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1 Convolved Multiple Output
GP

In the biomechanical model, the outputs of the
simulator correspond to measures of circumferential
strains at different locations of the LV wall and the
overall LV volume. It appears justified to assume an
inherent process governing the strains of the LV, re-
lated to the underlying cardiomechanic pump cycle.
Treating this as some latent process x we may as-
sume the outputs to be explicitly dependent on this
process:

yl(·) = f(xl(·)) + ε(·) (1)

Under this framework, modelling of this latent pro-
cess as a GP leads to a GP prior over the outputs of
the system, since GP priors are closed under linear
maps. Moreover, crosscovariance between the out-
puts is induced by the autocovariance of this under-
lying latent process, providing a dependency between
the outputs of the simulator. Alvarez and Lawrence
(2011) rely on this idea to introduce correlations be-
tween multiple outputs. Drawing on the idea of the
linear model of corregionalization (eq. 1 with f(·) a
finite linear map), they assume m independent un-
derlying latent processes modelled using GPs, xj(·),
and postulate that the output can be represented as
a convolution between a smoothing kernel Sd,j(·) and
these latent functions, subject to additive i.i.d. Gaus-
sian noise εd(q):

yl(q) =

M∑
j=1

∫
Θ

Sl,j(q − z)xj(z)dz + εd(q) (2)

where Θ is the design space of the emulator and M is
the number of latent functions. The smoothing ker-

nel, Sl,j(·) controls the influence of latent function xj
on output l, allowing unique measures of smoothness
in all outputs. The convolution operator introduces
more general mixing of the latent process than in the
LMC and the resultant process is also a GP. Resul-
tantly, they obtain covariances between the outputs:

Cov(yi(q1), yk(q2)) =

M∑
j=1

M∑
j′=1

∫
Θ

Si,j(q1 − z)∫
Θ

Sk,j′(q2 − z)Cov(xj(z), xj′(z))dz′dz (3)

+ Cov(ε(q1), ε(q2))

which is simplified under the common assumption of
mutually independent latent processes. Problemat-
ically, this method requires expensive estimation of
parameters of both the convolution kernel and the
kernel of the underlying latent process, culminating
in the inference of parameters via the likelihood func-
tion:

p(y|x, q) = N(0,Ω + Σ) (4)

where elements of Ω provide covariances between out-
puts at different design points and Σ gives the (di-
agonal) covariance matrix of the additive noise from
eq. 1. Evaluation of the likelihood is of the order
O(M3D3) for M outputs with D measurements of
each (D is the size of our design set). This incurs high
computation cost, and the computations become in-
feasible if one wishes to use the full design. Moreover,
one has to tune the number of latent processes, per-
haps using some measure of the marginal likelihood.

The MSE in parameter estimates obtained via the
method of Alvarez and Lawrence is provided in Fig-
ure 1. Here we see the increased error in our estimates
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Figure 1: Results from parameter estimation
using the multiple output method of Alvarez
and Lawrence. MSE in parameter estimates ob-
tained using a function space local GP with the
method of Alvarez and Lawrence.

of the parameters compared with the method of Conti
and O’Hagan. This may result from a lack of training
of the latent process of the GP.

2 Discussion on the global op-
timization algorithm choice

The Global Search algorithm was shown to effec-
tively search for the global optimum even in high-
dimensional spaces due to the construction of sev-
eral basins of attractions, which lead to a more thor-
ough search over the whole domain (an experimen-
tal evaluation of the effectiveness of the algorithm is
discussed in Pál et al. (2012)). The basins of attrac-
tion help excluding the domain regions which were
previously searched by a local solver and emphasize
exploration of new domain areas. This should be con-
trasted to standard multi-start algorithms which scat-
ter random starting points and blindly run multiple
local solvers. The drawback of this latter approach is
that the random initial points could be close to each
other, hence increasing the chance of finding a lo-
cal minimum. This possibility could be alleviated by
resorting to space-filling designs like Sobol sequences.
However, rather than running a local solver from each
point in the space-filling design, the construction of
basins of attraction has the advantage of substantially
reducing the number of initial points from which to
start a local solver.

Before summarizing the algorithm, we define the
concept of a basin of attraction. Consider running a
local solver from a given starting point q0, ending up
at point of local minimum q̂. The basin of attraction
associated to that local minimum is defined as the
sphere1 centred at q̂ with radius ‖q0−q̂‖. All starting

1The spherical nature of the basins of attractions is a heuris-

points falling inside the sphere are assumed to lead
to the same local minimum q̂; hence no local solver is
run from those starting points and they are discarded.

In simple terms, stage one of the Global Search al-
gorithm scatters starting points in the input space
and scores them from best to worst by evaluating
their objective function value and constraint viola-
tions. Then, an interior-point local solver (Byrd
et al., 2000) is run from each trial point, starting from
the one that was scored best (lowest function value),
and excluding points that fall into the basins of at-
traction of previously found minima. When all the
stage one points have been analyzed, stage two gen-
erates more random points and the same procedure
is run for a second time.

3 Further details on the simu-
lated data

For a fixed LV geometry and parameter bounds
[qL1 , q

U
1 ] × · · · × [qL4 , q

U
4 ], we generated n = 10, 000

points q1, . . . , qn from a Sobol sequence and solved
the PDE model using the finite elements method for
each parameter vector to obtain the corresponding
simulations m(q1), . . . ,m(qn). The inputs and corre-
sponding simulations together form the training set
which is used to build the emulator. Then, we gener-
ated extra ntest = 100 parameters by extending the
Sobol sequence and ran extra forward simulations for
each of those, in order to obtain a test set. This en-
sures that the test data are different from the trainig
data (to avoid bias) and that their corresponding pa-
rameter vectors uniformly cover the whole space (so
as to be representative).

4 Circumferential strains

The end-diastolic volume and peak diastolic segmen-
tal circumferential strains were chosen for the mea-
sured data from the cardiac MR imaging data and
the forward LV simulators, similar as in our previous
study (Gao et al., 2017). The reasons of choosing cir-
cumferential strains are that (1) our previous study
(Gao et al., 2014) has shown that the circumferential
strains can be accurately estimated from cine images
using a B-spline nonlinear registration approach com-
pared to strain MRI, i.e. DENSE sequence (Displace-
ment Encoding with Stimulated Echoes); (2) various
studies (Augustine et al., 2013) have found that the
longitudinal and radial strains estimated from cine
MR images are poorer compared to the circumfer-
ential strain using feature-tracking approaches; (3)
full 3-dimensional strain fields (circumferential, ra-
dial and longitudinal strains) could in principle be

tic assumption of the algorithm.
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acquired using MRI (Zhong et al., 2010), but are not
routinely available in the clinic yet.
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