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Methods 

2.3 Image post-processing: automatic 2D segmentation of lamellae – detailed description 

During post-processing the images underwent a fully automated sequence of post-processing steps 

that were part of a segmentation algorithm (Supplementary Figure S1) that had been specifically 

designed to extract individual elastic lamellae from the images  (Figures 2 and 3). All commands can 

be found in the image processing toolbox in Matlab R2016b (The Mathworks, USA).  

The first intermediate goal was to set all pixels in– and outside the vessel wall to zero. To that end the 

original image (Figure 2a) was first binarized from greyscale to black and white. Since different scans 

can have different levels of background noise, we increased the value of the binary threshold (i.e. the 

greyscale level that serves as a cut-off value to bin pixels into a value of either 0 or 1) in an iterative 

for-loop from 0 to 1 in steps of 0.01. The number of white pixels (binned into a value of 1) 

corresponding to each binary threshold was calculated and stored in an array. The optimal binary 

threshold was chosen as the threshold corresponding to the first index that was larger than the index 

corresponding to the maximum and for which the second derivative fell below a pre-defined value of 

100 (final result of this iterative process: Figure 2b). We found this indirect approach to be more robust 

than a directly hardcoded threshold, because the binary threshold that was obtained in this way 

corresponded to the binary image that had the most information (i.e., white pixels belonging to the 

wall) and the least possible noise (i.e., white pixels belonging to the background). Connected items 

smaller than 10 pixels were subsequently removed from the binary image and the image was 

morphologically closed such that the largest remaining connected item in the image was the vessel 

wall (Figure 2c). Since at this stage we were only interested in the outer contour, a succession of dilate 

and erode operations was used to remove erroneous spikes protruding from the vessel wall and a 

convex hull was computed (Figure 2d). Once the outer convex hull had been identified, its inverse could 

be subtracted from the original image to eliminate background noise (Figure 2e). A series of Boolean 

operations was then executed to identify the pixels belonging to the arterial lumen. The inverse of the 



outer hull (i.e., an image where all pixels outside the vessel were set to 1) was added to the original 

binary image and the resulting image was subsequently inverted, leaving the inner lumen as the largest 

single connected item. After filling holes in this image (Figure 2f), the best fitting filled circle was 

computed, shrunk with 2 pixels, and added to the image in order to compensate for erroneous inward-

oriented “leaks” (Figure 2g). The (inverted) outer hull and the inner convex hull were subsequently 

subtracted from the original greyscale image (Figure 2h).  

The second intermediate goal was to process the greyscale image such that it represents the 

connectivity of the lamellae. Since the goal of this step was to find the inner lamella (see further), the 

outer layers had no contribution in the post-processing. In order to expedite the process we therefore 

first removed the outer half of the aorta (Figure 3b), based on the information that was obtained 

during image pre-processing (outer convex hull in Figure 2d and approximate wall thickness in Figure 

2c). Once the input image was determined, we set out to find the optimal binary threshold (Figure 3c). 

Similar to what was done during image pre-processing (Figure 2b), the binary threshold was increased 

in an iterative for-loop from 0 to 1 in steps of 0.01. For every binary threshold the corresponding image 

was skeletonized such that each meaningful connection in the resulting graph structure was 

represented by a single line only, and the number of branch points was calculated and stored in an 

array. The optimal threshold was chosen as the value corresponding to the lowest binary threshold at 

which both the first and second derivative of the branch array were negative, which is equivalent to a 

local maximum in the number of valuable connections within the structure (final result of this iterative 

process: Figure 3d). Edge gaps with a gap size of 3-5 pixels were filled in (Figure 3d, green arrows) and 

loose edges (i.e. edges of which either one or both endpoints were not connected to any other edge) 

were removed (Figure 3d, yellow arrows).  

The third intermediate goal was to find the paths that represent the elastic lamellae. We first 

calculated the coordinates (xc, yc) of the geometric center of gravity of the outer convex hull. All pixels 

along the vertical axis (x=xc, y>yc) were subsequently set to 0 (Figure 4e, red arrows). Then, a connected 



graph was calculated in which each elastin line on the image corresponded to an edge in the graph 

