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1. Defining fitness and drift 
 
Biological fitness is determined by the frequency at which the unit of study (alleles, traits, 
organisms, and average frequencies in populations and species) replicates itself in 
subsequent generations [1]. A unit producing more copies has higher fitness than a 
similar unit in the same environment producing less. Fitness is thus relative, changing 
with the environment and the existence of other units. For this reason, climate change 
models, sometimes proposed as a factor in Neanderthal extinction [2–4], should properly 
be classified as fitness models. Environmental shifts affecting the viability of 
Neanderthals, but not Moderns, ultimately indicate a Modern fitness advantage in the 
new environment. Upon identifying a unit replicating with increasing frequency relative 
to competitors, there are two possible explanations: 1) the unit has higher fitness, or 2) 
replication frequency is increasing due to drift, via random sampling. In the former, 
higher fitness means the unit undergoes natural and/or sexual selection more successfully 
than competitors. In the latter, fitness difference is absent, and the process is entirely 
stochastic. In life, neutral evolution (drift) is always operative as part of the landscape in 
which natural selection occurs. Rigorous theoretical modeling experiments have 
demonstrated that under both fitness and drift (due to random sampling), when units are 
competing for finite replication locations, there is eventual fixation on one type [5,6]. 
This is relevant for closely related species like Neanderthals and Moderns, exploiting 
similar niches in an environment with a finite carrying capacity. Therein lies a problem of 
equifinality, as both fitness and drift can lead to an identical end result, fixation (i.e. 
replacement). 
 
One solution to distinguish whether fitness or drift is responsible for a replacement event 
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is to determine what fitness advantage the replacing unit may have had. If one can be 
identified, fitness is the main driver – if not, the process is neutral. This is largely the path 
the Neanderthal replacement debate has taken. One problem with this approach is that 
fitness has modern cultural connotations of mental and/or physical superiority. However, 
biological fitness can be much more subtle, referring not to intelligence or physical 
prowess per se, but only to an increased probability of replication, whatever the cause. 
Small fitness advantages may be invisible archaeologically, particularly in similar 
complex organisms like Neanderthals and Moderns. A small net fitness difference in 
these cases could be the combined effect of hundreds of minute genetic features, difficult 
to identify with limited knowledge and data. This makes it all the more difficult to ascribe 
a replacement event to fitness. Likewise, ascribing a replacement event to neutral drift 
requires justifying any preconditions (such as a larger starting population and 
asymmetrical migration rate and direction) as the result of exogenous environmental 
factors rather than fitness difference. This is also difficult to prove empirically. 
Unequivocally attributing a replacement event to either a particular fitness difference or 
neutral drift can therefore be difficult. 
 

2. Individual simulation runs illustrating border tracking and incursion 
 
This section provides some additional background on measuring border tracking and 
incursion across the initial border in our simulations. Figure S2 presents an example plot 
of a single run, which starts with 33 Neanderthal bands and 67 Modern bands, and a 
Modern fitness advantage of .67. In these simulations, one band is randomly select to die 
at each time cycle. There is considerable variation in these border plots; what they have 
in common is that they are not monotonic. 
 

 
Figure S1. Example of border tracking in one replication with initial populations at 33 
Neanderthal bands and 67 Modern bands, and Modern fitness of .67.  
 
As noted in the main paper, such border tracking enables identification of incursions 
across the initial border between Neanderthals and Moderns. Our incursion index 
computes the sum of Neanderthal incursion distances across the initial border, at each 
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time cycle. This integrates time frequencies and spatial distance spent across the border. 
Two examples of replicate incursions are presented in Figures S2 and S3, with the initial 
border represented by a horizontal red line. Both example simulations start with 25 
Neanderthal bands and 75 Modern bands. The plot in Figure S2 is based on neutral drift, 
with a Modern fitness of .5; that in Figure S3 uses a Modern fitness of .6. Notice that 
there are considerably more and deeper Neanderthal incursions under neutral drift than 
with Modern fitness of .6.  
 

 
Figure S2. Example of border incursions in one replication with initially 75 Modern 
bands and 25 Neanderthal bands, with neutral drift (Modern fitness of .5). In this case, 
the Neanderthal incursion index registers 612,486 before eventual Modern fixation.  
 

 
Figure S3. Example of border incursions in one replication with initially 75 Modern 
bands and 25 Neanderthal bands, with Modern fitness of .6. In this replication, the 
Neanderthal incursion index registers only 343 before Modern fixation.  
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Results in the main paper focus on a larger, more systematic experiment using these 
techniques to study paths to replacement.  
 

