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A Conditions for long-term pathogen invasion and establishment

Conditions for waterborne pathogen establishment in spatially extended systems (river networks, in

particular) have already been provided elsewhere (Gatto et al., 2012, 2013; see also Eisenberg et al.,

2013; Tien et al., 2015). Here we recall some of the main results that are useful to complement the

analysis of the conditions for short-term pathogen outbreak.

Pathogens can invade the system and establish therein in the long run if and only if the disease-

free equilibrium (DFE) of system (1) in the main text is asymptotically unstable, i.e. if the dominant

eigenvalue of the Jacobian matrix J0 (the 3n× 3n state matrix describing the dynamics of the system

close to the DFE equilibrium) is positive. It is straightforward to verify that

J0 =


−µUn 0n −

[(
Un −mS

)
N + mSNQ

]
β

0n −φUn

[(
Un −mS

)
N + mSNQ

]
β

0n θW−1 (Un −mI + QTmI
)

−ν −
(
Un −W−1PTW

)
l

 ,

where: Un is the identity matrix of dimension n; φ = µ + δ + γ; and N, W, β, θ, ν, mS, mI, l are

diagonal matrices with positive entries corresponding to the parameters Ni, Wi, βi, θi = pi/K, νi, m
S
i ,

mI
i , li, with i = 1, · · · , n. Indeed, by noting the block-triangular structure of J0, one can immediately

observe that the Jacobian has n eigenvalues equal to −µ. Therefore, the stability properties of the

DFE can be determined based on the eigenvalues of the submatrix

J′
0 =

 −φUn

[(
Un −mS

)
N + mSNQ

]
β

θW−1 (Un −mI + QTmI
)
−ν −

(
Un −W−1PTW

)
l

 .

J′
0 is a Metzler matrix and its associated graph is strongly connected (see main text), thus its dominant

eigenvalue λJmax is simple and real (Horn and Johnson, 1990). A transcritical bifurcation of the DFE

occurs when λJmax = 0, namely when the determinant of J′
0 is zero (Kuznetsov, 1995). As long as

the DFE is stable, all the eigenvalues have negative real parts and the determinant of J′
0 is positive

because J′
0 is a matrix of order 2n. The DFE thus becomes unstable when the determinant of J′

0
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switches from positive to negative. Applying Silvester’s (2000) theorem for the determinant of block

matrices, we can evaluate the determinant of J′
0 as

det(J′
0) = det

(
φν + φ

(
Un −W−1PTW

)
l+

− θW−1 (Un −mI + QTmI
) [(

Un −mS
)
N + mSNQ

]
β
)
.

By introducing the matrices (Gatto et al., 2012, 2013)

T′
0 = ν−1

(
W−1PTW −Un

)
l ,

R0 =
1

φ
ν−1θW−1 (Un −mI

) (
Un −mS

)
Nβ ,

RS
0 =

1

φ
ν−1θW−1 (Un −mI

)
mSNQβ ,

RI
0 =

1

φ
ν−1θW−1QTmI

(
Un −mS

)
Nβ ,

RSI
0 =

1

φ
ν−1θW−1QTmImSNQβ and

R?
0 = R0 + RS

0 + RI
0 + RSI

0 ,

the instability condition det(J′
0) < 0 can also be written as det

(
Un −T′

0 −R?
0

)
< 0, which is equiv-

alent to requiring that the dominant eigenvalue R0 of matrix G0 = T′
0 + R?

0 is larger than one.

Actually, the DFE becomes unstable, thus allowing for the onset of endemic pathogen transmission, if

R0 switches from being less than one to being larger than one. In the absence of hydrologic transport

and human mobility we have G0 = R0, and the instability condition of the DFE reduces to

max
i

βiθiNi

φνiWi
> 1 ,

which corresponds to the instability condition for a system made of n isolated communities (i.e. local

basic reproduction number larger than one; see e.g. Codeço, 2001; Gatto et al., 2013).

