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Supplementary Figure 1. Flowchart outlining sampling strategy. TL=telomere length. 

 

 

 

Additional methods details 

 

Blood collection and telomere length analysis. Venous blood samples were drawn into EDTA 

tubes, and then were processed up to the cell lysis step of the Gentra Puregene DNA extraction 

protocol in the Philippines. These stabilized samples were stored at room temperature until 

shipped back to the US for completion of extraction.  

 

Telomere lengths (TL) for 2005 gathered samples were measured using the monochrome 

multiplex quantitative polymerase chain reaction assay (MMQPCR; 1) as described in detail 

previously (2, 3). A subsample of 190 of these samples show a correlation between MMQPCR 



 

measures and southern blot of terminal restriction fragments (r=0.663) that is on par with recent 

qPCR TL validation efforts (2, 4).  

 

TL for 2016 samples were assayed on a BioRad CFX 384 real-time PCR detection system 

(Hercules, CA, USA) using a similar protocol as the 2005 samples. Prior to plating, all samples 

were diluted to 8 ng/µl. DNA was quantified using an Epoch Microplate Spectrophotometer 

(BioTek, Winooski, VT, USA). High quality DNA extracted from whole blood was used to 

create an eight-point, two-fold serially diluted standard reference curve (from 100 ng/reaction to 

0.78 ng/reaction). All samples, standards, and negative controls were run in triplicate. Some 

DNA from the same high quality stock as the standard curve was also diluted to 8 ng/µl and used 

as a positive control. Twelve positive controls were included on each plate. The final reaction 

volume was 15 µl. Standard curves had average R2 values of 0.97 and 0.99, and average 

efficiency values of 90.63% and 92.06%, for T and S respectively. 

 

Since the coefficient of variation (CV) has recently been recognized to be an invalid statistic to 

assess TL measurement reliability, we instead used the intraclass correlation coefficient (ICC) (5, 

6) which estimates the percent of variation attributable to individuals versus to measurement 

error. ICC(1) gives an estimate of the reliability of measures of samples analyzed on one run (in 

triplicate), while  ICC(k) gives an estimate of the reliability of the average TL estimate of a 

sample measured across multiple runs. While considerable numbers of samples in the 2005 

analyses were included on multiple runs, these samples were re-run because of initially high 

intra-assay CVs. Of these samples, 873 were run separately in triplicate on two separate runs and 

had an individual ICC(1) of 0.81 (95% CI: 0.79-0.84) and average ICC(k) of 0.89 (95% CI 0.88-

0.91). For the 2016 samples, an additional plate of samples (n = 95) was assayed an additional 

time to assess inter plate reproducibility: ICC(1) = 0.79 (95% CI: 0.70, 0.86), ICC(k) = 0.88 

(95% CI: 0.82, 0.92). Of these 95 samples 61 where fathers with an ICC(1) of 0.79 (95% CI: 

0.68-0.87) and 34 were mothers with an ICC(1) of 0.79 (95% CI: 0.63-0.89). Intra-assay 

coefficient of variation measures for 2016 father and mother samples were 0.09 and 0.10 

respectively.  

 

For the 2016 samples, T/S ratio was calculated using the estimated starting quantity of each 

sample based on the standard reference curve. In order to improve statistical power, T/S ratios 

were adjusted by average well position effect (Eisenberg et al. 2015). Specifically, average T/S 

was calculated for each well across all plates assayed. Next, we calculated the total mean T/S for 

the entire 2016 sample, which we used to determine well deviance (T/Stotal_mean-T/Swell_avg). A 

uniformity assay was then run. The deviance values for each well in the uniformity assay (i.e. 

T/Savg-T/Sobs) were then averaged with the respective well deviance values for the 2016 sample 

plates. We then subtracted this average deviance from the well average T/S, which yielded the 

mean well-adjusted T/S. For each observed sample T/S ratio, we subtracted the well-adjusted 

T/S and added the total mean T/S. Finally, T/S ratio was averaged for each sample triplicate. 