(Figure 3f). The connectivity between these edges was stored in a sparse bi-directional matrix, with 

two junctions for each intersection between two edges (one junction for each direction). In the next 

step the starting and ending points of each of the three lamellae were defined as the edges closest to 

the geometric center that intersected with the pixel column left and right of the zero-column, 

respectively (figure 3f, bottom). For each lamella the shortest path along the graph from its start to its 

end point was then calculated as follows. First, the inner convex hull was eroded with 10 pixels and 

the outer boundary of the eroded hull was calculated. Then for every edge in the graph the distance 

to the eroded hull was obtained (taking the mean value for all points along that edge, Figure 3g). We 

used the eroded hull rather than the geometric center of gravity to calculate these distances because 

it makes the algorithm more robust in low-pressure cases where the artery is buckled. To every 

junction in the sparse matrix a weight was then attributed that corresponded to the average distance 

to the eroded hull of both edges belonging to that junction. These weights were subsequently used in 

a modified version of Dijkstra`s shortest path algorithm(1) (Supplementary Figure S1c). The original 

Dijkstra algorithm (Figure S1d) would define the ‘shortest path’ as the path between starting edge and 

ending edge with the lowest total accumulated weight along its junctions(1). When a detour via the 

second lamella is, however, shorter (i.e., contains less edges) than the path via the first lamella, 

Dijkstra`s algorithm will always prefer that path, even if the individual weights of junctions along the 

inner lamella are lower. That is why we modified Dijkstra`s algorithm such that it no longer yields the 

path with the lowest total accumulated weight but the path with the lowest averaged weight per 

junction (see illustrations at bottom of Figure S1c and S1d). The shortest path according to this 

modified Dijkstra algorithm (Figure 3h) was subsequently back-projected onto the original image 

(Figure 3i). As a last step, the path was filtered in order to correct for discrepancies that were 

introduced during the skeletonization step (e.g. the transition from Figure 3c to Figure 3d). For each 

pixel, the local lamellar thickness was calculated as twice the distance between the curve representing 

the segmented lamella (corresponding to the local centerline of the lamella, Figure 3i) and the inner 



lining of the binarized image (corresponding to the local inner curvature of the lamella, innermost 

pixels of Figure 3c). This local thickness array was used to smooth the lamellar path (Figure 3j). First an 

overall target thickness was calculated in order to reduce the influence of local image artefacts. Then 

all thickness values greater than the mean thickness were thresholded to the mean thickness in an 

iterative loop, which was repeated until the ratio of standard deviation to mean thickness was smaller 

than a predefined value of 20%. The mean thickness at the end of this iterative smoothing process was 

defined as the target thickness. Finally, all pixels on the lamella centerline for which the local distance 

to the inner curvature was greater than half the target thickness were pushed inward (i.e. toward the 

barycenter), such that the new distance to the inner curvature was equal to half the target thickness 

(Figure 3j). Once the lamella centerline and corresponding local thickness array had thus been 

calculated, this information was used to remove the segmented lamella from the original image. This 

yielded a new input image similar to the one shown in Figure 3b, but now with the second lamella 

being the innermost lamella (Figure 3k). Steps b to j were repeated, resulting in a segmented second 

(middle) lamella (Figure 3l). The second lamella was then removed from the original image (Figure 3m) 

and the outermost lamella was segmented (Figure 3n). Finally the outer lining of the adventitia was 

segmented from the outer convex hull. The node-to-node distance from the adventitia to the 

centerline of the outer lamella was calculated. All points on the adventitia that were located further 

from the outer lamella than the mean distance plus two standard deviations were considered to be 

image artifacts, and pushed inward such that the distance was equal to the mean distance. In a final 

step, the resulting adventitial lining was smoothed with a Savitsky-Golay filter and all segmented layers 

(outer lining of adventitia and centerline of three lamellae) were back-projected onto the original 

image (Figure 3o).  

Statistical analysis: ApoE-/- vs WT mice 

Our dataset consisted of n=6 WT mice and n=6 ApoE -/- mice. Differences between ApoE-/- and WT mice 

were analyzed at each pressure level using a two-sided student`s t-test. Tests were carried out on 

mean values, i.e. n=6 data points for each of the 18 combinations of genetic background and pressure 



level, where each data point represents the mean value of n=75 segmented images from that scan 

(with the exception of images that had been discarded). A p-value of 0.05 was considered significant 

(*). 

Results and Discussion 

Comparison between ApoE -/- and WT mice 

Earlier findings by our (2) and other (3) groups have reported an increased aortic stiffness in ApoE-/- 

mice, which is believed to be one of the factors leading to the increased susceptibility of these mice to 

plaque formation (4). Here, we did not find any statistically significant difference in diameter (Figure 

S2 a-c), straightness (Figure S2 d-f) or lamellar length (Figure S2 g-i) between ApoE -/- and WT mice at 

any pressure level. This is in line with recent publications, which have shown that there is no difference 

in carotid artery stiffness between ApoE-/- and WT mice (5, 6).  
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