
Supplementary Online Material

This Supplementary Online Material (SOM) consists of five sections: S.1 Parameter descriptions and estimation;
S.2 Model derivation; S.3 Threshold conditions for population growth; S.4 Numerical methods; and S.5 The
follow-up treatment window.

S.1 Parameter descriptions and estimation

Descriptions of all parameters are provided in Table S.1. The model (equations (1) and (2) in the main text)
does not explicitly consider inflow and outflow of larval stages from the salmon netpens due to ocean currents,
but we note that outflow likely exceeds inflow, such that the net e↵ect is loss of larval lice from the salmon
netpens. We assume that larvae that enter and leave the netpens have identical levels of development, such that
larval net flow can be understood as being incorporated into two parameters: the mortality/loss rate of nauplii,
µP (t), is considered to incorporate the net outflow of nauplii, such that if ocean currents are strong then µP (t)
is larger, and the per fish attachment rate of copepodids, ◆, is considered to incorporate the net outflow of
copepodids, such that if ocean currents are strong, then ◆ is smaller. This approach to modelling larval flow
is oversimplistic, but a more realistic formulation would require a substantial increase in model complexity,
additional data, and it is not clear that this additional realism is necessary for our study.

Temperature and salinity are variable between sites, but the functions that describe the dependence of the
model parameters on temperature, T , and salinity (measured in practical salinity units, psu), S, are the same
across sites. The equations for life history parameters as a function of temperature and salinity were estimated
by fitting curves to the laboratory results and the assumed functional forms were based on previous studies
(Stien et al., 2005; Rittenhouse et al., 2016; Samsing et al., 2016).

Our model parameterization focuses on the Lepeophtheirus salmonis species of salmon lice. L. salmonis consists
of two subspecies: salmonis, found in the Atlantic ocean, and oncorhynchi, found in the Pacific Ocean. These
subspecies are genetically di↵erent, although, less so than di↵erent species (Skern-Mauritzen et al., 2014), and
are capable of reproducing, but do not do so due to geographic barriers. It is not known whether these genetic
di↵erences at the subspecies level a↵ect life history parameters (Elmoslemany et al., 2015), but a prior study
(Stien et al., 2005) aggregates data from both subspecies. It is not possible to fully parameterize our model for
one subspecies because not all relationships have been studied for both subspecies. Laboratory data that used
the salmonis (black symbols) and oncorhynchi (blue symbols) subspecies are indicated in Figure S.1 and data
from both subspecies of L. salmonis were combined to estimate the statistical fits.

Laboratory data for Caligus rogercresseyi, the salmon louse species that is dominant in Chile (Costello, 2006),
are shown in green in Figure S.1. The C. rogercresseyi data was not considered for the statistical fits, but is
shown for comparison. C. rogercresseyi do not have a pre-adult stage, but our modelling framework (equations
(1) and (2)) aggregates both the chalimi and pre-adult stages into the attached, non-reproductive C(t)-stage,
and so our model is an appropriate framework for C. rogercresseyi.

For all parameters related to egg hatching, v(T, S), ⌘(T ), and ✏(T ), the data from Samsing et al. (2016 -
crosses) may be most reliable since adult female lice were allowed to remain attached to their host salmonid
during this study, whereas adult female salmon lice were removed from their host fish and transported to a
laboratory for all other studies (Johnson and Albright, 1991; Boxaspen and Naess, 2000; Heutch et al., 2000;
Bravo, 2010).
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Table S.1 Description of model parameters.

Parameters Description Dimensions
◆ Attachment rate time�1number�1

f Number of fish per farm number
⌘(t) Eggs per clutch unitless
✏(t) Egg string production rate time�1

v(t) Proportion of eggs that produce viable nauplii unitless
µP (t) Mortality rate of nauplii time�1

µI(t) Net loss rate of copepodids time�1

µC(t) Mortality rate of chalimi and pre-adults time�1

µA(t) Mortality rate of adult females time�1

�P (t) The maturation rate of nauplii time�1

�C(t) The maturation rate of chalimi and pre-adults time�1

⌧P (t) The time taken to complete the nauplii stage for time
nauplii that mature to the copepodid stage at time, t

⌧C(t) The time taken to complete the chalimi and time
pre-adult stages for louse that mature to the adult
female stage at time, t

The viability of salmon lice eggs depends on both temperature and salinity, and is,

v(T, S) =

8
<

:

�2.2579 + 0.46 log(T ) + 0.64 log(S) if 0  v  1,
1 if v > 1,
0 if v < 0.

(S.1)

The data that describes the e↵ect of temperature is from L. salmonis salmonis (Figure S.1a), while the data
describing the e↵ect of salinity is from L. salmonis oncorhynchi (Figure S.1b). Published data are insu�cient to
determine a temperature by salinity interaction since only fixed salinity is considered for a range of temperatures
(Samsing et al., 2016), and fixed temperature is considered for a range of salinity (Johnson and Albright,
1991).

The number of eggs per string is,

⌘(T ) = exp(5.6� 0.43 log(T/10)� 0.78 log(T/10)2), (S.2)

which is the fit described by Samsing et al. (2016) for L. salmonis salmonis (Figure S.1c). Data from Boxaspen
and Naess (2000 - open squares) were excluded as they were not consistent with Samsing et al. (2016 - crosses).
Bravo (2010) reports 31 eggs per string for C. rogercresseyi during an experiment where temperatures ranged
from 10 - 18.5�C, and explains that this lower number of eggs per string may be because C. rogercresseyi is
three times smaller than L. salmonis. Costello (2006) states that the number of eggs per string ranges from 100
to 1000 and depends on the time of year, host species, and louse species and size, also stating that 500 eggs
per female louse is likely an underestimate for louse attached to farmed salmonids.

The rate of egg string production is,

✏(T ) = min(exp(�1.86 + 1.30 log(T/10)), 1/45.1), (S.3)

where the minimum is taken to prevent extrapolation beyond the minimum temperature observed experimen-
tally. The fit is based on data which are a mix of the two L. salmonis subspecies, but these data from di↵erent
subspecies agree quite closely (Figure S.1d, blue and black symbols). Data for C. rogercresseyi (Figure S.1d,
green squares containing an ⇥, Montory et al. 2018) was not considered for the model fit, but shows that egg
strings are produced more quickly for C. rogercresseyi at 5-10�C as compared to L. salmonis.
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The maturation rate of nauplii to copepodids is,

�P (T ) = min(exp(�1.22 + 1.38 log(T/10)), 1/23.5). (S.4)

The minimum is taken to prevent extrapolation below 2�C, the lowest temperature for which nauplii maturation
experiments were performed. The function �P (T ) was also estimated in Stien et al. (2005), however, the fit
described in equation (S.4) also considers more recent data collected by Samsing et al. (2016, Figure S.1e,
crosses). While some data for the oncorhynchi subspecies (Figure S.1e, blue squares, Johnson and Albright
1991) are included in the model fit, these data are consistent with the data for the salmonis subspecies (Figure
S.1e, black symbols). The maturation rate of nauplii for C. rogercresseyi (Figure S.1e, green squares with an
⇥, Montory et al. 2018) is also consistent with L. salmonis (black symbols).