3. Speciation, competitive exclusion, interbreeding, and genetic assimilation 
 
Much of the Neanderthal replacement debate currently revolves around issues of 
speciation, regardless of whether this is made explicit. To some, the implication of 
interbreeding and Neanderthal genetic presence in modern Europeans is that the issue of 
replacement is misguided; Neanderthals and Moderns are populations of a single species. 
Therefore, it is useful to examine the grounds on which Neanderthals are classified as a 
separate species.  
 
Speciation is a critical process in biological evolution. Although defining species is 
somewhat arbitrary, the biological features that classification seeks to understand are real 
[7]. Biological realities underlying species classification in sexually reproducing 
organisms are concerned with clusters of genotypic and phenotypic similarity, referred to 
as clades – groupings that include a common ancestor and all the descendants of that 
ancestor. These clusters arise out of accumulated mutations during a sufficiently long 
period of reproductive isolation, typically the result of geographic separation [1]. 
Members of the same species are more similar to each other within these clusters than to 
members of another species. Standard deviations of genotypic and phenotypic 
characteristics are greater between than within two species. A great deal of research has 
identified morphological and genetic traits held in common amongst Neanderthals that lie 
outside the scope of modern human variation. For morphological traits, see [8–14]. For 
genetics, see [15–23].  
 
It is important to note that the capacity for viable sexual reproduction is no longer used to 
define species in the biological sciences [1,7]. Wolves and coyotes are well-studied cases, 
among many others, of viable inter-species reproduction [24]. Applying contemporary, 
cladistic biological standards, it is reasonable to classify Neanderthals and Moderns as 
two different, albeit very closely related, species. Because species-level fitness can be 
calculated as the average replication frequency across species members, the probability 
that this average would be identical for two different species exploiting similar niches 
(Neanderthals and Moderns) seems very low. As our models demonstrate, only a slight 
deviation from equal fitness is sufficient to result in reliable and rapid species 
replacement.  
 
Fitness-based competitive exclusion leading to replacement by an invasive, and 
sometimes very closely related species is common and well-observed in the biological 
sciences [25–31]. Furthermore, competitive exclusion-based extinction between same-
genus species frequently includes hybridization (interbreeding) and genetic 
pollution/swamping [31,32]. In other words, the presence of interbreeding does not, by 
itself, indicate pure drift. The assertion that Neanderthals are ancestors of modern 
humans, or are themselves modern humans, rather than an extinct branch of the same 
genus, is incorrect if made on the grounds of interbreeding alone. Neanderthals are 
ancestral and/or not extinct insofar as some of their genetic material persists, but this is 
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inconsistent with consensus definitions of ancestral species and extinction in biology. A 
fitness difference leading to a combination of competitive exclusion and genetic pollution 
via hybridization would place Neanderthal replacement in the company of a multitude of 
well-observed species replacement events. Explicitly, an assimilation hypothesis for 
Neanderthal replacement [33,34], resulting in a small amount of Neanderthal DNA in the 
subsequent population, bears the signatures of replacement via differential fitness. 
 

4. Array based models 
 
To examine our assumption of a relatively narrow zone of contact between Neanderthals 
and Moderns, we adapt our SBS model from a one dimensional vector to a two 
dimensional array. This is similar to two dimensional stepping-stone models, which have 
also been studied by probability theorists as voter models on lattices. We keep the total 
number of bands constant at 100, but vary how widely these are distributed. Specifically, 
we consider simulation widths of 1 (which reduces to our original model), 2, 5, and 10 (a 
square lattice). Finally, we keep fitness constant between the two types. 
 
Figure S4 shows that simulation width has no effect on fixation probability. At drift, 
which species reaches fixation is once again a coin flip. However, Figure S5 shows that 
when the zone of contact between Neanderthals and Moderns is wider, fixation may 
occur much more rapidly than in a one dimensional vector. This is consistent with classic 
voter model findings, which suggest that fixation time should scale with 𝑛!  in one 
dimensional cases, but with 𝑛 ln(𝑛) in square lattices (the 10 width case), where 𝑛 is the 
total number of bands [35]. 
 