We finally recall that the analysis of the dominant eigenvector of matrix J′
0 (or G0) also provides

important indications about the unfolding of the outbreak (Gatto et al. 2012, 2013; see also Mari
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et al. 2014 for an extension to periodically forced systems). In particular, the dominant eigenvector

of J′
0 (which has strictly positive components) pinpoints the direction in the state space along which

the system orbit, after a transient due to the initial perturbation, will converge to (asymptotically

stable DFE) or diverge from (asymptotically unstable DFE) the equilibrium. The components of the

dominant eigenvector of J′
0 correspond to the values of the infected individuals’ abundances and the

bacterial concentrations in the different human communities. This result obviously holds true only in

a neighborhood of the DFE, where the dynamics of the system can be well represented through its

linearization. If this is the case, an epidemic outbreak will thus mainly propagate (or fade away, in

case of a stable DFE) along the locations that correspond to the largest components of the dominant

eigenvector of matrix J′
0 as soon as the effects of the initial perturbation vanish.

B Derivation of conditions for transient epidemicity

Mari et al. (2017) showed that postulating the existence of perturbations for which condition (2) in

the main text is verified amounts to requiring that

λmax

(
H(CTCJ0)

)
> 0 , (S1)

where: λmax(·) indicates the dominant eigenvalue of a matrix; H(A) = (A + AT )/2 is the Hermitian

part of a generic matrix A; C is the q × 3n output transformation matrix defined in the main text

(equation (3)); and J0 is the Jacobian matrix of system (1) (main text) at the DFE (see Appendix A).

In general, inequality (S1) provides a simple test to detect g-reactivity; in this specific application,

it represents the (necessary, yet not sufficient) condition for the occurrence of a transient epidemic

wave. In fact, not all generic perturbations to a stable, g-reactive DFE will initially be amplified in

the system output. Perturbations x0 for which condition (2) (main text) is verified define the so-called

g-reactivity (or transient epidemicity, in this case) basin of the DFE (Mari et al., 2017, 2018).

It is also important to note that for model (1) in the main text ker(C) = ker(CJ0), i.e. that the

kernel (or null space) of the output matrix, defined as the set z of solutions to Cz = 0, is the same as
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the kernel of matrix CJ0. In this case, Mari et al. (2017) showed that the maximum initial growth rate

of any generic perturbations to the DFE (indeed, what Neubert and Caswell, 1997, originally defined

as reactivity in their isotropic framework) is given by λmax

(
H(CJ0C+

)
), where C+ = CT (CCT )−1 is

the right pseudo-inverse of matrix C, that is a generalization of a matrix inverse (in fact, CC+ = Uq,

with Uq being the identity matrix of size q; note that CCT is invertible because C is full rank).

Therefore, λmax(H0) > 0 (condition (4) in the main text), with

H0 = H(CJ0C+) =
1

2
(CJ0C+ + (C+)TJ0

TCT ) =

−F H

H −G


where

F = φUn

G = ν + cB
(
Un −W−1PTW

)
l cB

−1 and

H =
1

2

{
cI
[(

Un −mS
)
N + mSNQ

]
βcB

−1 + cBθW−1 (Un −mI + QTmI
)
cI
−1} ,

represents an alternative test for transient epidemicity. Note that conditions (S1) and (4) in the

main text are completely equivalent for the problem at hand; however, the latter might be preferred

in practice because H(CTCJ0) has higher dimension (3n × 3n) than H0 (2n × 2n). Matrix H0 is

Hermitian, thus its eigenvalues (and in particular λHmax) are real (Horn and Johnson, 1990). Also, the

off-diagonal entries of H0 are all nonnegative and at least one diagonal entry is negative, thus H0 is a

proper Metzler matrix (Horn and Johnson, 1990). If we assume that the union of the graphs associated

with P and Q is strongly connected (so that the graph associated with H0 is strongly connected too),

we can apply the Perron-Frobenius theorem for irreducible matrices and conclude that λHmax is a simple

real root of the characteristic polynomial (see again Horn and Johnson, 1990). As long as the DFE is

non-g-reactive, all the eigenvalues of H0 have negative real parts and the determinant of H0 is positive

because H0 is a matrix of order 2n. Thus, the DFE becomes g-reactive when the determinant of H0

switches from positive to negative or, equivalently, when λHmax becomes larger than zero.
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The g-reactivity properties of the DFE can actually be evaluated based on a matrix of reduced

order n. We note in fact that F is a positive scalar matrix, hence commuting with any other ma-

trix – thus, in particular, with H. In this case, it can be shown (Silvester, 2000) that det(H0) =

det
(
FG −H2

)
. With lengthy, yet straightforward algebraic manipulations, the previous relation can

be written as

det(H0) = φn det(ν) det

(
Un − ν−1

(
cBW−1PTWcB

−1 −Un

)
l+

− ν−1

4φ

[
cI
(
Un −mS

)
NβcB

−1 + cBθW−1 (Un −mI
)
cI
−1]2 +

− ν−1

2φ

[
cI
(
Un −mS

)
NβcB

−1 + cBθW−1 (Un −mI
)
cI
−1] cImSNQβcB

−1+

− ν−1

2φ

[
cI
(
Un −mS

)
NβcB

−1 + cBθW−1 (Un −mI
)
cI
−1] cBθW−1QTmIcI

−1+

− ν−1

4φ

[
cIm

SNQβcB
−1 + cBθW−1QTmIcI

−1]2) .