For the rate of maturation from chalimus to adult female, we use the fitted values of Stien et al. (2005),

�C(T ) = min(0.00022 (T + 1.94)2 , 0.0217), (S.5)

where the minimum is taken to prevent extrapolation below 8�C, the lowest temperature for which chalimi
maturation rates were measured (Figure 4c in Stien et al. 2005; Figure S.1e in this SOM). The data measuring
the maturation rate of chalimi for C. rogercresseyi (Figure S.1e, green circles with a +, Gonzalez and Carvajal
2003) are consistent with the fitted relationship from Figure 4c in Stien et al. 2005, which relies on data from
laboratory experiments that used L. salmonis salmonis.

The mortality rates of nauplii, copepodid, chalimus and adults are assumed to be a function of salinity. For
nauplii,

µP (S) = max(2.16, exp(13.64� 0.515S)), (S.6)

(see Figure S.1f). This function assumes that nauplii survive half a day at low salinities and becomes very large
for high salinities consistent with the observation that all nauplii survived at 34 psu (Samsing et al., 2016).
Samsing et al.’s observation is from L. salmonis salmonis, but all other observations are for the oncorhynchi

subspecies.

For copepodids there is some evidence of a relationship between temperature and mortality in C. rogercresseyi

(Figure S.1g, Montory et al. 2018). These data are shown to comprehensively report all data we assembled to
parameterize our model, but our model assumes no temperature-mortality relationship because no studies for
L. salmonis found this relationship.

For copepodids, the salinity-mortality relationship that we assume is,

µI(S) = exp(�0.0232� 0.059S), (S.7)

(see Figure S.1h). These data are a mix of the two L. salmonis subspecies. The data from Bricknell et al. (2006,
open diamonds) was excluded from the fit because these data were not consistent with Tucker et al. (2002, solid
circles) and Samsing et al. (2016, crosses) at 32 psu. For lower salinities, other than Bricknell et al. (2006, open
diamonds) which was excluded, the only available data is from Johnson and Albright (1991, blue solid square)
and these data are for the oncorhynchi subspecies. For C. rogercresseyi, data from Montory et al. (2018) shows
that mortality rates are low (Figure S.1h, green square with an ⇥) relative to L. salmonis at 34 psu.

Based on Connors et al. 2008 (Figure S.1h, blue inverted triangles), the relationship between salinity and the
mortality rate for the parasitic salmon lice stages is,

µC(S) = µA(S) = min(exp(�4.12� 0.124S), 24/1963). (S.8)

The experiments of Connors et al. (2008) did not distinguish between the mortality rates of chalimi and adult
salmon lice and so we set µC(S) = µA(S). In addition, the highest salinity considered by Connors et al. (2008)
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was 28 psu at which salmon lice survived 1963 hours: the salinity in salmon aquaculture pens at our sites may
approach 35 psu, and to prevent extrapolation of the mortality function beyond what was observed we set a
lower bound on the per capita mortality rate at 24/1963 lice per day. The estimates of µA(S) for C. rogercresseyi
(Figure S.1h, green squares containing a triangle) are from fitting an exponential decay function to the adult
survival data in Table 1 of Bravo et al. (2008), however, these data are for adult sea lice removed from a host
fish with subsequent survival monitored for 24 hours, while Connors et al.’s methodology considers parasitic
L. salmonis oncorhynchi attached to pink Oncorhynchus gorbuscha and chum O. keta salmon monitored for
> 1963 hours. Therefore, the Connors et al. (2008) data was considered more accurate. Nonetheless, Caligus
elogatus are more sensitive to salinity than either L. salmonis or C. rogercresseyi as Landsberg et al. (1991)
found that after 20 minutes at 8.2 psu none of the C. elogatus which had been attached to red drum (Sciaenops
ocellatus) were still alive. In contrast, after 30 mins at 10 psu, 95-100% of C. rogercresseyi were still alive,
with this percentage dropping to 15-45% after 24 hours (Bravo et al., 2008). Furthermore, the experiments of
Connors et al. (2008) suggest that at 8.2 psu, 50% of adult L. salmonis will still be alive after 7 days.

Laboratory experiments have investigated the relationship between temperature and the copepodid attach-
ment rate, ◆, however no clear relationship was demonstrated (Figure S.1j). Bricknell et al. (2006) reports a
relationship between salinity and the number of copepodids attached to salmon, however, the data describing
natural mortality during this experiment are insu�cient to allow us to estimate ◆. We also expect that ocean
currents may have a strong e↵ect on copepodid attachment rates and these e↵ects may be more important
than temperature and salinity.

Only the BCB site contained su�cient data to estimate the number of fish on a farm, f , and the copepodid
attachment rate, ◆. Our mathematical model assumes a constant number of fish and no chemotherapeutic
treatments and the BCB site satisfies these assumptions between March 3, 2003 to January 4, 2004. To estimate
f , we calculated the mean number of fish on the BCB farm during the aforementioned period (506,737). During
this same time period, we used data describing the number of L. salmonis oncorhynchi chalimi, pre-adults,
and adult females, and performed maximum likelihood assuming a normal distribution of error to estimate
the attachment rate with seasonality, ◆ = 2.1 ⇥ 10�9 (Figure S.1j,k, solid line), and ignoring seasonality, ◆ as
2.4⇥ 10�9 (Figure S.1j,k, dashed line), by considering only the average temperature (a = 8.3�C).
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Fig. S.1 Published laboratory studies describe the relationship between life history parameters and temper-
ature and salinity. We fitted functions (lines) to data from published laboratory studies (symbols) with Lepeophtheirus
salmonis salmonis (black) and L. salmonis oncorhynchi (blue). Data from published laboratory studies with Caligus roger-
cresseyi are shown with green symbols: these data are for comparison and were not used for model fits. Black symbols (L.
salmonis salmonis): Samsing et al. 2016 - crosses; Heutch et al. 2000 - open squares; Boxaspen and Naess 2000 - solid triangles;
Tucker 2002 - solid circles; Johanessen 1978 - open circles; Wootten et al. 1982 - open triangles; and Bricknell et al. 2006 - open
diamonds. Blue symbols (L. salmonis oncorhynchi): Johnson and Albright 1991 - solid squares; Connors et al. 2008 - open
inverted triangles; and Marty et al. 2010 - astericks. Green symbols: Montory et al. 2018 - square with ⇥; Bravo et al. 2008
- square with triangle; and Gonzalez and Carvajal 2003 - circle with + . Full details of the model parameterization and the
equations are found in Section S.1.
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S.1.1 Local adaptation

