), and ic; = (0.1, 0.6, 0.1, 0.2). (Online version in colour.)
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Figure A.5. Fixation probability of a single individual playing A;A? strategy on the edge AJA2 == A1AZ, .. Paee Varying with selection intensity for a com-
bination of two games having two strategies each. For a population of Z = 10, the fixation probabilities are normalized according to the neutral fixation probability,
(1/Z) = 0.1. We look at the edge A}A% — A}A% where A" is the same for both vertices, i.e. neutral in both the vertices, and A2 is what matters. Since the payoff
of playing strategy 2 in A is greater than playing strategy 1 (5, > 77), the fixation probability decreases (see the electronic supplementary material for more
details). The line labelled ‘single game’ corresponds to A2 The plots from Method | (mapping payoffs to fitnesses and then adding the fitnesses to get the combined
fitness) and Method Il (adding the payoffs first, and then performing the payoff to fitness mapping) for a combination of the two games A’ and A* show how the
MGD is different from the SGD. Adding another game to A? modifies the dynamics. Within the MGD, the two methods of mapping from payoffs to fitness, i.c.
Methods | and Il show different results. The shaded region (calculated in the electronic supplementary material) shows this difference between the two methods
with increasing selection intensity. The results from analytics and stochastic simulations are plotted as solid lines and symbols, respectively. The simulations are
averaged over 10° realizations. (Online version in colour.)
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