Appendix for
Quantifying the seasonal driver of transmission for 
Lassa fever in Nigeria
Andrei R. Akhmetzhanov, Yusuke Asai, Hiroshi Nishiura

Contests 

Supplementary figures
A. Analysis of a nosocomial outbreak in Jos, Nigeria, in 1970
Reconstructing the timeline of the outbreak
Inference of model parameters using the Bayesian approach
MCMC iterations 
B. Model-based inference using the human case (incidence) data
Maximum likelihood estimation
[bookmark: _GoBack]Fitting procedure using the Bayesian approach
MCMC iterations 
C. Dynamic modelling of LF transmission in rodent populations
Model formulation
Periodic conditions for the change in population size
Susceptible-infected-recovered (SIR) model
Inference of model parameters
D. Computer simulations and code sharing
Appendix references
Appendix figures
Appendix code snippets 

Supplementary figures
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Fig S1: Estimated gamma probability density functions for the incubation period  and the time from illness onset to death  in humans. Solid black line indicates the median estimate, whereas light and dark shaded areas indicate 95% and 50% credible intervals for posterior estimates, respectively. Background light-red bins on the bottom panel indicate the available data counts.
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	Parameter 
	Variable
	Value
	Reference

	Average population size
	
	60 Ha–1
	lower estimate available in [16]

	Scaling parameter of a birth pulse 
	[image: ]
	17.9 year–1
	[31] *

	Birth pulse synchrony 
	[image: ]
	1.26
	estimated

	Phase of birth pulse 
	[image: ]
	1.71
	[16]

	Mortality rate 
	[image: ]
	7 year–1
	[16]

	Probability of vertical transmission of the virus 
	[image: ]
	50%
	[17]

	Probability of vertical transmission of antibodies to the virus 
	[image: ]
	20%
	[17]

	Recovery rate 
	[image: ]
	4.06 year–1
	[17]

	Rate of losing the immunity 
	[image: ]
	3.04 year–1
	[17]

	Rate at which S becomes I once in contact with I
	v
	16.9
	estimated



Fig S2: Summary of the modelling framework for Lassa fever transmission dynamics in rodents: (a) model flow diagram; (b) birth-rate function; (c) description of model parameters. The total population of size N consists of susceptible (), infected (), and recovered () rodents. See Appendix Section C for details. References are as in the main text.
* Birth pulse is given by the function:  where we chose the parameter:  to ensure a seasonal periodicity in the population size of rodents. Here  is the complete Bessel function of the first kind.
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Fig S3: Population dynamics of Lassa fever in rodents. (a) Modelled dynamics of the rodent population (solid), including the annual change in the number of infected rodents (dashed). Grey shading indicates the annual intensity of the rainfall. (b) Relative change in the total population size of rodents (blue), including infected (solid red) and immune rodents (dashed red). (c, d) Determination of the best-fit value of the rate  at which  becomes  once in contact with  using -statistics. The shaded area with dashed boundaries indicates possible values of the prevalence level observed throughout the season. Vertical dashed line indicates the best-fit value of .


[image: ]

Fig S4: Monthly rainfall pattern in 1901–2015 in Edo state, Nigeria. (a) Shows the average monthly rainfall as the mean and one standard error. The red and blue points denote the beginning and the end of the rainy season respectively using the means. The dashed line indicates the threshold level of 60 mm for the rainy season according to the Köppen classification. (b) Shows the distribution of the starting and ending weeks of the rainy seasons (light red and light blue, respectively) over the whole time period, 1901–2015. Vertical axis is the number of times when the beginning or the end of the rainy season fell on that particular week. Darker bars indicate the events for recent years 2000–2015.
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Fig S5: Geographical distribution of Lassa fever cases reported across Nigeria and visually reconstructed from weekly NCDC reports. Colour coding consists of three categories: 1–4, 5–9, and 10+ cases, respectively, to colour gradation. Empty sites indicate that no cases were registered.




A. Analysis of a nosocomial outbreak in Jos, Nigeria, in 1970

Reconstructing the timeline of the outbreak

	We used the available event time data of a nosocomial outbreak in Jos, Nigeria, in 1970, to estimate the incubation period and the time from illness onset to death. In total, the outbreak involved 23 cases excluding the index case. Each case record  contained a lower  and an upper time boundary  of the probable date of exposure to Lassa fever (LF) virus as well as two other event times, i.e., the date of illness onset  and the date of death  (Appendix Fig 1). 