By introducing the matrices T0, E0, ESI
0 , ES

0 and EI
0 (see main text), the g-reactivity (or transient

epidemicity) condition det(H0) < 0 can be written as det
(
Un −T0 −E?

0

)
< 0, with E?

0 = E0 +

ES
0 + EI

0 + ESI
0 . Equivalently, the epidemicity condition is that the dominant eigenvalue E0 of matrix

F0 = T0 + E?
0 is larger than one. Actually, the DFE becomes g-reactive when E0 switches from

being less than one to being larger than one. In this case, a transient epidemic outbreak can start,

provided that the DFE is perturbed by a suitable injection of bacteria and/or infected human hosts,

i.e. following a perturbation [iT bT ]T lying in the g-reactivity basin of the equilibrium, which for the

problem at hand is given by the quadratic inequality

[
iT bT

]
H0

 i

b

 = −φiT i + 2bTHi− bTGb > 0 .

We also remark that in the absence of hydrologic transport and human mobility, i.e. if l = 0n and

mS = mI = 0n (so that T0 = 0n, E?
0 = E0, hence F0 = E0), the epidemicity condition for the DFE
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reduces to

max
i

(
cI i

2Niβi + cBi
2θi/Wi

)2
4cI i2cBi

2φνi
> 1 ,

as it can be found from g-reactivity analysis of n isolated communities (Mari et al., 2018).

As a corollary, we finally note that, close to the transient epidemicity boundary E0 = 1, the

dominant eigenvector of matrix F0 corresponds to the spatial arrangement of the bacterial components

of the dominant eigenvector of the Hermitian matrix H0, which in turn describes the geographical

signature of the fastest growing perturbation to the DFE at time 0. In fact, the dominant eigenvector

of H0 can be computed by solving

H0

 i

b

 = λHmax

 i

b

 .
Recalling the block structure of H0, for λHmax ≈ 0 we get

−F i + Hb = [0, 0, · · · , 0]T

Hi− Gb = [0, 0, · · · , 0]T .

From the first of the two equations above we have i = F−1Hb. Substituting this expression into

the second we get HF−1Hb − Gb = [0, 0, · · · , 0]T . Recalling that F is a scalar (thus universally

commuting) matrix, we have that
(
F−1H2 − G

)
b = −F−1

(
FG −H2

)
b = [0, 0, · · · , 0]T . From the

algebraic derivation of epidemicity conditions we already know that FG−H2 = Fν(Un−F0), which

finally leads us to F0b = b. This corresponds to the equation for the evaluation of the dominant

eigenvector of matrix F0 when its dominant eigenvalue E0 is (close to) one. We can thus conclude that

at the epidemicity boundary the dominant eigenvector of F0 refers to the bacterial components of the

state space. The components corresponding to infected hosts can be easily worked out as i = Hb/φ.

C Numerical evaluation of endemicity and epidemicity conditions

A simple MATLABTM implementation of the instructions needed to evaluate the asymptotic stability

of the DFE of model (1) (main text) and its g-reactivity properties according to the output transfor-
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mation defined in equation (3) (main text) is provided below. A network with four nodes, spatially

homogeneous parameter values, and hydrologic transport and human mobility matrices

P =



0 0 1 0

0 0 1 0

0.05 0.05 0 0.9

0 0 0.1 0


and Q =



0 0.5 0.4 0.1

0.3 0 0.5 0.2

1/3 1/3 0 1/3

0.2 0.2 0.6 0



is used as a proof-of-concept. In this example, the DFE is asymptotically stable (λmax(J0) ≈ −4.2 ·

10−5 < 0), yet g-reactive (λmax(H0) ≈ 0.38 > 0). A numerical simulation of the model (code also

provided below) indeed shows that the prevalence of infected individuals may undergo transient growth

before eventually fading out. More complex case studies can be analyzed by suitably specifying the

spatial distribution of the parameters and the details of the relevant spatial coupling mechanisms.