In Table S.2, we list all the data sources for the parameterization of each of the functions equations (S.1) -
(S.8), as well as the origin of the salmon lice and the approximate year of the experiment. This is pertinent
information to assess any bias that could arise due to local adaptation since our analyses apply these parameter
estimates worldwide. We investigate local adaptation directly for the nauplius maturation rate, �P (T ), because
salmon lice of varied geographic origins contribute to this parameter estimate. In Figure S.2, we consider the
source of origin of the L. salmonis in relation to local temperatures and the fitted �P (T ) curve. We consider
salmon lice ‘adapted’ if the temperature of the laboratory experiment (Figure S.2, the horizontal position of the
symbols) is within the temperature range for the region of origin for the salmon lice (Figure S.2, the horizontal
range of the bolded portion of the curve), and visa versa for ‘not adapted’. Firstly, we note that adapted and
not adapted salmon lice have recorded near identical number of days in the nauplius stage prior to maturation,
for example, in British Columbia salmon lice are not adapted at 15�C, but mature after the same number of
days as lice form Norway which are adapted at this temperature. Secondly, the experiments are not performed
at extreme temperates beyond the natural ranges that the salmon lice are adapted to: only lice originating from
Norway have been exposed to very cold temperatures during experiments, and in our model, only populations
from Norway (and Atlantic Canada where source populations would also be adapted to cold temperatures) are
simulated at these low temperatures. Therefore, the data used to parameterize �P (T ) do not suggest that local
adaptation is biasing our results.
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Fig. S.2 Local adaptation in L. salmonis does not invalidate our parameter estimates. We consider the origin
of L. salmonis in relation to experimental data describing the number of days in the nauplii stage until maturation. We
consider laboratory experiments where L. salmonis originate from a) Scotland (green symbols), b) the east coast of Vancouver
Island, British Columbia (blue symbols), and c) Southwest Norway (green symbols). The temperatures for these experiments is
compared to the range of sea surface temperatures from a nearby region (bold coloured portion of the curve), which corresponds
to: a) Northern Ireland (IM4), b) Broughton Archipelago, British Columbia (BCB), and c) Lista, Norway (NLI). The fitted
1/�P (T ) curve is shown in black. The experiments are performed at temperatures close to the local temperatures experienced
by the salmon lice. Salmon lice exposed to temperatures outside the range they are adapted to record similar values to adapted
salmon lice exposed to the same temperatures. The symbols are green: Tucker 2002 - solid circles and Wootten et al. 1982 -
open triangles; blue: Johnson and Albright 1991 - solid squares; and red: Samsing et al. 2016 - crosses; Johanessen 1978 - open
circles and Boxaspen and Naess 2000 - solid triangles.
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Table S.2 The source of all data used to parameterize functions of temperature and salinity. All data are for
Lepeophtheirus salmonis for the subspecies salmonis (no underline) and oncorhynchi (underline). Definitions of the parameter
symbols are provided in Table S.1. Origin describes the place of origin for the salmon lice used for the experiments. The year
is the publication year, unless the year of the experiment is specified (denoted with *). Range is the range of temperature or
salinity values over which measurements are taken. For Boxaspen and Naess (2000), the origin of the salmon lice was not stated,
but the text suggested the origin was Norway (denoted with **).

Parameter Origin Year Range (�C or psu) Reference
v(T ) SW coast Norway 2015* [3,20] Samsing et al. (2016)
⌘(T ) SW coast Norway 2015* [3,20] Samsing et al. (2016)
✏(T ) E coast Vancouver Island, Canada 1991 [5,15] Johnson and Albright (1991)

SW coast Norway 2015* [3,20] Samsing et al. (2016)
Norway? 2000 [2,10] Boxaspen and Naess (2000)
W coast Norway 2002 [7.2,12.2] Heutch et al. (2000)
W coast Scotland 2002 8.3 Tucker (2002)

�P (T ) E coast Vancouver Island, Canada 1991 [5,15] Johnson and Albright (1991)
SW coast Norway 2015* [5,15] Samsing et al. (2016)
Norway⇤⇤ 2000 [2,10] Boxaspen and Naess (2000)
W coast Scotland 2002 8.3 Tucker (2002)
Norway/sea water aquaria at 9 and 11�C 1978 [9.2,19] Johanessen (1978)
Scotland? 1982 12�C Wootten et al. (1982)

�C(T ) W coast Norway 1996 [9,10] Grimnes and Jakobsen (1996)
N Norway 1997* 9.7 Bjorn et al. (1998)
Reared at 7.5�C/W coast Norway? 2000 7-10 variable Finstad et al. (2001)
W coast Scotland 2002 8.3 Tucker (2002)

v(S) E coast Vancouver Island, Canada 1991 [10,25] Johnson and Albright (1991)
µP (S) E coast Vancouver Island, Canada 1991 [20,30] Johnson and Albright (1991)

SW coast Norway 2015* 34 Samsing et al. (2016)
µI(S) E coast Vancouver Island, Canada 1991 [15,30] Johnson and Albright (1991)

SW coast Norway 2015* 34 Samsing et al. (2016)
W coast Scotland 2002 [32.8,33.3] Tucker (2002)

µC(S) Broughton Archipelago, Canada 2006* [0,28] Connors et al. (2008)
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S.1.2 Temperature and salinity

We assume that temperature and salinity are seasonal and described by,

T (t) = a+ b1 sin(2⇡t/365) + b2 cos(2⇡t/365),

S(t) = c+ d1 sin(2⇡t/365) + d2 cos(2⇡t/365),
(S.9)

where a is the mean sea surface temperature in degrees Celcius (�C), c, is the mean salinity in psu, b1 and
b2 a↵ect the magnitude and timing of annual temperature changes, and d1 and d2 a↵ect the magnitude and
timing of annual salinity changes. For the BCB and NL sites, the salinity data was not seasonal since fitting the
d1 and d2 coe�cients did not improve the proportion of the variance explained (R2) by more than 0.02, and so
d1 and d2 were set to zero at these sites. For all the sites in Canada, both temperature and salinity data were
available, but for the sites in Chile, Ireland, and Norway only temperature data was available; here we assume
a constant salinity of 31 psu, which was the mean salinity for all sites with available data, but excluding the NL
site where salinity was very low. To facilitate comparisons with the Northern Hemisphere sites, the temperate
data from Region X, Chile was shifted by 182.5 days (Figure 1).

Temperature and salinity data as shown in Figure 1 were compiled from several sources as described be-
low.

CH: Finfish farm near Puerto Montt, Region X, Chile Data consists of sea surface temperatures
recorded from June 2000 to February 2001 (Bravo, 2003). This was the only southern hemisphere site and data
was shifted by 182.5 days to enable comparisons with other sites. No salinity was available for this region, so
our analyses assume a constant salinity of 31 psu, which is the average salinity reported for the BCB, BCC,
BCV, NS and NB sites.

IM3: Weather buoy west of Ireland Mean monthly temperature recorded from 2003-2013 at the M3
weather buoy west of Ireland (Dabrowski et al., 2016). No salinity data was available for this region, so our
analyses assume a constant salinity of 31 psu.