Inference of model parameters using the Bayesian approach

	In our Markov Chain Monte Carlo (MCMC) iterations, we employed a normal distribution for the prior distribution of each exposure time, :

[bookmark: _Hlk531003859]The mean and standard deviation (sd) were used to ensure that the majority of values belonged to the interval between  and  The normal distribution was preferred to the uniform prior  to avoid the edge effects from the boundaries [1], see also discussion in [2].

	Then we defined two main distributions for the incubation period and the time from illness onset to death, and employed the gamma distribution for each:


where hyper-parameters, the means  and , and standard deviations  and , have non-informative positively defined priors given by a half flat (positive) distribution with arbitrarily small shape and scale parameters: 


	The observed times of illness onset  and death  were subsequently inferred using sampling from normal distributions with a fixed standard deviation 0.5, which correlates with a half of the time scale in the timeline as a source of measurement error:



	MCMC iterations

	We performed MCMC iterations with 500,000 iterations, plus 20,000 iterations as a burn-in period. The thinning parameter of  and  was equal to 50, and the exposure time  was set at 10. The resulting trace plots for the mean and variance complemented with autocorrelation plots shown in Appendix Figures 2–5 demonstrate the sufficient convergence power of the iterative process.  

B. Model-based inference using the human case (incidence) data

Maximum likelihood estimation

	As stated in the main text, we used maximum likelihood estimation (MLE) to obtain point estimates of model parameters  Specifically, we maximized the total (composite) likelihood of the form: 

with respect to three varied parameters  for a fixed pair of indices . Then we performed a grid search over all possible values  spanning the range  to determine the global maximum of the likelihood  Each point estimate can be complimented with 95% confidence intervals, e.g., based on the likelihood profile.
	Appendix Figure 6 shows the resulting fit using the MLE procedure. For comparison, the fit of the analogous model with a (single) constant exposure rate is shown in Appendix Figure 7. The single exposure rate model yielded a greater Akaike information criterion value (3679.2 in contrast to 2877.2 with two exposure model). 

Fitting procedure using the Bayesian approach

We found the level of uncertainty in each model parameter estimate by conducting MCMC simulations for Bayesian inference. Here, we describe the sampling procedure for each estimate by inferring an underlying posterior distribution. Specifically, we were interested in estimating the posterior of the exposure rate a for each high/low-risk period, and the CFR q.

The exposure rate aw at week number w was sampled from the Gamma distribution:

where  is a corresponding calendar week, whereas a pair of hyper-parameters  and  are given by the following expressions:


We supplemented each with the following non-informative prior distributions:  that are half flat (positive) distributions. The time boundaries  had the uniform prior distributions:  which ensure:  We also imposed constraints:  and 

The risk of death q is sampled from a Gamma distribution to ensure the positive range of its values:

where two hyper-parameters have the non-informative prior distributions of the form:  that are analogous to the priors for the exposure hyper-parameters used above.

	To infer parameters, we sampled the number of cases and the number of deaths from Poisson and Binomial distributions, respectively:


where the rates  and  resulted from convolution sums. The first being defined by the formula:

where  denotes the incubation time distribution, see Appendix A. Whereas, the second rate was given by the following formula:

where  is the distribution of time periods from exposure to death. In turn, we convoluted the distribution  with the distribution of time periods from illness onset to death  obtained earlier in Appendix A, i.e.:


	MCMC iterations

	To obtain posterior distributions of model parameters we compiled MCMC iterations with 18 chains, each characterized by 100,000 iterations and a burn-in period consisting of 20,000 iterations (Appendix Code Snippets). The thinning parameter for all parameters was set to 100 to avoid correlation effects in the chain. The resulting trace and density plots, as well as the autocorrelation plots for each pair of parameters, are shown in Appendix Figures 8–16. As shown, a sufficient level of convergence of the iterative algorithm was obtained. 

C. Dynamic modelling of LF transmission in rodent populations

Model formulation

To model the transmission dynamics of LF in rodents, we adopted the modelling framework reported by Peel et al. [3]. We let  be the population size of rodents at time t ( – where the season length is scaled to one). Then, the dynamics could be represented as follows:

where  is the mortality rate per capita, and the growth rate per capita  is given by a periodic Gaussian function:  The mortality rate for rodent species Mastomys natalensis is remarkably high:  whereas the two parameters  and  were previously identified from 20-year observations of rodent species in Tanzania:   see [4] and Supplementary Figure 1 therein. To adjust the model for a situation in Nigeria, we considered a lower average population density of 60 rodents per Ha compared to 80 rodents per Ha as in [4]. Whereas the seasonality parameter  will be the subject of the model fit. 