Finally, we show how the incursion index changes with simulation width in Figure S6. 
Note that, because we keep the number of bands constant, increasing simulation width 
results in a corresponding decrease in simulation depth (i.e., the depth of Neanderthal and 
Modern territory). However, bands presumably occupy the same geographical range in 
all cases. We therefore normalize the incursion index by dividing it by simulation depth. 
Doing so, we find that increasing simulation width increases the amount of Neanderthal 
incursions into territory initially occupied by Moderns. 
 
In sum, fixation probability is invariant to assumptions about the relative width of the 
zone of contact between Neanderthals and Moderns. However, replacement may occur 
more quickly than in our one dimensional model when this zone is wide. Nevertheless, 
the number of Neanderthal incursions into Modern territory is equal to or greater than our 
original model, where incursions were already substantial under drift. As a result, while a 
wide array can achieve drift-based replacement in a realistic timeframe, the uncertainty of 
fixation and level of Neanderthal incursions into Modern territory under these conditions 
continues to present a poor fit with current archaeological evidence. 
 
Regarding the most appropriate array width for stepping-stone models, we believe that a 
vector or very narrow array is most consistent with geographical constraints. In modeling 
total replacement/extinction over a long time span, it is important that we include the full 
depth of species’ populations and territories, and not just their zone of interaction. At any 
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given snapshot in time, only a small percentage of total global Modern and Neanderthal 
populations would be interacting or in close physical proximity. To achieve replacement, 
a species must completely penetrate the full depth of the replaced species’ initial territory. 
The estimated walking distance from the supposed origin of Moderns, up through the 
Levant and into Europe to Gibraltar is about 15,148 km. The widest part of Europe on 
that route is only about 946 km. Thus, the length is about .96 and the width in Europe is 
about .04 of the sum of those distances. Moreover, the Levant section contains two very 
narrow passageways. Neanderthal sites in the Levant (at Amud and Tabun, in 
contemporary Israel) are close to the Mediterranean coast. And the land passage between 
the Dead and Mediterranean Seas at contemporary Istanbul is only about 37 km. Perhaps 
the most suitable model would be a vector that is replicated numerous times to reach 
various different European locations at different times. Our vector simulation is 
replicated many times in each experimental condition. It is easy to imagine that empirical 
analogs could have reached different destinations across Europe with varying departure 
and arrival times over the 8 to 10 thousand years of inter-species contact.  
 

 
Figure S4. Effect of simulation width on Modern fixation. Increased width has no effect 
on fixation probability. Error bars reflect 95% confidence intervals. 
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Figure S5. Effect of simulation width on number of cycles to fixation. When the zone of 
contact between Neanderthals  and Moderns is wider, fixation is faster. Error bars reflect 
95% confidence intervals. 
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Figure S6. Effect of simulation width on incursion index, normalized by dividing by 
simulation depth. Increased width leads to greater incursion of territory initially 
belonging to Moderns. Error bars reflect 95% confidence intervals. 
 
  



5. Analytical predictions using random walks

Our stochastic simulation model represents a series of discrete agents (i.e. bands) on a one-
dimensional vector. However, because bands are represented solely as members of a given type
(Moderns or Neanderthals), a meaningful change only occurs when a band is replaced by a band
of another type. Although all band deaths and replacements are recorded, only movement of
the border between Modern and Neanderthal populations is significant for species replacement.
As a result, replacement can be represented as a random walk of this border. Throughout this
paper, we plot simulation results against analytical predictions made on the basis of such random
walks. To move between these analytical predictions and our SBS simulations, we need only
convert time scales. We do so by observing that the border moves at each cycle with probability
equal to death rate, r = 0.01.

In this section, we reinterpret group-level competition between Neanderthals (N ) and Mod-
erns (M ) as a one-dimensional random walk of the border between the two types. Let ωN be
the fitness of Neanderthals and ωM be the fitness of Moderns, where the fitness of each type
falls between 0 and 1, and ωN + ωM = 1. Next, let λ be the total number of bands and b
the position of the border between Neanderthals and Moderns, such that 0 ≤ b ≤ λ. We take
b = 0 as an absorbing state where Neanderthals have gone extinct and Moderns have reached
fixation, and define Pr(M) as the probability of reaching this state. This leaves b = λ as an
absorbing state where Moderns have gone extinct and Neanderthals have reached fixation, and
we define Pr(N) as the probability of reaching this state. Note that the position of the border
b also represents the number of Neanderthal bands in the population. The number of Modern
bands is therefore λ− b.