This specific adjustment method was settled on because they yielded the tightest correlation with 

both measures of external validity (age and 2005 TL). We note that the lowest correlation 

between 2005 and 2016 TL measures from adjustment methods considered was 0.43 while the 

highest was 0.47. 

 



 

Confounding by SES, Urbanicity or Ancestry. The PAC effect could be due to social and other 

factors that influence both TL and PAC. To explore this, we examined the changes in PAC β 

values before and after the inclusion of several potential confounding variables. Like 

PAYC/PAOC analyses, for comparability, we first ran a regression model without any additional 

control variables, but restricting the set of individuals for which complete case control variable 

data were available (Supplementary Table 5, Model 1). Then the control variable(s) are added in. 

We tested the effects of social variables log-household income and urbanicity in 1983 on PAC 

effects of offspring, mothers and fathers (grandpaternal age effects are not examined) 

(Supplementary Table 5, Model 2).  

 

Principal components (PCs) of genome-wide genetic variation index population 

structure/ancestry. These may index social and/or biological differences among individuals 

which may affect both PAC and TL. As in previous analyses (7), the bivariate association 

between the first ten principal components and TL were tested. The top principal components up 

to and including the last one showing a significant bivariate association with TL were included 

as control variables. Substantial attenuation of the PAC β would suggest potential confounding 

necessitating further exploration. Results are shown in Supplementary Table 5, Model 3. 

 

 

 

Deviations from pre-registration 

• Meta-regressions using metareg in Stata were random effects not fixed effects models. 

• In meta-regression models intermediate male ancestors were transformed in the same 

manner as generational depth (i.e. as 1/(2^intermediate male ancestors). 

• Checking if PAC effect varied with own age was not in pre-registration. 

• PAC association with TL attrition was not proposed in pre-registration. 

• For comparison purposes in MAC analyses we re-ran PAC models without including 

MAC but limiting to the same sample for which MAC was also available to make values 

comparable 

• In our preregistration, we hypothesized that “..partial PAC effects might attenuate due to 

PAYC or PAOC having no causal relationship with TL but being correlated with PAC 

(correlations range from 0.64 to 0.75).” However, subsequent simulation analysis 

suggested showed that we should not expect such attenuation (i.e. PAC β increased when 

controlling for PAYC when assuming no PAYC effect in 50.09% of simulations). 

• Beta values from different regression models were compared used Stata’s suest followed 

by test commands. Correlation coefficients were compared using a Fisher transformation 

technique (8, 9). 

 

 

 



 

 
Supplementary Figure 2. Meta-regression results of generational depth of PAC association 

predicting variability of PAC estimates. Larger circles indicates estimates with greater precision 

(inverse of within-study variance). Each circle represents an estimated ancestral PAC effect on a 

descendant’s TL (from Table 2). For example, there are six estimated GPAC effects (FF and 

MM in each of cohorts 1, 2 and 3). The β value for the ½^generational depth term=0.0376175, 

and the y-intercept=-0.0061226. This implies a predicted PAC effect of 0.0127 

(0.0376175*(1/2^1)-0.0061226) and GPAC effect of 0.00328 (0.0376175*(1/2^2)-0.0061226) 

 

 

Simulation analyses 

To better understand the stability and expectations of several of our regression models, we ran a 

series of simulations. In all cases, simulations were conducted in Stata by drawing 10,000 

multivariate normal distributions from set correlation structures and then running relevant 

regression models. Weighted mean correlations were calculated using Fisher’s r to Z-

transformation (10). The code for the simulations are provided as an additional supplementary 

file. 

 

Change in effect size between PAC and GPAC. To simulate this change, the weighted PAC-TL 

correlation across each of the three cohorts was calculated (r=0.101) and then divided in half to 

generate a GPAC effect. We then drew a sample of 3,282 with this covariance structure and ran a 

regression of PAC predicting TL. This test was followed by a second regression on this same 

dataset, with the first 2,914 samples of PAC and GPAC predicting TL in the same model. These 

sample sizes were picked to match the actual sample sizes of our study (see Table 2). The PAC 

effect was then divided by the GPAC effect. The median effect was 2.16 (implying a PAC effect 

2.16-fold greater than GPAC) with a 95% CI from 0.96 to 9.61. This slight increase over the 

expected 2x median effect appears to be due to controlling for PAC when calculated GPAC 



 

causing an attenuation of the GPAC effect. When not including PAC in the model when 

calculating GPAC, the median effect was 1.98 with a 95% CI of 0.97 to 7.16. 