% L. Mari, R. Casagrandi, E. Bertuzzo, A. Rinaldo, M. Gatto

% Conditions for transient epidemics of waterborne

% disease in spatially explicit systems

% Royal Society Open Science 6:181517, 2019

% http://dx.doi.org/10.1098/rsos.181517

%

% This MATLAB script can be used to evaluate the asymptotic stability of the

% disease-free equilibrium (DFE) of model (1) described in the main text, as

% well as its generalized reactivity properties associated with the output

% transformation defined in equation (3). It also performs efficient numerical

% simulations of model (1). The script can thus be used to determine conditions

% for endemic/epidemic waterborne disease transmission and to analyze the

% ensuing epidemiological dynamics in fully spatially explicit setting.

clearvars

close all

clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% baseline parameter values

% note: see Table 1 in the main text

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N = 1; % population size without disease

mu = 1 / 65 / 365; % human mortality rate (1/day)

beta = 1; % exposure rate (1/day)

delta = 4e-4; % disease-induced mortality (1/day)

gamma = 1 / 5; % recovery rate (1/day)

theta = 0.02; % rescaled contamination rate (1/day)
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W = 1; % water reservoir size

nu = 1 / 30; % pathogen mortality rate (1/day)

l = 1 / 3; % pathogen transport rate (1/day)

mS = 0.2; % mobility of susceptible human hosts

mI = 0.05; % mobility of infected human hosts

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% hydrological connectivity and human mobility

% note: P and Q must be defined as (sub-)stochastic matrices of size (n x n)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 4; % number of communities

P = [0, 0, 1, 0; % hydrological connectivity matrix

0, 0, 1, 0;

0.05, 0.05, 0, 0.9;

0, 0, 0.1, 0];

Q = [0, 0.5, 0.4, 0.1; % human mobility matrix

0.3, 0, 0.5, 0.2;

1 / 3, 1 / 3, 0, 1 / 3;

0.2, 0.2, 0.6, 0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% output transformation

% note: see equation (3) in the main text

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cI = 1; % weight of infected hosts

cB = 1; % weight of pathogen concentration

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% note: here, all parameters are assumed to be spatially homogeneous, yet this

% script can be used also if some/all parameters are spatially distributed; in

% that case, the community-specific values of each spatially heterogeneous

% parameter must be specified as the nonzero elements of a diagonal matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

U = diag(ones(n, 1)); % identity matrix of size n

Z = zeros(n); % zero matrix of size n

N = N * U; mu = mu * U; % -|
beta = beta * U; delta = delta * U; % |
gamma = gamma * U; theta = theta * U; % | scalar matrices of size n

W = W * U; nu = nu * U; l = l * U; % |
mS = mS * U; mI = mI * U; % -|
C = [Z, cI * U, Z; Z, Z, cB * U]; % output matrix (equation 3)

clear cI cB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% asymptotic stability

% note: see Appendix A

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% build Jacobian matrix at DFE

J0 13 = - ((U - mS) * N + mS * N * Q) * beta;

J0 = [- mu, Z, J0 13;
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Z, - (mu + delta + gamma), - J0 13;

Z, theta / W * (U - mI + Q' * mI), - nu - (U - W \ P' * W) * l];

clear J0 13

% evaluate dominant eigenvalue of J0

lambda max J0 = max(real(eig(J0))); % dominant eigenvalue of J0

display(lambda max J0); % DFE is unstable if lambda max J0 > 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% generalized reactivity

% note: see Appendix B

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% build Hermitian matrix at DFE

H0 temp = C * J0 * pinv(C);

H0 = (H0 temp + H0 temp') / 2;

clear H0 temp

% evaluate g-reactivity

[V, D] = eig(H0); % eigenvectors and eigenvalues of H0

[lambda max H0, maxind] = max(diag(D)); % dominant eigenvalue of H0

display(lambda max H0); % DFE is g-reactive if lambda max H0 > 0

opt pert t0 = abs(V(:, maxind)); % optimal perturbation at time 0

clear V D maxind

% human-readable output

if lambda max J0 > 0

msg = ['The DFE is asymptotically unstable (lambda max J0 > 0), ' ...