This section is divided into four parts. In the first, we derive the probability of a given type
reaching fixation, which is equivalent to the common derivation of the probability of reaching
a given absorbing state in a random walk. In the second part, we derive the expected number of
steps to fixation, which is equivalent to the common derivation of the expected number of steps
to absorption in a random walk. In the third part, we derive the expected amount of incursion by
Neanderthals into Modern territory following initial contact, which corresponds to the incursion
index discussed in the main text. Finally, in the fourth part, we derive the expected amount of
time Neanderthals spend in Modern territory, given that Moderns reach fixation.

Probability of fixation

Let Pr(N |b) be the probability of Neanderthals reaching fixation, given that the border
(or total number of Neanderthal bands) is b. At any b, Pr(N |b) is given by the product of
Pr(N |b + 1) and the probability of the border moving to the right (ωN ), plus the product of
Pr(N |b− 1) and the probability of the border moving to the left (ωM = 1− ωN ). This yields a
recurrence relation

Pr(N |b) = (1− ωN)Pr(N |b− 1) + ωNPr(N |b+ 1), (S1)
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which has a known family of solutions:

Pr(N |b) = c1

(
1

ωN
− 1

)b
+ c2. (S2)

Neanderthals have gone extinct when b = 0, so Pr(N |0) = 0. Conversely, Neanderthals have
reached fixation when b = λ, so Pr(N |λ) = 1. Substituting these values into Equation S2
creates a system of equations. Solving it gives the fixation probability:

Pr(N |b) =

(
1− ωN
ωN

)b
− 1(

1− ωN
ωN

)λ
− 1

. (S3)

We can make several observations. First, this function is sigmoidal over 0 ≤ ωN ≤ 1. It has a
single discontinuity at ωN = 1/2, where fitness of the two types is equal, and so we must derive
a separate solution for the case of drift. Finally, as the total number of bands increases, so too
does the function’s steepness (growth rate between asymptotes).

The probability of fixation at drift is given by setting wN = 1/2 in the initial recurrence
relation (Equation S1), and then repeating the derivation:

Pr(N |b) = b

λ
. (S4)

Because the probability of Moderns reaching fixation is 1− Pr(N |b), we observe that, at drift,
the probability of a given type reaching fixation is equal to the initial proportion of bands of that
type.

Steps to fixation

Let s(b) be the expected number of steps (movements of the border) needed to reach fixation,
when starting from position b. At any given b, s(b) is given by the recurrence relation

s(b) = 1 + (1− ωN)s(b− 1) + ωNs(b+ 1), (S5)

where 1 represents the single step needed to move from this position, ωM = 1 − ωN is the
probability of moving to the left, s(b−1) is the expected number of steps to fixation from b−1,
ωN is the probability of moving to the right, and s(b + 1) is the expected number of steps to
fixation from b+ 1. This recurrence has a known family of solutions:

s(b) =
b

1− 2ωN
+

ωN
(1− 2ωN)2

+ c1

(
1− ωN
ωN

)b
+ c2. (S6)
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No more steps can be taken when a type reaches fixation, so s(0) = 0 and s(λ) = 0. Substituting
these values into Equation S6 creates a system of equations. Solving it gives the expected
number of steps:

s(b) =
b

1− 2ωN
−
(

λ

1− 2ωN

)
(
1− ωN
ωN

)b
− 1(

1− ωN
ωN

)λ
− 1

 . (S7)

How does this value grow with the total number of bands? There are two cases to consider. In
the first, Modern fitness exceeds Neanderthal fitness, and so the fitness ratio (1− ωN)/ωN > 1.
This ratio gets very large when raised to the power of b or λ, and so we can safely ignore the
constant −1 in the bracketed term. That term then simplifies to[

ωN
1− ωN

]λ−b
, (S8)

which rapidly approaches 0 as the number of Modern bands (λ− b) gets large. As a result, only
the first term in Equation S7 remains

s(b) ∼ b

1− 2ωN
, (S9)

and so the expected number of steps grows linearly with b, the initial number of Neanderthal
bands. In the second case, Neanderthal fitness exceeds Modern fitness, which means that the
fitness ratio (1−ωN)/ωN < 1. When raised to the power of b or λ, this ratio rapidly approaches
0, causing the bracketed term to become −1/− 1 = 1. Removing it from Equation S7 and then
simplifying gives

s(b) ∼ λ− b
2ωN − 1

, (S10)

and so the expected number of steps grows linearly with λ − b, the inital number of Modern
bands. If we assume that the initial population ratio (b/λ) remains constant, then in both cases
the expected to number of steps grows linearly with the total number of bands.