 

Maternal versus paternal age. The correlation structures for these analyses were derived from 

combining weighted mean correlations for statistics calculated from all three cohorts. 

Specifically, these values were: 

- PAC with offspring TL: r=0.101 

- PAC with MAC: r=0.753 

- MAC with offspring TL: r=0.086 

 

Then three different sets of correlation structures were derived from these observed statistics. 

1. Observed PAC effect on offspring TL, but assuming no MAC effect on offspring TL. MAC 

correlation with offspring TL is due entirely to the correlation of PAC with MAC 

(r=0.101*0.753=0.076). This calculated value is similar to the observed MAC-TL 

correlation of 0.086.  

2. Observed MAC effect on offspring TL, but assuming no PAC effect on offspring TL. PAC 

correlation with offspring TL is due entirely to the correlation of PAC with MAC 

(r=0.086*0.753=0.064). 

3. Observed PAC effect on offspring TL, but assuming a negative MAC effect on offspring 

TL. We choose a negative MAC effect of half the magnitude of the PAC effect which 

leads to an expected MAC correlation with offspring TL of r=√ ((0.101*0.753)^2-

(0.101*.5)^2)=0.057. 

In each of these simulations we calculated the percentage of simulations in which the following 

occurred: 

1. PAC β increased when controlling for MAC over model without MAC in it 

2. PAC β > MAC β 

3. PAC β > 0 

4. MAC β > 0 

 
Supplementary Table 1. Maternal versus Paternal age effect on offspring TL simulations. 
Values are % of times out of 10,000 simulations for which this was true. 

 + PAC, 0 MAC 0 PAC, + MAC + PAC, - MAC 

PAC β increase when controlling for MAC 50.52 0.16 95.35 

PAC β>MAC β 97.99 4.51 99.98 

PAC β>0 100.00 50.53 100.00 

MAC β>0 50.54 99.92 4.22 

 

 

Paternal age versus paternal age at youngest sibling. The correlation structures for these 

analyses were derived from combining weighted mean correlations for statistics calculated from 

all three cohorts for the sample which PAYC was available. Specifically, these values were: 

- PAC with offspring TL: r=0.080 

- PAC with PAYC: r=0.649 

- PAYC with offspring TL: 0.029 

Then two different sets of correlation structures were derived from these observed statistics. 



 

1. Assuming no PAYC effect on TL, we would expect a PAYC-offspring TL correlation 

due to the correlation of PAC with PAYC (r=0.080*0.649=0.052). This is larger than the 

observed PAYC-TL correlation of 0.029.  

2. Assuming no PAC effect and a PAC-TL association only driven by the association of 

PAYC with PAC we would expect a PAC-TL association of r=0.029*0.649=0.019 

 
Supplementary Table 2. Paternal age at youngest child effect on offspring TL 
simulations. Values are % of times out of 10,000 simulations for which this 
was true. 

 

+ PAC, 0 
PAYC 

0 PAC, + 
PAYC 

PAC β increase when controlling for PAYC 50.09 12.52 

PAC β>PAYC β 95.96 26.48 

PAC β>0 99.90 50.00 

PAYC β>0 50.29 86.87 

 

 

Paternal age versus paternal age at oldest sibling. The correlation structures for these analyses 

were derived from combining weighted mean correlations for statistics calculated from all three 

cohorts for the sample which PAOC was available. Specifically, these values were: 

- PAC with offspring TL:  r=0.066 

- PAC with PAOC: r=0.645 

- PAOC with offspring TL: r=0.046 

Then two different sets of correlation structures were derived from these observed statistics. 