Due to apparent differences in climate between Tanzania and Nigeria, such as changes in the timing and length of the rainy season, a time shift was imposed to the function  to obtain the seasonal population dynamics in Nigeria. Specifically, we first identified the end of the rainy season in both countries based on historical averages of rainfall over the time period 1901–2015:  for part of the year for Tanzania,  for part of the year for Nigeria (Appendix Figure 16). Then we calculated the difference between these two times as  for part of the year, and accounted for the shift in the birth rate function of this value:  (Fig S3b).

Periodic conditions for the change in population size

We chose a parameter κ to satisfy the periodicity condition for  We required:  which translates to:

This rewrites as follows:
 
[bookmark: _Hlk527474642]to obtain:  Here,  denotes the Bessel function of the first kind. Thus, we did not need to assign an estimate for parameter . 
	We also note that the average population density can be defined as follows: 



Susceptible-infected-recovered (SIR) model

The flow diagram (Fig S3a) translates into the following dynamical equations:



for the three components: susceptible  infected  and recovered  respectively. All rates are defined as per capita,  and  denote transition rates between compartments  and  and  and  respectively. Two other rates  and  are the rates of vertical (parental) transmission of the LF virus and its antibodies, respectively. The transmission coefficient is set to a variable , which consists of the rate  at which a susceptible rodent becomes infectious when in contact with an infected rodent, and contact-density function  The latter has been previously found by fitting the observed experimental data of contact pattern in rodents to the sigmoidal function [4,5]:


We translated the absolute quantities of infected and recovered rodents to their densities with respect to the total size of the population. We also introduced two new variables:  and , and redefined the system of dynamic equations written above as follows:
	
	


	(S1)


The number of susceptible rodents is given by: 

Inference of model parameters

To predict the transmission dynamics of LF infection among rodents, we use documented facts on the course of infection [6]: (i) LF infection is asymptomatic in rodents; (ii) it is also transient, with the virus being cleared from the blood after the infection; (iii) LF virus can be secreted in urine up to 103 days; (iv) there is a probability of horizontal and vertical transmission of LF virus and its antibodies. This results in the following choice of parameters, see Fig S3c. In particular, we define the characteristic recovery time from the infection as 90 days, and the rate of recovery is therefore set to:  The characteristic time at which immunity is lost is assigned as 120 days, i.e., the respective rate is set to: 

However, we still do not know the rate  between susceptible and infected rodents that characterizes the transmission dynamics in the SIR model, the seasonality parameter  and possibly unknown average population size  Identification of this becomes a subject of the model fit.

To determine the values of model parameters, we required the mean prevalence levels of LF infection among rodents in the dry and rainy seasons, defined as  and  to be close to the observed levels in the field experiments. Fichet–Calvet and colleagues [6] reported that a one-time measurement in the dry season revealed the mean prevalence to be at 29%, while five independent measurements (one in the dry season and four in the rainy season) showed the mean level of prevalence to be 43%. Hence, we adjusted the mean prevalence level separately for both the dry and rainy seasons by using a simple algebraic rule: if  is the mean prevalence level observed in the rainy season, then it should satisfy the following condition for five independent measurements:  This yields the value:  Thus, we required the values  and  predicted by our model to be close to 29% and 46.5%, respectively.

A fitting procedure was carried out by using the χ2 statistic. Specifically, we tried to minimize the quantity:

where  and  are values obtained from the dynamics (S1). Appendix Figure 18 shows that the minimum of  is reached on some one-dimensional manifold in the space of two parameters  and   The fitted dynamics and the evaluated values of and  for fixed  are shown in Figure S3.