To find the expected number of steps at drift, we set wN = 1/2 in the initial recurrence
relation (Equation S5), and then repeat the derivation:

s(b) = b(λ− b). (S11)

We find that, at pure drift, the expected number of steps is a product of the number of bands of
each type. Assuming an initially equal number of Neanderthal and Modern bands, the expected
time to fixation is the square of one half the total number of bands. Note that, for both fitness
and drift, converting from steps to simulation cycles merely requires dividing s(b) by the death
rate r.

11



Incursion amount

One empirically-relevant measure we propose to help distinguish between drift and fitness
explanations is the amount of incursion into Modern territory that occurs once the two types
meet. An incursion is characterized by both its depth into Modern territory and its duration.
We calculate the total amount of incursion as a sum of each incursion’s depth multiplied by its
duration.

We begin by deriving v(x|M), the expected number of times that a position x in Modern
territory will be visited by Neanderthals from a starting position b, given that Moderns reach
fixation. If we assume that x is visited exactly once before Modern fixation is achieved, then
we can make a few observations. First, b < x, because Neanderthals occupy the left side of the
vector while Moderns occupy the right. Second, x must be reached before 0, because 0 is an
absorbing state where Moderns have reached fixation. Third, after reaching x, the border must
move left and never return to x, because moving right would imply crossing x a second time to
reach 0. The probability of reaching x from b exactly once before Modern fixation is therefore

Pr(x|b)ωMPr(x|x− 1)

Pr(M |b)
, (S12)

where Pr(x|b) is the probability of reaching x from b before being absorbed by state 0, ωM
is the probability of moving left from position x, Pr(x|x − 1) is the probability of reaching
absorbing state 0 from x − 1 without ever returning to x, and Pr(M |b) is the probability of
Modern fixation. The number of times we expect to visit x once before Modern fixation is
equal to the above probability:

v1(x|M) =
Pr(x|b)ωMPr(x|x− 1)

Pr(M |b)
. (S13)

If the border reaches position x twice before Modern fixation, then one of two additional
things must happen before x is left for good: Either the border must move left to x − 1 (with
probability ωM ), and end up back at x before Modern fixation; or the border must move right
to x + 1 (with probability ωN ), and end up back at x without Neanderthals reaching fixation.
Therefore, once we are at x, the probability of reaching x again is:

ωMPr(x|x− 1) + ωNPr(x|x+ 1). (S14)

Taken together, the probability of reaching x from b exactly twice before Modern fixation is

Pr(x|b)ωMPr(x|x− 1)
(
ωMPr(x|x− 1) + ωNPr(x|x+ 1)

)
Pr(M |b)

, (S15)

which is just a product of the probability of reaching x once before Modern fixation (Equa-
tion S12) and the probability of returning to x once after having reached it (Equation S14). To
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get the expected number of visits to x as a result of passing through x exactly twice, we multiply
the probability given in Equation S15 by the number of visits, two:

v2(x|M) =
2Pr(x|b)ωMPr(x|x− 1)

(
ωMPr(x|x− 1) + ωNPr(x|x+ 1)

)
Pr(M |b)

. (S16)

From here, it is apparent that we can generalize this reasoning to any number of visits to x.
The probability of reaching x exactly i times before Modern fixation is

Pr(x|b)ωMPr(x|x− 1)
(
ωMPr(x|x− 1) + ωNPr(x|x+ 1)

)i−1
Pr(M |b)

, (S17)

and the expected number of visits to x as a result of passing through x exactly i times is:

vi(x|M) =
iPr(x|b)ωMPr(x|x− 1)

(
ωMPr(x|x− 1) + ωNPr(x|x+ 1)

)i−1
Pr(M |b)

. (S18)

We can describe the total expected number of visits to state x using an infinite sum over i, where
we add up the expected number of visits to x for every i:

v(x|M) =
∞∑
i=1

vi(x|M)

=
∞∑
i=1

iPr(x|b)ωMPr(x|x− 1)
(
ωMPr(x|x− 1) + ωNPr(x|x+ 1)

)i−1
Pr(M |b)

.