IM4: Weather buoy west of Ireland Mean monthly temperature recorded from 2003-2013 at the M4
weather buoy west of Ireland (Dabrowski et al., 2016). No salinity was available for this region, so our analyses
assume a constant salinity of 31 psu.

BCB: Finfish farm in the Broughton Archipelago, British Columbia, Canada Temperature and
salinity data is from farm 24 in Marty et al. (2010) collected Jan 1, 2001 - Nov 1, 2007. Salinity at this site is
consistent with an ‘oceanic’ site as described by Groner et al. (2016).

BCC: Lighthouse on the Central Coast of British Columbia, Canada Mean monthly temperature and
salinity (1954-2011) recorded at the McInnes Island lighthouse. Data is from Figure 3 in Brewer-Dalton et al.
(2015).

BCV: Lighthouses on the west coast of Vancouver Island, BC. Mean monthly temperature and salinity
(1935-2012) recorded at the Amphitrite Point and Kains Island lighthouses. Data is from Figure 2 in Brewer-
Dalton et al. (2015).

NB: Hydrographic station in the mouth of the Bay of Fundy, NB. Mean monthly temperature and
salinity (1971-2000) recorded at the Prince 5 hydrographic station. Data is from Figures 25 and 28 in Brewer-
Dalton et al. (2015).

NS: Hydrographic station located o↵ Halifax, Nova Scotia, Canada. Mean monthly temperature and
salinity (1971-2000) recorded at the Station 2 hydrographic station located o↵ Halifax, Nova Scotia. Data is
from Figures 25 and 28 in Brewer-Dalton et al. (2015).
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NL: Hermitage Bay-Bay d’Espoir, Newfoundland, Canada. Mean monthly temperature is from Figure
8 of Department of Fisheries and Oceans (2016). Monthly salinity was provided by the Department of Fisheries
and Oceans (see Acknowledgements), but similar data is shown in Figure 18 in Brewer-Dalton et al. (2015).
Salinity data with no associated depth was removed and only measurements taken between for 0-5m were
included in the analysis. These salinity data were collected between 1994 and 2009.

NIN: Meterological station in Ingøy, Norway. Mean temperature measured every 14 days at a metero-
logical station since 1942. Data is from Figure 1 in Samsing et al. (2016). No salinity data was available for
this region, so our analyses assume a constant salinity of 31 psu.

NLI: Meterological station in Lista, Norway. Mean temperature measured every 14 days at a meterolog-
ical station since 1942. Data is from Figure 1 in Samsing et al. (2016). No salinity data was available for this
region, so our analyses assume a constant salinity of 31 psu.

Table S.3 Site specific temperature and salinity parameter estimates. Parameters are described in equations (S.9):
notably, a is the mean temperature and c is the mean salinity. Where the inclusion of d1 and d2 improves R2 by less than 0.02,
this is indicated by * and parentheses indicate that these values were set to zero for the analyses. Where parameters cannot be
calculated due to unavailable data this is indicated by -.

Location a b1 b2 c d1 d2
CH 12.0 -0.9 -1.2 - - -
IM3 13.0 -1.5 -2.4 - - -
IM4 12.2 -1.1 -2.0 - - -
BCB 8.3 -0.8 -0.7 31.7 (0.7)* (-0.4)*
BCC 9.7 -2.1 -2.8 30.2 0.3 -0.2
BCV 10.4 -1.8 -2.2 29.9 -0.5 -1.2
NS 6.7 -6.0 -2.3 30.8 0.4 -0.1
NB 6.7 -4.9 -3.8 31.9 -0.6 0.5
NL 6.0 -4.8 -2.5 20.0 (-1.9)* (-7.3)*
NIN 6.5 -1.9 -1.8 - - -
NLI 9.3 -4.1 -5.3 - - -

S.2 Model derivation

Here we derive the mathematical model describing salmon lice dynamics (equations (1) and (2)). This derivation
is provided in Rittenhouse et al. (2016), but in this section we provide some additional details, which will be
useful for some readers. One minor di↵erence between our model and that of Rittenhouse et al. (2016) is
that our model has the number of eggs per string, ⌘(t), and the egg string production rate, ✏(t) depend on
time.

Our mathematical model for salmon lice population dynamics incorporates a temperature-dependent matura-
tion delay and salinity-dependent mortality rates. We note that temperature and salinity are time-dependent.
Let MP (t) be the maturation rate of nauplii, and MC(t) be the maturation rate of chalimi/pre-adults. Assuming
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a 1:1 sex ratio, 1
2MC(t) is the maturation rate of chalimi/pre-adults to the adult female stage. Then,

dP (t)
dt

=⌘(t)✏(t)v(t)A(t)�MP (t)� µP (t)P (t),

dI(t)
dt

=MP (t)� ◆fI(t)� µI(t)I(t),

dC(t)
dt

=◆fI(t)�MC(t)� µC(t)C(t),

dA(t)
dt

=
1
2
MC(t)� µA(t)A(t),

(S.10)

where the variables P (t), I(t), C(t) and A(t) are each salmon lice stage. All parameters are defined in Table
S.1. To derive a model with time-delayed maturation after a threshold level of development is completed, we
follow the model derived in Nisbet and Gurney (1983). Let q be the development level of salmon lice such that
q increases at a temperature-dependent rate �x(T (t)) = �x(t) where x = P or C. Suppose q = qP = 0 at the
start of stage P , q = qI at the transition from P to I, q = qC at the transition from I to C, and q = qA at
the transition from C to A. Let ⇢(q, t) be the density of salmon lice with development level q at time t. Then
MP (t) = �P (t)⇢(qI , t), MC(t) = �C(t)⇢(qA, t).

Let J(q, t) be the flux, in the direction of increasing q, of salmon lice with development level q at time t. Then
we have the equations (see, e.g., Kot 2001),

@⇢(q, t)
@t

= �@J(q, t)
@q

� µP (t)⇢(q, t), q 2 [qP , qI ] (S.11)

and,
@⇢(q, t)
@t

= �@J(q, t)
@q

� µC(t)⇢(q, t), q 2 [qC , qA]. (S.12)

Since J(q, t) = ⇢(q, t)�x(t), with x = P,C, we have

@⇢(q, t)
@t

= � @
@q

[⇢(q, t)�P (t)]� µP (t)⇢(q, t) q 2 [qP , qI ] (S.13)

and,
@⇢(q, t)
@t

= � @
@q

[⇢(q, t)�C(t)]� µC(t)⇢(q, t) q 2 [qC , qA]. (S.14)

For the P state, system (S.13) has the boundary condition

⇢(qP , t) =
⌘(t)✏(t)v(t)A(t)

�P (t)
.

To solve system (S.13) with this boundary condition, we introduce a new variable

⇠ = h(t) := qP +

Z t

0
�P (s)ds.