D. Computer simulations and code sharing

All calculations were made using free, open-source statistical and programming environments (R Version 3.5.1, Python Version 3.6.6, and Julia Version 1.0.1). The results were tested in multiple computational environments to ensure the validity of the calculations and to avoid processing errors. MCMC simulations were performed using the R package NIMBLE Version 0.6-12 [7], and comparative analysis of different packages can be found elsewhere [8]. To run the significance test of association between the observed LF incidence and climatological variables, we used the R package rEDM [9]. The code for all calculations and to reproduce all of the figures are accessible from the open-shared repository: http://tiny.cc/Lassa18Scripts. This information can be used freely for non-commercial purposes.
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Appendix Fig 1: Timeline of a nosocomial outbreak in Jos, Nigeria, in 1970, adapted from [10]. Shaded grey areas indicate the exposure period, while shaded yellow areas span the time period from illness onset to death.
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Appendix Figure 2: Trace and density plots for the mean  (“incubation_mean”) and standard deviation  (“incubation_sd”) of the incubation period distribution.
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Appendix Figure 3: Autocorrelation plots for pairs of mean  (“incubation_mean”) and standard deviation  (“incubation_sd”) values for the incubation period distribution.
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Appendix Figure 4: Trace and density plots for the mean  (“death_mean”) and standard deviation  (“death_var”) of the distribution of the time period between illness onset and death.
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Appendix Figure 5: Autocorrelation plots for pairs of mean  (“death_mean”) and standard deviation  (“death_sd”) values for the distribution of the time period between illness onset and death.
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Appendix Figure 6: Model fit to the observed data of new cases (a) and fatal cases (b) using maximum likelihood estimation. Solid black line indicates the obtained average, whereas the shaded area shows the 95% profile-based confidence intervals. The fitted exposure rate as a function of calendar week is shown in the inset of (a).
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Appendix Figure 7: Model fit to the observed data of new cases (a) and fatal cases (b) using maximum likelihood estimation for the alternative model with (single) constant exposure rate. Solid black line indicates the obtained average, whereas the shaded area shows the 95% profile-based confidence intervals. The fitted exposure rate as a function of calendar week is shown in the inset of (a).
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Appendix Figure 8: Trace and density plots for  and .
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Appendix Figure 9: Autocorrelation plots for the pair  and .
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Appendix Figure 10: Trace and density plots for  and .
[image: ]Appendix Figure 11: Autocorrelation plots for the pair  and .
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Appendix Figure 12: Trace and density plots for  and .
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Appendix Figure 13: Autocorrelation plots for the pair  and .
[image: ]Appendix Figure 14: Trace and density plots for  and .
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Appendix Figure 15: Autocorrelation plots for the pair  and .
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Appendix Figure 16: Inference of the model parameters using MCMC iterations.
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Appendix Figure 17: Difference in rainfall patterns between Nigeria (black) and Tanzania (green). The location used for Tanzania was S, E, which was the data collection site in the original study [11]. The closeness was restrained by gridded data point distribution in the global precipitation dataset [12]. Blue points indicate the starting points for the dry seasons.
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Appendix Figure 18: Numerical minimization of the  value over two parameters  and .



Appendix Code Snippet 1: Main R script including the NIMBLE module

## Preamble
args = commandArgs(trailingOnly=TRUE)

set.seed(as.numeric(args[1]))

libraries = c("dplyr","magrittr","tidyr","readxl","nimble")
for(x in libraries) { library(x,character.only=TRUE,warn.conflicts=FALSE) }

'%&%' = function(x,y)paste0(x,y)

rho = 0.19

## Data for to describe Jos outbreak
#### excluding index case
onsetTimes = c(17, 19, 21, 21, 21, 22, 22, 23, 23, 23, 23, 23, 25, 26, 26, 26, 27, 31, 39, 41, 41, 42, 44)
deathTimes = c(33, 48, 31, 47, 30, 41, 37, 32, 31, 35, 54, 30, 31, 33, 30, 33, 48, 39, 51, 48, 55, 60, 62)
## Prior knowledge
exposureTimesLower = c(5,  9,  5,  9,  5,  5,  5,  11, 5,  5,  13, 11, 12, 5,  11, 11, 5,  5,  12, 25, 5,  25, 25)
exposureTimesUpper = c(15, 18, 18, 15, 18, 18, 18, 15, 18, 18, 14, 15, 18, 18, 15, 15, 18, 18, 18, 31, 18, 31, 31)

## Dataset of human incidence stored in Nigeria_raw.xlsx
yearMin = 2016
data = read_excel("../../data/Nigeria_raw.xlsx", sheet = "Incidence") %>%
  select(-one_of("Timeseries","Imputation","File in the repo"),-contains("URL")) %>%
  filter(Year>=yearMin) %>%
  group_by(Year) %>%
  mutate(Incidence_Reported = if_else(Week==1,Reported,Reported-lead(Reported)),
         Incidence_Deaths = if_else(Week==1,Deaths,Deaths-lead(Deaths))
  ) %>%
  ungroup
data %>% tail

data %>% select(Year,Week,starts_with("Incidence")) -> Df

data.frame(Year=yearMin-1,Week=1:52,Incidence_Reported=NA,Incidence_Deaths=NA) %>%
  rbind(Df %>% arrange(Year,Week)) %>%
  rowwise %>%
  mutate(Incidence_Reported_NA=ifelse(is.na(Incidence_Reported),rpois(1,30),NA),
         Incidence_Deaths_NA=ifelse(is.na(Incidence_Deaths),rpois(1,1),NA)) %>%
  ungroup -> Df

(K = nrow(Df))