(S19)

This expression can be rewritten as

v(x|M) =
Pr(x|b)ωMPr(x|x− 1)

Pr(M |b)

∞∑
i=0

(i+ 1)
(
ωMPr(x|x− 1) + ωNPr(x|x+ 1)

)i
, (S20)

where the infinite sum has a nice solution:

1(
1− ωMPr(x|x− 1)− ωNPr(x|x+ 1)

)2 . (S21)

The expected number of visits to x from b, before Moderns reach fixation, is therefore:

v(x|M) =
Pr(x|b)ωMPr(x|x− 1)

Pr(M |b)
(
1− ωMPr(x|x− 1)− ωNPr(x|x+ 1)

)2 . (S22)

To put Equation S22 in a usable form, we next solve for all of the conditional probabilities.
For notational convenience, let γ represent the fitness ratio (1 − ωN)/ωN . First, we can infer
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from our solution for fixation probability (Equation S3) that the probability of reaching x from
b is:

Pr(x|b) = γb − 1

γx − 1
. (S23)

Similarly, the probability of reaching x from x− 1, without being absorbed by state 0, is

Pr(x|x− 1) =
γx−1 − 1

γx − 1
, (S24)

which entails that the probability of reaching state 0 from x− 1, without ever revisiting x, is:

Pr(x|x− 1) = 1− γx−1 − 1

γx − 1
. (S25)

Finally, the probability of reaching x from x+ 1, without being absorbed by state λ, is:

Pr(x|x+ 1) = 1− γ − 1

γλ−x − 1
. (S26)

Replacing these solutions (as well as the probability of Modern fixation) into Equation S22 and
simplifying gives:

v(x|M) =
(γ + 1)(γb − 1)(γλ − γx)2

γx(γ − 1)(γλ − 1)(γλ − γb)
. (S27)

Finally, we can combine the expected number of visits to each state, v(x|M), with the depth
of every such incursion into Modern territory, d(x). Note that the depth of an incursion is simply
the distance between x and the initial border b:

d(x) = x− b. (S28)

Multiplying these values together gives the expected amount of incursion across the initial bor-
der b:

a(b) =
λ−1∑
x=b+1

v(x|M)d(x). (S29)

Replacing in Equations S27 and S28, and then simplifying gives:

a(b) =
(γ + 1)(γb − 1)

(γ − 1)(γλ − 1)(γλ − γb)

λ−1∑
x=b+1

(γλ − γx)2(x− b)
γx

. (S30)

Solving the finite sum gives

γ2λ+1 + γ2b+1 − γλ+b((γ − 1)2(λ− b)2 + 2γ)

γb(γ − 1)2
, (S31)

14



which we replace back into Equation S30, and then simplify to arrive at our final expression:

a(b) =
(γ + 1)(γb − 1)

(
γλ+b((γ − 1)2(λ− b)2 + 2γ)− γ2λ+1 − γ2b+1

)
γb(γ − 1)3(γλ − 1)(γb − γλ)

. (S32)

However, when fitness of the two types is equal, this expression is undefined.
To get a(b) in the case of drift, we substitute ωN = ωM = 1/2 into Equation S22, along

with conditional probabilities inferred from Equation S4. This yields

v(x|M) =
2b(λ− x)2

λ(λ− b)
, (S33)

and:

a(b) =
b(λ− b)(λ− b− 1)(λ− b+ 1)

6λ
. (S34)

Note that, for both fitness and drift, converting from incursion amount to incursion index in the
simulation requires dividing a(b) by the death rate r.

Time spent in Modern territory

Let t(x|M) be the expected number of steps Neanderthals will spend at position x in Modern
territory, given that Moderns reach fixation and that the initial border is at b. Note that when the
border moves right to x, all territory left of x is still occupied by Neanderthals. The amount of
time spent by Neanderthals at x is therefore not equal to the number of visits to x, v(x|M), but
rather to the total number of visits to any position right of x (including x):

t(x|M) =
λ−1∑
i=x

v(i|M) (S35)

Applying our solution for v(x|M) from Equation S27, solving the finite sum, and then simpli-
fying gives:

t(x|M) =
(γb − 1)((γ + 1)(γ2λ+1 − γ2x)− γλ+x(γ2 − 1)(2λ− 2x+ 1))

γx(γλ − 1)(γλ − γb)(γ − 1)2
(S36)

However, this expression is undefined when fitness of the two types is equal, and so we must
repeat this process for drift by applying Equation S33 instead. Doing so, solving the finite sum,
and then simplifying gives:

t(x|M) =
b(λ− x)(λ− x+ 1)(2λ− 2x+ 1)

3λ(λ− b)
. (S37)

Once again, converting from steps to simulation cycles requires dividing t(x|M) by the death
rate r.
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