Let h�1(⇠) be the inverse function of h(t), and define

⇢̂(q, ⇠) = ⇢(q, h�1(⇠)), µ̂P (⇠) = µP (h
�1(⇠)), �̂P (⇠) = �P (h

�1(⇠)).
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Given (S.13), we then have
@⇢̂(q, ⇠)
@⇠

= �@⇢̂(q, ⇠)
@q

� µ̂P (⇠)
�̂P (⇠)

⇢̂(q, ⇠). (S.15)

This equation is identical in form to the standard von Foerster equation (see Nisbet and Gurney 1982). Let
V (s) = ⇢̂(s+ q � ⇠, s). It follows from (S.15) that

dV (s)
ds

= � µ̂P (s)
�̂P (s)

V (s).

Since ⇠ � (q � qP )  ⇠, we have

V (⇠) = V (⇠ � (q � qP ))e
�

R ⇠
⇠�(q�qP )

µ̂P (s)

�̂P (s)
ds
,

and hence,

⇢̂(q, ⇠) = ⇢̂(qP , ⇠ � q + qP )e
�

R ⇠
⇠�q+qP

µ̂P (s)

�̂P (s)
ds
.

Define ⌧P (q, t) to be the time taken to grow from development level qP to level q by salmon lice who arrive at
development level q at time t. Since dq

dt = �P (t) for q 2 [qI , qP ], it follows that

q � qP =

Z t

t�⌧P (q,t)
�P (s)ds, q 2 [qP , qI ], (S.16)

and hence,

h(t� ⌧P (q, t)) = h(t)�
Z t

t�⌧P (q,t)
�P (s)ds = h(t)� (q � qP ).

By the change of variable s = h(↵), we then see that

Z ⇠

⇠�q+qP

µ̂P (s)
�̂P (s)

ds =

Z t

t�⌧P (q,t)
µP (↵)d↵.

It follows that
⇢(q, t) =⇢̂(q, h(t))

=⇢(qP , t� ⌧P (q, t))e
�

R t
t�⌧P (q,t) µP (↵)d↵

=
⌘(t� ⌧P (q, t))✏(t� ⌧P (q, t))v(t� ⌧P (q, t))A(t� ⌧P (q, t))

�P (t� ⌧P (q, t))
�P (t).

where �P (t) = e
�

R t
t�⌧P (q,t) µP (↵)d↵

. Denote ⌧P (t) = ⌧P (qI , t), then we have

�P (t)⇢(qI , t) = ⌘(t� ⌧P (t))✏(t� ⌧P (t))v(t� ⌧P (t))A(t� ⌧P (t))
�P (t)

�P (t� ⌧P (t))
�P (t),

= MP (t). (S.17)

Substituting equation (S.17) into (S.10), we then have the dP (t)
dt and dI(t)

dt equations in the system (1) in the
main text. By similar arguments, we can obtain,

MC(t) = �C(t)⇢(qA, t) = ◆fI(t� ⌧C(t))(1� ⌧ 0C(t))e
�

R t
t�⌧C (t) µC(↵)d↵

,

which when substituted into (S.10) gives the dC(t)
dt and dA(t)

dt equations in system (1) in the main text.
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We note that the maturation rates into the I(t) and A(t) stages (MP (t) and MC(t)), do not depend on the
abundance of the preceding stages (P (t) and C(t)). For delay di↵erential equation models, it is not always
necessary to specify the dynamics of all stages, for example see Gurney et al. (1980), whereby the model
(equation 6 in Gurney et al. 1980) describes the change in only the mature adult fly population. The parameter
TD is the time to reach the mature adult stage from an egg, such that the stage occurring between the egg
and the mature adult stage (pupae) has been omitted from the model specification due to the assumption of
time delayed maturation. For our model (equations 1), we include the dP/dt and dC/dt equations because we
report results related to these quantities, however, the dP/dt and dC/dt equations do not a↵ect the model
dynamics.

Letting q = qI in (S.16) we get,

qI � qP =

Z t

t�⌧P (t)
�P (s)ds. (S.18)

Taking the derivative with respect to t on both sides of (S.18) we obtain,

1� ⌧ 0P (t) =
�P (t)

�P (t� ⌧P (t))
,

which is the d⌧P (t)
dt equation appearing in (2) in the main text. Define ⌧C(t) to be the time taken to grow

from development level qC to level qA by salmon lice who arrive at development level qA at time t. We then
have,

qA � qC =

Z t

t�⌧C(t)
�C(s)ds. (S.19)

Taking the derivative with respect to t on both sides of (S.19) we have

1� ⌧ 0C(t) =
�C(t)

�C(t� ⌧C(t))
, (S.20)

which is the d⌧C(t)
dt equation appearing in (2) in the main text. By virtue of (S.18) and (S.19), it easily follows

that if �x(t) is a periodic function, then so is ⌧x(t) with the same period (x = P or C).

S.3 Threshold dynamics

In this section, we study the global dynamics of system (1) and (2). First, we will use the theory recently

developed in Zhao (2017) to derive the basic reproduction ratio R0. Since the dP (t)
dt and dC(t)

dt equations of
system (1) are decoupled from the other equations, it su�ces to study the following system:

dI(t)
dt

= �a11(t)I(t) + a12(t)A(t� ⌧P (t)),

dA(t)
dt

= a21(t)I(t� ⌧C(t))� a22(t)A(t),

(S.21)

where a11(t) = ◆f + µI(t), a21(t) =
1
2f

�C(t)
�C(t�⌧C(t))�C(t), a22(t) = µA(t), and

a12(t) = ⌘(t)✏(t)v(t�⌧P (t)) �P (t)
�P (t�⌧P (t))�P (t). Let ⌧̂ = max{maxt2[0,!] ⌧P (t),maxt2[0,!] ⌧C(t)}, C = C([�⌧̂ , 0],R2),

C+ = C([�⌧̂ , 0],R2
+). Then (C,C+) is an ordered Banach space equipped with the maximum norm and the

positive cone C+. For any given continuous function v = (v1, v2) : [�⌧̂ ,�) ! R2 with � > 0, we define vt 2 C

12



by
vt(✓) = (v1(t+ ✓), v2(t+ ✓)), 8✓ 2 [�⌧̂ , 0]

for any t 2 [0,�). Let F : R ! L(C,R2) be a map and V (t) be a continuous 2⇥ 2 matrix function on R defined
as follows:

F (t)' =


a12(t)'2(�⌧P (t))
a21(t)'1(�⌧C(t))

�
, V (t) =


a11(t) 0

0 a22(t)

�
.

Then the internal evolution of the compartments I and A can be expressed by

du(t)
dt

= �V (t)u(t).