1. Assuming no PAOC effect on TL, we would expect a PAYC-offspring TL correlation 

due to the correlation of PAC with PAOC (r=0.066*0.645=0.045). This is similar to the 

observed PAOC-TL correlation of 0.046.  

2. Assuming no PAC effect and a PAC-TL association only driven by the association of 

PAOC with PAC we would expect a PAC-TL association of r=0.046*0.645=0.032 

 
Supplementary Table 3. Paternal age at oldest child effect on offspring 
TL simulations. Values are % of times out of 10,000 simulations for 
which this was true. 

 

+ PAC, 0 
PAOC 

0 PAC, + 
PAOC 

PAC β increase when controlling for 
PAOC 49.00 4.69 

PAC β>PAOC β 89.84 18.98 

PAC β>0 99.09 50.37 

PAOC β>0 50.38 94.71 

 

 

 

Does sperm TL actually increase with age- PAYC/PAOC analyses? 

For PAYC analysis only non-last born children were included. While for PAOC only non-first 

born children were included. For comparability, regression models without PAYC or PAOC but 



 

restricting the sample to be the same as for which PAYC or PAOC data are available were run 

first (Supplementary Table 6, odd numbered models). Then PAYC or PAOC was added in 

(Supplementary Table 6, even numbered models). We predicted that PAC would be more 

strongly associated with offspring TL than PAYC or PAOC when included together in the same 

models.  

 

On average, the PAC β maintained a significant positive value and actually increased (although 

non-significantly so) when controlling for PAYC (Supplementary Table 6: models 1 & 2). PAC 

β value estimates were positive in all cases and larger than PAYC β values which were mostly 

negative. The same pattern was observed with GPAC (models 3-6). Simulation analyses suggest 

that these patterns are more consistent with a PAC effect than a PAYC effect, but that statistical 

power to distinguish these was limited. 

 

The PAC effect, on average did not change with inclusion of PAOC in the model versus not 

(models 7 & 8) and PAOC had no discernible overall effect. PAC β value estimates were mostly 

positive and larger than PAOC β values which were mostly negative. However, there was very 

high heterogeneity in PAOC estimates across cohorts (I2=81%), with a significant positive effect 

in the offspring cohort, a significant negative effect in the mother cohort and a non-significant 

negative trend in the fathers. Consistent with effects on the fathers and mothers being relayed to 

offspring, the GPAC effect non-significantly increased with inclusion of GPAOC (models 9-12). 

GPAOC showed an overall significant negative effect. That is, for every year older the 

grandfathers were at the conception of the intermediate parents’ oldest sibling, grandchildren had 

an estimated 0.016 SD shorter TL. Overall, while these results are generally more consistent with 

a PAC than PAOC, simulation analyses suggest that these analyses have limited ability to 

reliably distinguish with certainty. 

 



 

 
Supplementary Figure 3. PAC effects controlling and not controlling for MAC. 



 

 
Supplementary Figure 4. Comparing PAC and MAC effects (PAC and MAC included in same 

models together). 

 

 

  



 

Supplementary Table 4. Evaluating non-linearities in PAC effects. Beta is main effect and beta-sq is squared 
beta effect. 