# Convolutions = calculation of initial values for MCMC simulations
# that are used as initial values for the followed inference
incubation_shape = 8.038
incubation_rate = 1/0.2278
death_shape = 3.3012
death_rate = 1/0.5968
incubation_probability = pgamma(1:K,shape=incubation_shape,rate=incubation_rate)-pgamma(1:K-1,shape=incubation_shape,rate=incubation_rate)
timeFromOnsetToDeath_probability = pgamma(1:K,shape=death_shape,rate=death_rate)-pgamma(1:K-1,shape=death_shape,rate=death_rate)
# time from Exposure event to Death is the convolution of two latter probabilities
timeFromExposureToDeath_probability = c(0)
for (x in 2:K) {
  timeFromExposureToDeath_probability = c(timeFromExposureToDeath_probability,
                                          sum(incubation_probability[1:(x-1)]*timeFromOnsetToDeath_probability[(x-1):1]))
}

### Machinery for Nimble
# Convolution functions
nimConvolutionWithCFR = nimbleFunction(
  run = function(a = double(1), b = double(1), q = double(1)) {
    L <- dim(a)[1]
    res1 <- numeric(L)
    for(k in 1:L) {
      res1[k] <- q[k]*a[k]
    }
    ans <- inprod(res1[L+1-1:L],b)
    return(ans)
    returnType(double(0))
  }
)

nimConvolution = nimbleFunction(
  run = function(a = double(1), b = double(1)) {
    L <- dim(a)[1]
    ans <- inprod(a[L+1-1:L],b)
    return(ans)
    returnType(double(0))
  }
)

## Shift in l1 and l2 used to avoid edge effects
shift = 26

nCases = length(onsetTimes)

## Main script
nimData = list(# incubation and period to death
  onsetTime = onsetTimes,
  deathTime = deathTimes,
  # incidence
  infected = Df$Incidence_Reported,
  dead = Df$Incidence_Deaths,
  # for contraint
  one = 1
)

# the following values are used for priors
incubation_mean_median = 13.16830
incubation_mean_lower = 10.99341
incubation_mean_upper = 15.52661
incubation_sd_median = 5.257898
incubation_sd_lower = 3.530271
incubation_sd_upper = 7.312072
death_mean_median = 14.21680
death_mean_lower = 10.83839
death_mean_upper = 17.70390
death_sd_median = 8.033101
death_sd_lower = 5.157413
death_sd_upper = 11.476860

nimConsts = list(nCases = length(onsetTimes),
                 incubation_uncertainty = 0.5,
                 death_uncertainty = 0.5,
                 exposure_mu = .5*(exposureTimesLower+exposureTimesUpper),
                 exposure_sd = (exposureTimesUpper-exposureTimesLower)/1.96/2,
                 r = rho,
                 K = K,
                 week = (Df$Week-shift-1)%%52+1,
                 incubation_mean_mean = (incubation_mean_upper+incubation_mean_lower)/2,
                 incubation_mean_sd = (incubation_mean_upper-incubation_mean_lower)/1.96/2,
                 incubation_sd_mean = (incubation_sd_upper+incubation_sd_lower)/2,
                 incubation_sd_sd = (incubation_sd_upper-incubation_sd_lower)/1.96/2,
                 death_mean_mean = (death_mean_upper+death_mean_lower)/2,
                 death_mean_sd = (death_mean_upper-death_mean_lower)/1.96/2,
                 death_sd_mean = (death_sd_upper+death_sd_lower)/2,
                 death_sd_sd = (death_sd_upper-death_sd_lower)/1.96/2
)


nimInits = function(){
  lambdaIncidence0 = rexp(K,1/3); CFR0 = runif(K,0.02,0.12);
  list(# incubation and period to death
    incubation_mean = runif(1,incubation_mean_lower,incubation_mean_upper),
    incubation_sd = runif(1,incubation_sd_lower,incubation_sd_upper),
    death_mean = runif(1,death_mean_lower,death_mean_upper),
    death_sd = runif(1,death_sd_lower,death_sd_upper),
    onsetExpectedTime = onsetTimes,
    deathExpectedTime = deathTimes,
    exposureTime = .5*(exposureTimesLower+exposureTimesUpper),
    incubationTime = onsetTimes-.5*(exposureTimesLower+exposureTimesUpper),
    timeToDeath = deathTimes-onsetTimes,
    # results
    incubationPeriod = incubation_probability,
    timeFromOnsetToDeath = timeFromOnsetToDeath_probability,
    timeFromExposureToDeath = timeFromExposureToDeath_probability,
    # incidence
    l1 = (runif(1,44,52)-shift-1)%%52+1,
    l2 = (runif(1,5,12)-shift-1)%%52+1,
    infected = Df$Incidence_Reported_NA,
    dead = Df$Incidence_Deaths_NA,
    lambdaIncidence = (1-CFR0)*lambdaIncidence0,
    lambdaDeath = CFR0*lambdaIncidence0,
    lambdaReported = lambdaIncidence0,
    pDeath = CFR0,
    exposure = lambdaIncidence0,
    CFR = CFR0,
    mean_a = c(runif(1,5,15),runif(1,.5,3)),
    sd_a = runif(2,0.1,1),
    mean_q = runif(1,0.02,0.12),
    sd_q = runif(1,0.1,1))}