Let �(t, s), t � s, be the evolution matrix of the above linear system. That is, �(t, s) satisfies

@
@t
�(t, s) = �V (t)�(t, s), 8t � s,

and
�(s, s) = I, 8s 2 R,

where I is the 2⇥ 2 identity matrix. It then easily follows that

�(t, s) =

"
e�

R t
s a11(r)dr 0

0 e�
R t
s a22(r)dr

#
.

Let C! be the ordered Banach space of all continuous and !-periodic functions from R to R2, which is equipped
with the maximum norm and the positive cone C+

! := {v 2 C! : v(t) � 0, 8t 2 R}. Suppose that v 2 C! is
the initial distribution of copepodid and adult female individuals. Then for any given s � 0, F (t � s)vt�s is
the distribution of o↵spring (copepodids and adult females) at time t� s, which is produced by the individuals
who were introduced over the time interval [t� s� ⌧̂ , t� s]. Then �(t, t� s)F (t� s)vt�s is the distribution of
those individuals who newly entered the copepodid or adult female compartments at time t� s and remain in
the compartments at time t. It follows that

Z 1

0
�(t, t� s)F (t� s)vt�sds =

Z 1

0
�(t, t� s)F (t� s)v(t� s+ ·)ds

is the cumulative distribution of new copepodids and adult females at time t produced by all the copepodids
and adult females introduced at all times prior to t.

Define a linear operator L : C! ! C! by

[Lv](t) =

Z 1

0
�(t, t� s)F (t� s)v(t� s+ ·)ds, 8t 2 R, v 2 C!.

Following Zhao (2017), we define R0 = r(L), the spectral radius of L. Let P̂ (t) be the solution maps of system
(S.21) on C, that is, P̂ (t)' = yt('), t � 0, where y(t,') is the unique solution of (S.21) with y0 = ' 2 C. Then
P̂ := P̂ (!) is the Poincaré map associated with linear system (S.21). Let r(P̂ ) be the spectral radius of P̂ . In
light of Zhao (2017, Theorem 2.1), we have the following observation.

Lemma 1 R0 � 1 has the same sign as r(P̂ )� 1.
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By Hale (1993, Theorem 6.1.1) and Smith (1995, Theorem 5.2.1), we obtain the following result for linear
system (S.21).

Lemma 2 For any ' 2 C+
, system (S.21) has a unique solution y(t,') with y0 = ', and y(t,') � 0 for all

t � 0.

Let
⌦ := C([�⌧C(0), 0],R+)⇥ C([�⌧P (0), 0],R+).

Then we further have the following result.

Lemma 3 For any ' 2 ⌦, system (S.21) has a unique solution z(t,') with z0 = ', and zt(') := (z1t('), z2t(')) 2
⌦ for all t � 0.

Proof Let ⌧̄ = min{mint2[0,!] ⌧P (t),mint2[0,!] ⌧C(t)}. For any t 2 [0, ⌧̄ ], since t�⌧P (t) and t�⌧C(t) are strictly
increasing in t, we have

�⌧x(0) = 0� ⌧x(0)  t� ⌧x(t)  ⌧̄ � ⌧x(⌧̄)  ⌧̄ � ⌧̄ = 0, x = P,C,

and hence,
z1(t� ⌧C(t)) = '1(t� ⌧C(t)), z2(t� ⌧P (t)) = '2(t� ⌧P (t)).

Therefore, we have the following ordinary di↵erential equations for t 2 [0, ⌧̄ ]:

dz1(t)
dt

= ⌘(t� ⌧P (t))✏(t� ⌧P (t))v(t� ⌧P (t))'2(t� ⌧P (t))(1� ⌧ 0P (t))e
�

R t
t�⌧P (t) µP (s)ds � (◆f + µI(t))z1(t),

dz2(t)
dt

=
1
2
◆f'1(t� ⌧C(t))(1� ⌧ 0C(t))e

�
R t
t�⌧C (t) µC(s)ds � µA(t)z2(t).

Given ' 2 ⌦, the solution (z1(t), z2(t)) of the above system exists for t 2 [0, ⌧̄ ]. In other words, we have
obtained values of  1(✓) = z1(✓) for ✓ 2 [�⌧C(0), ⌧̄ ] and  2(✓) = z2(✓) for ✓ 2 [�⌧P (0), ⌧̄ ].

For any t 2 [⌧̄ , 2⌧̄ ], we have

�⌧x(0) = 0� ⌧x(0)  ⌧̄ � ⌧x(⌧̄)  t� ⌧x(t)  2⌧̄ � ⌧x(2⌧̄)  2⌧̄ � ⌧̄ = ⌧̄ , x = P,C,

and hence, z1(t� ⌧C(t)) =  1(t� ⌧C(t)), z2(t� ⌧P (t)) =  2(t� ⌧P (t)). Solving the following system of ordinary
di↵erential equations for t 2 [⌧̄ , 2⌧̄ ] with z1(⌧̄) =  1(⌧̄) and z2(⌧̄) =  2(⌧̄):

dz1(t)
dt

= ⌘(t� ⌧P (t))✏(t� ⌧P (t))v(t� ⌧P (t)) 2(t� ⌧P (t))(1� ⌧ 0P (t))e
�

R t
t�⌧P (t) µP (s)ds � (◆f + µI(t))z1(t),

dz2(t)
dt

=
1
2
◆f 1(t� ⌧C(t))(1� ⌧ 0C(t))e

�
R t
t�⌧C (t) µC(s)ds � µA(t)z2(t),

we then get the solution (z1(t), z2(t)) on [⌧̄ , 2⌧̄ ]. Repeating this procedure for t 2 [2⌧̄ , 3⌧̄ ], [3⌧̄ , 4⌧̄ ],..., it then fol-
lows that for any ' 2 ⌦, system (S.21) has a unique solution z(t,') with z0 = ' and zt(') = (z1t('), z2t(')) 2
⌦ for all t � 0.

Remark 1 By the uniqueness of solutions in Lemmas 2 and 3, it follows that for any  2 C+ and � 2 ⌦ with
 1(✓) = �1(✓) for all ✓ 2 [�⌧C(0), 0] and  2(✓) = �2(✓) for all ✓ 2 [�⌧P (0), 0], we have y(t, ) = z(t,�), 8t � 0,
where y(t, ) and z(t,�) are solutions of system (S.21) satisfying y0 =  and z0 = �, respectively.
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Let P (t) be the solution maps of system (S.21) on ⌦, that is, P (t)' = zt('), t � 0, where z(t,') is the unique
solution of system (S.21) with z0 = ' 2 ⌦. By the arguments similar to those in Lou and Zhao (2017, Lemma
3.5), we have the following result.

Lemma 4 P (t) : ⌦ ! ⌦ is an !-periodic semiflow in the sense that (i) P (0) = I; (ii) P (t+!) = P (t) �P (!),
8t � 0; (iii) P (t)' is continuous in (t,') 2 [0,1)⇥⌦.

Let P be the Poincaré map of the linear system (S.21) on the space ⌦, and r(P ) be its spectral radius. Then
we have the following threshold result for system (S.21).

Lemma 5 The following statements are valid:

(i) If r(P )  1, then limt!1(I(t,'), A(t,')) = (0, 0) for any ' 2 ⌦.

(ii) If r(P ) > 1, then limt!1(I(t,'), A(t,')) = (1,1) for any ' 2 ⌦ \ {0}.