cohort Beta se p n predictor Beta-sq se-sq p-sq 

z_ic2005tl 0.01323 0.003951 0.000829 1738 C_a_F 9.17E-05 0.000321 0.774908 

z_mom2005tl 0.016488 0.004608 0.000365 913 C_a_MF 0.000478 0.000318 0.13333 

z_dad2016tl 0.004742 0.0053 0.371303 631 C_a_FF -0.00017 0.000307 0.577661 

z_ic2005tl 0.010261 0.004675 0.028453 833 C_a_FF -6.5E-05 0.000292 0.824477 

z_ic2005tl 0.005906 0.004785 0.217469 906 C_a_MF -0.00024 0.00033 0.469747 

z_mom2005tl -0.00252 0.006988 0.719166 307 C_a_MFF 0.00015 0.000291 0.606211 

z_mom2005tl 0.001681 0.006686 0.801674 276 C_a_MMF 0.000446 0.000364 0.221538 

z_dad2016tl 0.000959 0.005812 0.869045 297 C_a_FFF -0.00011 0.000241 0.635195 

z_dad2016tl -0.00063 0.005745 0.912931 294 C_a_FMF 0.000554 0.000379 0.1445 

z_ic2005tl 0.004669 0.005514 0.39784 325 C_a_FFF 0.000262 0.000214 0.2208 

z_ic2005tl -0.00885 0.00547 0.10677 326 C_a_FMF 0.000493 0.000367 0.179557 

z_ic2005tl -0.01202 0.007533 0.111547 306 C_a_MFF 0.000309 0.000313 0.324495 

z_ic2005tl -0.00878 0.006808 0.19809 278 C_a_MMF 0.000551 0.00037 0.137599 

z_mom2005tl 0.045704 0.018885 0.094153 9 C_a_MFFF 0.007051 0.002969 0.098087 

z_mom2005tl -0.01716 0.025836 0.626785 6 C_a_MFMF -0.01639 0.006599 0.24366 

z_mom2005tl -0.00509 0.014294 0.745277 7 C_a_MMMF 0.001346 0.000635 0.124204 

z_dad2016tl -0.01722 0.024759 0.536666 9 C_a_FFFF -0.00046 0.002216 0.848589 

z_dad2016tl -0.36638 0.158553 0.260011 6 C_a_FMFF -0.07475 0.034646 0.276303 

z_dad2016tl -0.02626 0.032739 0.506634 6 C_a_FMMF 0.001485 0.003934 0.742061 

z_ic2005tl 0.022541 0.024636 0.528257 10 C_a_FFFF -0.00119 0.002382 0.705276 

z_ic2005tl -0.0964 0.071587 0.406627 9 C_a_MFFF 0.006963 0.008562 0.565337 

z_ic2005tl -0.07607 0 
 

6 C_a_MFMF -0.03823 0 
 

z_ic2005tl 0.032878 0.031366 0.48502 7 C_a_MMMF 0.003048 0.000963 0.194709 

 
  



 

Supplementary Table 5.  Paternal ages predicting offspring's telomere lengths controlling for potential 
confoundersa 

 

  Cohort 1b 2c 3d 

Model Control variables β β β 

1 minimum 0.013*** 0.020*** 0.003 

2 1 + income + urbanicity 0.013*** 0.020*** 0.003 

3 1 + Ancestry 0.013*** 0.020*** - 
aAll models control for age and intermediate paternal ancestors as applicable. bcohort born in 1983-84 
and TL measured in 2005. models additionally controls for sex and age X sex, n=1720. cmothers of 1983-
84 born cohort members with TL measured in 2005, n=868. dfathers of 1983-84 born cohort members 
with TL measured in 2016, n=630.  †<0.1; *P < 0.05; **P < 0.01; and ***P < 0.001. '-' indicates cells 
intentionally left blank because of insufficient data to model. 

 