nimCode = nimbleCode({
  ### incubation period and period from illness onset to death
  incubation_mean ~ dnorm(mean=incubation_mean_mean, sd=incubation_mean_sd)
  incubation_sd ~ dnorm(mean=incubation_sd_mean, sd=incubation_sd_sd)
  death_mean ~ dnorm(mean=death_mean_mean, sd=death_mean_sd)
  death_sd ~ dnorm(mean=death_sd_mean, sd=death_sd_sd)
  for (k in 1:nCases) {
    exposureTime[k] ~ dnorm(mean=exposure_mu[k],sd=exposure_sd[k])
    incubationTime[k] ~ dgamma(mean=incubation_mean, sd=incubation_sd)
    timeToDeath[k] ~ dgamma(mean=death_mean, sd=death_sd)
    onsetExpectedTime[k] <- exposureTime[k] + incubationTime[k]
    deathExpectedTime[k] <- onsetExpectedTime[k] + timeToDeath[k]
    onsetTime[k] ~ dnorm(onsetExpectedTime[k], sd=incubation_uncertainty)
    deathTime[k] ~ dnorm(deathExpectedTime[k], sd=death_uncertainty)
  }
  ### epidemiological model
  incubation_shape <- incubation_mean^2/incubation_sd^2
  incubation_rate <- incubation_mean/incubation_sd^2*7.0 #from days to weeks
  death_shape <- death_mean^2/death_sd^2
  death_rate <- death_mean/death_sd^2*7.0 #from days to weeks
  for (k in 1:K) {
    incubationPeriod[k] <- pgamma(k,shape=incubation_shape,rate=incubation_rate)-pgamma(k-1,shape=incubation_shape,rate=incubation_rate)
    timeFromOnsetToDeath[k] <- pgamma(k,shape=death_shape,rate=death_rate)-pgamma(k-1,shape=death_shape,rate=death_rate)
  }
  timeFromExposureToDeath[1] <- 0
  for (k in 1:(K-1)) {
    timeFromExposureToDeath[k+1] <- nimConvolution(incubationPeriod[1:k],timeFromOnsetToDeath[1:k])
  }
  ### exposure
  for (k in 1:K) {
    mean_a_realized[k] <- mean_a[1]+(mean_a[2]-mean_a[1])*equals(step(week[k]-l1),step(l2-week[k]))
    sd_a_realized[k] <- sd_a[1]+(sd_a[2]-sd_a[1])*equals(step(week[k]-l1),step(l2-week[k]))
    exposure[k] ~ dgamma(mean=mean_a_realized[k],sd=sd_a_realized[k])
    CFR[k] ~ dgamma(mean=mean_q,sd=sd_q)
  }
  for (k in 52:(K-1)) {
    lambdaIncidence[k+1] <- nimConvolutionWithCFR(exposure[1:k],incubationPeriod[1:k],1-CFR[1:k])/(1-r)
    lambdaDeath[k+1] <- nimConvolutionWithCFR(exposure[1:k],timeFromExposureToDeath[1:k],CFR[1:k])/(1-r)
    lambdaReported[k+1] <- lambdaDeath[k+1]+lambdaIncidence[k+1]
    pDeath[k+1] <- lambdaDeath[k+1]/lambdaReported[k+1]
  }
  for (k in 53:K) {
    infected[k] ~ dpois(lambdaReported[k])
    dead[k] ~ dbin(pDeath[k],infected[k])
  }
  ## Priors
  for(i in 1:2) {
    mean_a[i] ~ dhalfflat()
    sd_a[i] ~ dhalfflat()
  }
  mean_q ~ dhalfflat()
  sd_q ~ dhalfflat()
  l1 ~ dunif(0,53)
  l2 ~ dunif(0,53)
  one ~ dconstraint(l2>l1-3)
})

nimModel = nimbleModel(nimCode,
                       constants = nimConsts,
                       data = nimData,
                       inits = nimInits())
## Checking that all variables are properly initialized
nimModel$initializeInfo()

nimConf = configureMCMC(nimModel, thin = 100, setSeed=TRUE)
nimConf$addMonitors(c("incubationTime","timeToDeath","lambdaIncidence","lambdaDeath","pDeath","exposure","CFR","infected","incubationPeriod","timeFromOnsetToDeath","timeFromExposureToDeath"))