Proof For any given ', 2 ⌦ with ' �  , let ū(t) = u(t,') and u(t) = u(t, ) be the unique solutions of
system (S.21) with u0 = ' and u0 =  , respectively. Let ⌧̄ = min{mint2[0,!] ⌧P (t),mint2[0,!] ⌧C(t)}.

Since for any t 2 [0, ⌧̄ ],

�⌧x(0) = 0� ⌧x(0)  t� ⌧x(t)  ⌧̄ � ⌧x(⌧̄)  ⌧̄ � ⌧̄ = 0, x = P,C,

we have ū1(t� ⌧C(t)) = '1(t� ⌧C(t)), u1(t� ⌧C(t)) =  1(t� ⌧C(t)), ū2(t� ⌧P (t)) = '2(t� ⌧P (t)) and u2(t�
⌧P (t)) =  2(t�⌧P (t)) for all t 2 [0, ⌧̄ ], and hence, ū1(t�⌧C(t)) � u1(t�⌧C(t)) and ū2(t�⌧P (t)) � u2(t�⌧P (t))
for all t 2 [0, ⌧̄ ]. In view of ū(0) = '(0) �  (0) = u(0), the comparison theorem for cooperative ordinary
di↵erential systems implies that ū(t) � u(t) for all t 2 [0, ⌧̄ ]. Repeating this procedure for t 2 [⌧̄ , 2⌧̄ ], [2⌧̄ , 3⌧̄ ], ...,
it follows that u(t,') � u(t, ) for all t 2 [0,1). This implies that P (t) : ⌦ ! ⌦ is monotone for each t � 0.
Next we show that the solution map P (t) : ⌦ ! ⌦ is eventually strongly monotone. Let ', 2 ⌦ satisfy
' >  . Denote u(t,') = (ȳ1(t), ȳ2(t)) and u(t, ) = (y1(t), y2(t)). Without loss of generality, we assume that
'1 >  1.

Since 1� ⌧ 0C(t) > 0, there exists a unique solution to the equation t� ⌧C(t) = 0. Denote the unique solution of
t� ⌧C(t) = 0 as t̄, i.e., t̄� ⌧C(t̄) = 0.

Claim 1. There exists t0 2 [0, t̄] such that ȳ2(t) > y2(t), 8t � t0.

We first prove that ȳ2(t0) > y2(t0) for some t0 2 [0, t̄]. Otherwise, we have ȳ2(t) = y2(t), 8t 2 [0, t̄], and hence,
dȳ2(t)

dt = dy2(t)
dt , 8t 2 (0, t̄). Thus, we have

1
2
◆f(1� ⌧ 0C(t))e

�
R t
t�⌧C (t) µC(s)ds

[ȳ1(t� ⌧C(t))� y1(t� ⌧C(t))] = 0, 8t 2 [0, t̄]. (S.22)

It follows that ȳ1(t� ⌧C(t)) = y1(t� ⌧C(t)) for all t 2 [0, t̄], that is, '1(✓) =  1(✓) for all ✓ 2 [�⌧C(0), 0], which
contradicts the assumption that '1 >  1.

Let

g1(t, y) :=
1
2
◆f(1� ⌧ 0C(t))e

�
R t
t�⌧C (t) µC(s)ds

y1(t� ⌧C(t))� µA(t)y.

Since
dȳ2(t)
dt

=
1
2
◆f(1� ⌧ 0C(t))e

�
R t
t�⌧C (t) µC(s)ds

ȳ1(t� ⌧C(t))� µA(t)ȳ2(t)

� 1
2
◆f(1� ⌧ 0C(t))e

�
R t
t�⌧C (t) µC(s)ds

y1(t� ⌧C(t))� µA(t)ȳ2(t)

= g1(t, ȳ2(t)),
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we have
dȳ2(t)
dt

� g1(t, ȳ2(t)) � 0 =
dy2(t)
dt

� g1(t, y2(t)), 8t � t0.

Since ȳ2(t0) > y2(t0), the comparison theorem for ordinary di↵erential equations (Theorem 4, Walter 1997)
implies that ȳ2(t) > y2(t), 8t � t0.

Denote the unique solution to t� ⌧P (t) = t0 as t̃.

Claim 2. ȳ1(t) > y1(t), 8t > t̃.

Let

g2(t, y) := ⌘(t� ⌧P (t))✏(t� ⌧P (t))v(t� ⌧P (t))(1� ⌧ 0P (t))e
�

R t
t�⌧P (t) µP (s)ds

y2(t� ⌧P (t))� (◆f + µI(t))y.

Then we have

dȳ1(t)
dt

= ⌘(t� ⌧P (t))✏(t� ⌧P (t))v(t� ⌧P (t))(1� ⌧ 0P (t))e
�

R t
t�⌧P (t) µP (s)ds

ȳ2(t� ⌧P (t))� (◆f + µI(t))ȳ1(t)

> ⌘(t� ⌧P (t))✏(t� ⌧P (t))v(t� ⌧P (t))(1� ⌧ 0P (t))e
�

R t
t�⌧P (t) µP (s)ds

y2(t� ⌧P (t))� (◆f + µI(t))ȳ1(t)

= g2(t, ȳ1(t)), 8t � t̃,

and hence,
dȳ1(t)
dt

� g2(t, ȳ1(t)) > 0 =
dy1(t)
dt

� g2(t, y1(t)), 8t � t̃.

Since ȳ1(t̃) � y1(t̃), it follows from Walter (1997, Theorem 4) that ȳ1(t) > y1(t), 8t > t̃.

In view of Claims 1 and 2, we obtain

(ȳ1(t), ȳ2(t)) � (y1(t), y2(t)), 8t > t⇤ := max{t̄, t̃}.

It follows that
(ȳ1t, ȳ2t) � (y1t, y2t), 8t > t⇤ + ⌧P (0) + ⌧C(0).

This shows that P (t) : ⌦ ! ⌦ is strongly monotone for any t > t⇤ + ⌧P (0) + ⌧C(0). It follows from Hale
(1993, Theorem 3.6.1) that the linear operator P (t) is compact on ⌦. Choose an integer n0 such that n0! >
t⇤ + ⌧P (0) + ⌧C(0). Since Pn0 = P (n0!), Liang and Zhao (2007, Lemma 3.1) implies that r(P ) is a simple
eigenvalue of P having a strongly positive eigenvector, and the modulus of any other eigenvalue is less than
r(P ). It then follows from Wang and Zhao (2017, Lemma 1) that there is a positive !-periodic function

v̄(t) = (v̄1(t), v̄2(t)) such that v⇤(t) = e
ln r(P )

!
tv̄(t) is a positive solution of system (S.21).

In the case where r(P ) < 1, we have limt!1 v⇤(t) = 0. For any ' 2 ⌦, choose a su�ciently large number
K > 0 such that '  Kv⇤0 . Then by the comparison theorem, we have

(I(t,'), A(t,'))  Kv⇤(t), 8t � 0.