Cohort

Model Ancestorf β n β n β n β n

1 PAC 0.014** 1296 0.022*** 774 0.002 536 0.013*** 2606

2 PAC 0.010† 1296 .029***  774 0.008 536 0.015*** 2606

2 PAYC 0.005 1296 ‐0.011† 774 ‐0.009 536 ‐0.003 2606

3 MF 0.004 779 ‐ ‐

4 MF 0.004 779 ‐ ‐

4 MFYC ‐0.001 779 ‐ ‐

5 FF .010* 652 ‐ ‐

6 FF 0.011† 652 ‐ ‐

6 FFYC ‐0.002 652 ‐ ‐

3 & 5 GPAC 0.007† 1431 meta‐analysis of FF and MF from models 3 & 5

4 & 6 GPAC 0.008† 1431 meta‐analysis of FF and MF from models 4 & 6

4 & 6 GPAYC ‐0.001 1431 meta‐analysis of FFYC and MFYC from models 4 & 6

7 PAC 0.014** 1291 0.012* 620 0.001 467 0.010*** 2378

8 PAC 0.006 1291 0.024** 620 0.005 467 0.010** 2378

8 PAOC 0.018* 1291 ‐0.022* 620 ‐0.008 467 0 2378

9 MF 0.003 618 ‐ ‐

10 MF .018* 618 ‐ ‐

10 MFOC ‐0.029** 618 ‐ ‐

11 FF 0.008 530 ‐ ‐

12 FF 0.009 530 ‐ ‐

12 FFOC ‐0.002 530 ‐ ‐

9 & 11 GPAC 0.005 1148 meta‐analysis of FF and MF from models 9 & 11

10 & 12 GPAC 0.014* 1148 meta‐analysis of FF and MF from models 10 & 12

10 & 12 GPAOC ‐0.016* 1148 meta‐analysis of FFOC and MFOC from models 10 & 12

Supplementary Table 6.  Paternal ages predicting descendants' telomere lengths controlling for paternal age at youngest 

child (PAYC) or paternal age at oldest child (PAOC)a

1b 2c 3d Combined

aAll models control for age and intermediate paternal ancestors as applicable. bcohort born in 1983‐84 and 

TL measured in 2005. models additionally controls for sex and age X sex. cmothers of 1983‐84 born cohort 

members with TL measured in 2005. dfathers of 1983‐84 born cohort members with TL measured in 2016. 
fAncestor or ancestor category (e.g PAC indicates paternal age at conception, GPAC grandpaternal age at 

concep on of intermediate ancestor, MF mothers father's age at mothers concep on). †<0.1; *P < 0.05; 

**P < 0.01; and ***P < 0.001. '‐' indicates cells intentionally left blank because of insufficient data to 

model.



 

Supplementary Table 7. More specific stats for Table 2 
 

cohort Beta se p n predictor Group 

z_ic2005tl 0.013797 0.003416 5.6E-05 1738 a_F PAC 

z_mom2005tl 0.019466 0.004163 3.37E-06 913 a_MF PAC 

z_dad2016tl 0.003104 0.004407 0.481543 631 a_FF PAC 

z_ic2005tl 0.009739 0.004039 0.016118 833 a_FF GPAC 

z_ic2005tl 0.004338 0.004265 0.309366 906 a_MF GPAC 

z_mom2005tl -0.0005 0.005791 0.930993 307 a_MFF GPAC 

z_mom2005tl 0.005316 0.005997 0.37616 276 a_MMF GPAC 

z_dad2016tl -0.00036 0.005094 0.943061 297 a_FFF GPAC 

z_dad2016tl 0.002475 0.005349 0.643928 294 a_FMF GPAC 

z_ic2005tl 0.008211 0.004702 0.081701 325 a_FFF GGPAC 

z_ic2005tl -0.00625 0.005123 0.22363 326 a_FMF GGPAC 

z_ic2005tl -0.00783 0.006219 0.209121 306 a_MFF GGPAC 

z_ic2005tl -0.0044 0.006153 0.474941 278 a_MMF GGPAC 

z_mom2005tl 0.058557 0.026589 0.092416 9 a_MFFF GGPAC 

z_mom2005tl -0.0324 0.047518 0.565653 6 a_MFMF GGPAC 

z_mom2005tl 0.008245 0.017568 0.66327 7 a_MMMF GGPAC 

z_dad2016tl -0.01984 0.018608 0.346482 9 a_FFFF GGPAC 

z_dad2016tl -0.0261 0.027374 0.440989 6 a_FMFF GGPAC 

z_dad2016tl -0.03358 0.022291 0.228999 6 a_FMMF GGPAC 

z_ic2005tl 0.016617 0.017062 0.432813 10 a_FFFF GGGPAC 

z_ic2005tl -0.08189 0.063185 0.32438 9 a_MFFF GGGPAC 

z_ic2005tl 0.019859 0.155039 0.918898 6 a_MFMF GGGPAC 

z_ic2005tl -0.05111 0.039335 0.323445 7 a_MMMF GGGPAC 
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