'thus also g-reactive (lambda max H0 > 0)'];

elseif lambda max J0 < 0

if lambda max H0 > 0

msg = ['The DFE is asymptotically stable (lambda max J0 < 0), ' ...

'yet g-reactive (lambda max H0 > 0)'];

else

msg = ['The DFE is asymptotically stable (lambda max J0 < 0), ' ...

'and non-g-reactive (lambda max H0 <= 0)'];

end

else

if lambda max H0 > 0

msg = ['The DFE is g-reactive (lambda max H0 > 0), ' ...

'but its asymptotic stability cannot be decided (lambda max J0 = 1)'];

else

msg = ['The DFE is non-g-reactive (lambda max H0 <= 0), ' ...

'but its asymptotic stability cannot be decided (lambda max J0 = 1)'];

end

end

disp(msg);

clear msg

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% model simulation

% note: here, the spatial signature of the optimal perturbation at time 0 with

% an assigned total prevalence of disease in the human population is used as

% initial condition for simulating model (1); different choices can be specified
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% with a different definition of x0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% timespan and initial condition

tspan = [0 60]; % simulation timespan (days)

prev0 = 0.3; % initial total prevalence (%)

Ntot = sum(diag(N)); % total human population size

x0 = [diag(N); % initial condition (3 n x 1 vector)

opt pert t0 / sum(opt pert t0(1 : n)) * prev0 / 100 * Ntot];

% numerical integration

[t, x] = ode45(@(t, x) odeSIB(t, x, ...

N , mu, beta, delta, gamma, theta, W, nu, l, mS, mI, P, Q, n, U), ...

tspan, x0);

S t i = x(:, 1 : n);

I t i = x(:, n + 1 : 2 * n);

B t i = x(:, 2 * n + 1 : end);

clear x

% plotting

plot(t, sum(I t i,2) / Ntot * 100)

xlabel('Time after perturbation (days)')

ylabel('Total prevalence of infection (%)')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% specification of the model

% note: see system of equations (1) in the main text

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dx = odeSIB(~, x, ...

N , mu, beta, delta, gamma, theta, W, nu, l, mS, mI, P, Q, n, U)

% state variables (n x 1 vectors)

S = x(1 : n); % susceptible population

I = x(n + 1 : 2 * n); % infected population

B = x(2 * n + 1 : end); % pathogen concentration

% evaluating some useful rates

recruitment = diag(mu * N);

FoI = diag((U - mS + mS * Q) * beta * (B ./ (1 + B)));

removal = mu + delta + gamma;

hydrotransport = (U - W \ P' * W) * l;

contamination = theta / W * ( U - mI + Q' * mI);

% equations of model (1)

dSdt = recruitment - (mu + FoI) * S;

dIdt = FoI * S - removal * I;

dBdt = contamination * I - (nu + hydrotransport) * B;

% assembling the function output

dx = [dSdt; dIdt; dBdt];

end
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D Supplementary figures

Figure S1: The role of spatial coupling mechanisms in disease epidemicity and endemicity. Details
as in Fig. 3 in the main text, for different OCN topologies. Panels a–c are obtained with OCN
configurations like those shown in Fig. 1a in the main text, while panels d–f are obtained with OCN
configurations like those shown in Fig. 1c in the main text. In all panels, the cyan-shaded areas are the
envelopes of the stability/g-reactivity boundaries obtained with OCN configurations like those shown
in Fig. 1b in the main text, and are reported here for reference.
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Figure S2: Analysis of short- and long-term amplification of small perturbations to the DFE. Details
as in Fig. 4 in the main text, for different OCN topologies. Panels a–b are obtained with OCN
configurations like those shown in Fig. 1a in the main text, while panels c–d are obtained with OCN
configurations like those shown in Fig. 1c in the main text. The cyan curves in panels a and c refer to
OCN configurations like those shown in Fig. 1b in the main text, and are reported here for reference.
Panels c and d are obtained with the leftmost configurations shown in Fig. 1a and Fig. 1c, respectively.
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Figure S3: Geography of the optimal perturbations and of disease spread. Details as in Fig. 5 in the
main text, for a different OCN topology (the leftmost configuration shown in Fig. 1a) in the main
text.
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Figure S4: Geography of the optimal perturbations and of disease spread. Details as in Fig. 5 in the
main text, for a different OCN topology (the leftmost configuration shown in Fig. 1c) in the main
text.
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