Hence, limt!1 I(t,') = limt!1 A(t,') = 0. This proves statement (i).

In the case where r(P ) > 1, we have limt!1 v⇤(t) = 1. For any ' 2 ⌦ \ {0}, we have ut(') � 0 for all
t > t⇤ + ⌧P (0) + ⌧C(0). Without loss of generality, we assume that ' � 0. Then we can choose a su�ciently
small real number � > 0 such that '1(✓) � �v⇤1(✓), ✓ 2 [�⌧C(0), 0], '2(✓) � �v⇤2(✓), ✓ 2 [�⌧P (0), 0]. Then by
the comparison theorem, we have

(I(t,'), A(t,')) � �v⇤(t), 8t � 0.
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Hence, limt!1(I(t,'), A(t,')) = (1,1). This proves statement (ii).

By the same arguments as in Lou and Zhao (2017, Lemma 3.8), we have r(P ) = r(P̂ ). Combining Lemmas 1
and 5, we have the following result on the global dynamics of system (S.21).

Theorem 2 The following statements are valid:

(i) If R0 < 1, then the extinction equilibrium (0, 0) is globally attractive for system (S.21) in ⌦;

(ii) If R0 > 1, then all nontrivial solutions of system (S.21) go to infinity eventually.

In the rest of this section, we derive the dynamics for the variables P (t) and C(t) in system (1). Under the
compatibility condition

P (0) =

Z 0

�⌧P (0)
⌘(⇠)✏(⇠)v(⇠)A(⇠)e�

R 0
⇠ µP (s)dsd⇠,

C(0) =

Z 0

�⌧C(0)
◆fI(⇠)e�

R 0
⇠ µC(s)dsd⇠,

(S.23)

we can solve P (t) and C(t) as

P (t) =

Z t

t�⌧P (t)
⌘(⇠)✏(⇠)v(⇠)A(⇠)e�

R t
⇠ µP (s)dsd⇠,

C(t) =

Z t

t�⌧C(t)
◆fI(⇠)e�

R t
⇠ µC(s)dsd⇠.

(S.24)

In the case where R0 < 1, we have limt!1 A(t) = limt!1 I(t) = 0, and hence, the expression (S.24) implies
that limt!1 P (t) = limt!1 C(t) = 0.

In the case where R0 > 1, we obtain limt!1 A(t) = limt!1 I(t) = +1. It then follows from (S.24) that
limt!1 P (t) = limt!1 C(t) = +1. Consequently, using these arguments combined with Lemma 1, we have
the result stated in the main text (Theorem 1) describing the global dynamics of system (1) and (2).

S.4 Numerical methods

The system of equations (1) and (2), was solved using the dde() and pastvalue() functions in the PBSddesolve
package for R (Couture-Beil et al., 2016). This solver for delay di↵erential equations is based on Simon Wood’s
solv95 program (Wood, 1999) written in C/C+ and using an adaptively stepped embedded RK2(3) scheme
with cubic hermite interpolation of the lagged variables.

Figure 3 in the main text assumes A(0) = f and P (0) = I(0) = C(0) = 0 and Figure 4 assumes A(0) = P (0) =
I(0) = C(0) = f . For Figures 3 and 4, we assumed the initial history, t < 0, for each variable was equal to
their respective values at t = 0. The initial values of the time delays where calculated by numerically solving
equation (S.18) with qI � qP = 1 and equation (S.19) with qA � qC = 1. To numerically evaluate the integral
we used R’s integrate() function and to find the value of the integral equal to 1 we used the uniroot()
function.

To find the spectral radius of the Poincaré map, r(P̂ ), we used the method described in Liang et al. (2017,
Lemma 2.5), which is similar to the Power method (Wikipedia, 2018), but specifically developed for delay
di↵erential equations. This algorithm involves numerically solving,
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Fig. S.3 Numerical verification of fcrit as the threshold for population growth. Numerical solutions to the system
(1) and (2) parameterized for the BCB site with f = fcrit (black), f = fcrit � 100 (orange), and f = fcrit +100 (blue) confirm
that fcrit is the threshold value of population growth. A horizontal line is shown at A(t) = 0.687 for reference.

dI(t)
dt

= �a11(t)I(t) +
a12(t)
�

A(t� ⌧P (t)),

dA(t)
dt

=
a21(t)
�

I(t� ⌧C(t))� a22(t)A(t),

d⌧P (t)
dt

= 1� �P (t)
�P (t� ⌧P (t))

,

d⌧C(t)
dt

= 1� �C(t)
�C(t� ⌧C(t))

,

(S.25)

where a11(t) = ◆f + µI(t), a21(t) =
1
2f

�C(t)
�C(t�⌧C(t))�C(t), a22(t) = µA(t), and

a12(t) = ⌘(t)✏(t)v(t � ⌧P (t))
�P (t)

�P (t�⌧P (t))�P (t). The system (S.21) is the same as the system of equations (1)

from the main text except that dP (t)
dt and dC(t)

dt are removed because the two equations are decoupled from
system (1) (see Section S.3), and the a12(t) and a21(t) terms are divided by � to calculate R0 as detailed in
equation (2.11) of Zhao (2017).

The net reproductive ratio, R0, is the value of � such that r(P̂ ) = 1, and we solved for this value using
the uniroot() function. The Floquet exponent was calculated as µ = log(M)/! when � was set to 1. The
critical stocking density was calculated as the value of f such that µ = 0 and was implemented using the
uniroot() function. Figure S.3 shows the dynamics of (1) for fcrit (black), fcrit + 100 (blue), and fcrit � 100
(orange).
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S.5 The follow-up treatment window in seasonal environments

For a sea louse that became an adult female at time t̃, we back-calculate the time when the chalimus stage was
reached, tC(t̃), and when hatching occurred (i.e., the nauplius stage was first reached), tP (t̃), as:

tP (t̃) = ⌧P (t̃� ⌧C(t̃)� 10), (S.26)

tC(t̃) = t̃� ⌧C(t̃), (S.27)

where t̃� ⌧C(t̃)� 10 is the time when the copepodid stage was reached for a louse that became an adult female
at t̃. In Figure 4, we plot the time of an initial treatment, t0, on the x-axis. To plot the start of the follow-
up treatment window in Figure 4, we identify salmon lice that hatched at the time of the initial treatment,
t0 = tP (t̃), and plot the corresponding time to becoming a chalimus, T1 = tC(t̃)� tP (t̃) where the subtraction
is to calculate the number of days to reach the chalimus stage, since tC(t̃) refers to time (i.e., tC(t̃) = 365
means the chalimus stage was reached on January 1st of year 2). To plot the end of the treatment window,
we identify salmon lice that just became chalimi when the initial treatment occurred, t0 = tC(t̃) and plot the
time to becoming an adult female, T2 = t̃� tC(t̃). As for the constant temperature case, the treatment window
exists for all sites we considered because T1 is always less than T2.
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