## Model compilation
nimMCMC = buildMCMC()
compiledModel = compileNimble(nimModel, nimMCMC, resetFunctions = TRUE, showCompilerOutput = TRUE)

Niter = 1e5
Nburn = 2e4
compiledModel$nimMCMC$run(niter=Niter+Nburn, nburnin = Nburn)
compiledModel$nimMCMC$mvSamples %>% as.matrix %>% as.data.frame -> nimSamples

saveRDS(nimSamples, file = paste0("nimSamples-",args[1],".rds"))

compiledModel$nimMCMC$getTimes() %>% { sum(.)/60 }

Appendix Code Snippet 2: An example of a bash script applied to Appendix Code Snippet 1 “MCMC.r”

#!/bin/bash
for replicate in {1..25}
do
  R CMD BATCH --no-save --no-restore '--args '"${replicate}" MCMC.r MCMC-final-${replicate}.Rout &
done


1

image3.emf
k


image4.emf
s


image5.emf
j


image6.emf
m


image7.emf
e


image8.emf
w


image9.emf
g


image10.emf
l


image11.tiff
~~
=
~—

~
<
~—

<
= 80 e
. otal size
)
& === infectious
=60
2
g
[,
= ~
£ 40 A ~<8
= / 4
=) / ~
o / >
o / ~
& 20 ’ >
E - ” S~ ——
o
=
20
Jan Feb Mar Apr Maylun Jul AugSep Oct NovDec
month
(c)
Prevalence level (%)
00—
rainy season
50 (mnean) I
100 80 dry season S
< 40 (mean)
Q =
S) 5 /
801 &
25 60 . /
25 Z
g/ @ 60 - 2
< g 5 10 15 20 25
=8 £ (d)
22 401 L;
< oy 2
E'é §: 0.20 x~ value
2 50 =
é < 0.15
: e
0 -
Jan Feb MarAprMaylun Jul AugSep Oct NovDec 0.10
month
0.05
0.00
5 10 15 20 25

rate at which § becomes I




image12.tiff
400

300

rainfall (mm)

count

200

60
50
40
30
20
10

Jan Feb Mar Apr MayJun Jul AugSep Oct Nov Dec

month

R ||

4

8 12 16 20 24 28 32 36 40 44 48 52
week number




image13.tiff




image14.emf
Month

Day 29 5 12 19

12

11

10

9

8

February

25 1

18

17

16

15

14

13

24

23

22

21

20

19

1 (Index)

2

7

6

5

4

3

January December

Case #

8 15 22


image15.png
Trace of incubation_mean Density of incubation_mean

©
e
o
|
pe |
o - =
T T T T T T < T T T T T T
0 2000 4000 6000 8000 10000 8 10 12 14 16 18
Iterations N'=10000 Bandwidth = 0.1781
Trace of incubation_sd Density of incubation_sd
o~
<
o S
©
o o =7
o
© o s
~ o S
o~ =
T T T T T T S T T T T T T
0 2000 4000 6000 8000 10000 2 4 6 8 10 12

Iterations N=10000 Bandwidth = 0.1563




image16.png
ACF

ACF

1.0

00 02 04 06 08

1.0

00 02 04 06 08

incubation_mean

incubation_sd & incubation_mean

35 30 25 20 15 10 5 O

Lag

= ckbe
T T T T T T T T

1.0

00 02 04 06 08

1.0

00 02 04 06 08

incubation_mean & incubation_sd

)
o
=]
>
o
S
o
X

30 35

incubation_sd





image17.png
15 20

10

Trace of death_mean

o

T T T T T
2000 4000 6000 8000 10000

Iterations

Trace of death_sd

o

T T T T T
2000 4000 6000 8000 10000

Iterations

0.10 0.20

0.00

010 020 0.30

0.00

Density of death_mean

T T T
10 15 20

N=10000 Bandwidth = 0.265

Density of death_sd

T T T T

5 10 15 20

N=10000 Bandwidth = 0.2374





image18.png
ACF

ACF

04 08

0.0

death_mean

0 5 10 15 20 25 30

Lag

death_sd & death_mean

-35 -30 25 20 -15 -10 -5

Lag

04 08

0.0

04 08

0.0

death_mean & death_sd

5

5

10

10

15 20 25 30 35

Lag

death_sd

15 20 25 30 35

Lag





image19.tiff
(a)

incidence

150

—_
f=3
f=}

1 10 20 30 40 50

®)

death count

20

15

Year

¢ 2016

10 20 30 40 50
week




image20.tiff
(a)

incidence

150

—_
f=3
f=}

1 10 20 30 40 50

®)

death count

20

—
w

—_
[

Year

2016

2017

2018

20

30
week

40





image21.png
Trace of mean_a[1] Density of mean_a[1]

® —
9
3
© b5
* <
8
« s
=] 2
B =
® 4
2
8 4
T T T T o T T T T T T 71
0 5000 10000 15000 6 8 10 12 14 16 18
Iterations N=18000 Bandwidth = 0.1765
Trace of sd_a[1] Density of sd_a[1]
o
&4
s
°
S
2
8 4
T T T T o T T T T
0 5000 10000 15000 5 10 15 20

Iterations N = 18000 Bandwidth = 0.2468




image22.png
ACF

ACF

1.0

00 02 04 06 08

1.0

02 04 06 08

0.0

mean_a[1]

Lag

sd_a[1] & mean_a[1]

1.0

00 02 04 06 08

1.0

00 02 04 06 08

mean_a[1] & sd_a[1]

Lag

sd_a[1]

Lag





image23.png
300

200

100

50

200 300 400

100

Trace of mean_a[2]

0.02 0.03 0.04

0.00 0.01

Density of mean_a[2]

T
5000

Trace of sd_a[2]

T
10000

Iterations

T
15000

T
5000

T
10000

Iterations

T
15000

002 003 0.04

0.00 0.01

T T T T T

0 50 100 150 200 250 300

N =18000 Bandwidth = 1.351

Density of sd_a[2]

T T T T
0 100 200 300 400

N =18000 Bandwidth = 1.563




image24.png
ACF

ACF

04 06 08 10

00 02

1.0

04 06 08

02

0.0

mean_a[2]

sd_a[2] & mean_a[2]

,,,,, sl

04 06 08 10

00 02

04 06 08 10

00 02

mean_a[2] & sd_a[2]

sd_a[2]

Lag





image25.png
Trace of mean_q

15

10

Density of mean_q

o

T T T
5000 10000 15000

Iterations

Trace of sd_q

10

AV
0.05

T T T T
0.10 015 020 025

N = 18000 Bandwidth = 0.003325

Density of sd_q

o

T T T
5000 10000 15000

Iterations

N = 18000 Bandwidth = 0.006195




image26.png
mean_q & sd_q

mean_q

%

80 90 v0 ZT0 00

%

80 90 v0 ZT0 00

40V

Lag

Lag

sd_q

sd_q & mean_q

%

%

80 90 v0 ZT0 00

80 90 v0 ZT0 00

40V

Lag

Lag




image27.png
20 30 40 50

10

20 30 40 50

10

Trace of

T T

T

5000 10000 15000
Iterations
Trace of 12
T T T
5000 10000 15000

Iterations

01 02 03 04 05

0.0

010 020 030

0.00

Density of 11

T T T T T
10 20 30 40 50

N =18000 Bandwidth = 0.127

Density of 12

T T T T T
10 20 30 40 50

N = 18000 Bandwidth = 0.3663





image28.png
ACF

ACF

06 1.0

02

-0.2

Lag

12&n

02 06 1.0

-0.2

02 06 1.0

-0.2

n&i2





image29.png
Ix[s?

B[R]

-

0 ot

s eREEEEB

] [ 0 ] ) e O e B T

L s =] g o Rl g

) ) () ) i) L ) L )l

-3 ] ] [ ) ] ) e D] |

SRS EFEE

O EERS

SeSAIFEEEBLL

[ T [T
o] e ] L] |




image30.png
rainfall (mm)

400

100

LI O A U S S S S A N
Jan Feb Mar Apr MayJun Jul AugSep Oct NovDec
month




image31.wmf
651

°

¢


image32.wmf
3738

°

¢


image33.tiff
1.4 4

=
8]
Il

seasonality factor, s
—

o

1

0.8

50

60 70 80
average population size, N

90

2

X
s 0.0100

0.0075
0.0050
0.0025

== (.0000




image1.tiff
Incubation period

0.125

0.100 4

0.0754

0.050 4

probability density

0.0254

0.000 4

10 20 30 40
day

O -

Period from illness onset to death

0.125

0.100 4

0.0754

0.050 4

probability density

0.0254

0.000 4





image2.tiff
Birth pulse B(t) (year™!)

0.00 0.25 0.50 0.75 1.00
time (year)




