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I. Open System Dynamics of Proton Motion

The state of pseudo-spins lives in a 212-dimensional Hilbert space H, that is to say that the density matrix ρ
describing this state has 212 × 212 elements. In this respect, it is not straightforward to present the details of its open
system dynamics. For the sake of simplicity, and without loss of generality, we will focus on the motion of a single
proton between the locations 1 and 2 in the hexamer in what follows (see Fig. 1-a for the details). Hence, instead of
working with the twelve-site self-Hamiltonian HHex given in Eq. (2.1), we will use the following two-site Hamiltonian

HHB =
2∑

j=1

Wj n̂j − J12(a
†
1a2 + a1a

†
2) + V12 n̂1n̂2 + λ I12 (1)

to describe the closed system dynamics. Note that asymmetric version of this Hamiltonian (W1 ̸= W2) was also used
in [1] to investigate the role of proton tunneling in biological catalysis.
After applying the Jordan-Wigner transformation given in Eq. (2.3) on this two-site Hamiltonian, we end up with

the two-qubit Hamiltonian

HHB = Jx

(
σ(1)
x ⊗ σ(2)

x + σ(1)
y ⊗ σ(2)

y

)
+ Jz σ

(1)
z ⊗ σ(2)

z +B
(
σ(1)
z + σ(2)

z

)
+ λ̃, (2)

where Jx = J12/2, Jz = V12/4, B = −(2W + V12)/4, and λ̃ = λ + (4W + V12)/4. Eigensystem of this Hamiltonian
can be written in an increasing order of the eigenvalues as

e1 = −Jz + 2Jx + λ̃, |e1⟩ = (|01⟩+ |10⟩)/
√
2,

e2 = −Jz − 2Jx + λ̃, |e2⟩ = (|01⟩ − |10⟩)/
√
2,

e3 = −2B + Jz + λ̃, |e3⟩ = |11⟩,
e4 = +2B + Jz + λ̃, |e4⟩ = |00⟩.

(3)

A. Local proton-phonon coupling

First, we examine the O−H stretch vibrations by considering them as two independent thermal baths existing

around the proton locations and having the individual self-Hamiltonians H
(j)
B given in Eq. (2.5). Also, we will

describe the interaction of the proton with these vibrations using the interaction Hamiltonian given in Eq. (2.6):

H local
I =

∑
j

n̂j

∑
k

(
gj,kb

†
j,k + g∗j,kbj,k

)
∝

∑
j

σ(j)
z

∑
k

(
gj,kb

†
j,k + g∗j,kbj,k

)
. (4)

1. Bath operators in interaction picture

If we switch into the interaction picture, the bath operators Bj =
∑

k (gj,kb
†
j,k + g∗j,kbj,k) become

Bj(t) = eXBje
−X

= Bj + [X,Bj ] + [X, [X,Bj ]]/2! + [X, [X, [X,Bj ]]]/3! + ...
(5)
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where X = iH
(j)
B t/~. To evaluate the commutators above, first we need to find the commutators [H

(j)
B , b†j,k′ ] and

[H
(j)
B , bj,k′ ]. In this respect, the bosonic commutation relations imply that

[H
(j)
B , b†j,k′ ] =

∑
k

~ωj,k [b
†
j,kbj,k, b

†
j,k′ ]

=
∑
k

~ωj,k

(
b†j,k[bj,k, b

†
j,k′ ] + [b†j,k, b

†
j,k′ ]bj,k

)
=

∑
k

~ωj,k b
†
j,kδk,k′ = +~ωj,k′ b†j,k′ ,

(6)

[H
(j)
B , bj,k′ ] =

∑
k

~ωj,k [b
†
j,kbj,k, bj,k′ ]

=
∑
k

~ωj,k

(
b†j,k[bj,k, bj,k′ ] + [b†j,k, bj,k′ ]bj,k

)
=

∑
k

~ωj,k (−δk,k′) bj,k = −~ωj,k′ bj,k′ .

(7)

Then, it is easy to calculate the commutators in (5) after writing them in terms of (6) and (7):

[X,Bj ] = (i t/~)[H(j)
B , Bj ]

=
∑
k

(i t/~)
(
g∗j,k[H

(j)
B , bj,k] + gj,k[H

(j)
B , b†j,k]

)
=

∑
k

(i ωj,k t)
(
−g∗j,kbj,k + gj,kb

†
j,k

)
,

(8)

[X, [X,Bj ]] = (i t/~)[H(j)
B , [X,Bj ]]

=
∑
k

(i2 ωj,k t
2/~)

(
−g∗j,k[H

(j)
B , bj,k] + gj,k[H

(j)
B , b†j,k]

)
=

∑
k

(i2 ω2
j,k t

2)
(
+g∗j,kbj,k + gj,kb

†
j,k

)
,

(9)

[X, [X, [X,Bj ]]] = (i t/~)[H(j)
B , [X, [X,Bj ]]]

=
∑
k

(i3 ω2
j,k t

3/~)
(
+g∗j,k[H

(j)
B , bj,k] + gj,k[H

(j)
B , b†j,k]

)
=

∑
k

(i3 ω3
j,k t

3)
(
−g∗j,kbj,k + gj,kb

†
j,k

)
.

(10)

By substituting these commutators into (5) and collecting terms involving bj,k and b†j,k together, we end up with
the interaction picture operators given by

Bj(t) =
∑
k

∞∑
l=0

(−i ωj,k t)
l

l!
g∗j,kbj,k +

∑
k

∞∑
l=0

(+i ωj,k t)
l

l!
gj,kb

†
j,k =

∑
k

g∗j,ke
−i ωj,k tbj,k + gj,ke

+i ωj,k tb†j,k. (11)

2. Thermal bath correlation function and dissipation rates

To calculate the bath correlation function ⟨B†
j (t)Bj′(0)⟩th, we will use the following thermal expectations:

⟨bj,kbj,k⟩th = 0, ⟨b†j,kbj,k⟩th = Nj(ωj,k),

⟨bj,kb†j,k⟩th = 1 +Nj(ωj,k), ⟨b†j,kb
†
j,k⟩th = 0,

(12)



3

where Nj(ωj,k) is the average number of phonons with energy ~ωj,k for the Bose-Einstein statistics and equals to
1/(eβ~ωj,k − 1). Then, for independent baths, the bath correlation function becomes:

⟨B†
j (t)Bj′(0)⟩th =

∑
k,k′

⟨(
g∗j,ke

−i ωj,k tbj,k + gj,ke
+i ωj,k tb†j,k

)(
gj′,k′b†j′,k′ + g∗j′,k′bj′,k′

)⟩
th

=
∑
k,k′

(
gj,kg

∗
j′,k′e+i ωj,k t⟨b†j,k, bj′,k′⟩th + g∗j,kgj′,k′e−i ωj,k t⟨bj,k, b†j′,k′⟩th

+ gj,kgj′,k′e+i ωj,k t⟨b†j,k, b
†
j′,k′⟩th + g∗j,kg

∗
j′,k′e−i ωj,k t⟨bj,k, bj′,k′⟩th

)
=

∑
k

|gj,k|2
(
e−i ωj,k t

(
1 +Nj(ωj,k)

)
+ e+i ωj,k tNj(ωj,k)

)
δjj′ . (13)

Dissipation rates γjj′ , half of the real part of one-sided Fourier transforms of ⟨B†
j (t)Bj′(0)⟩th, can be calculated by

using (13) as

γjj′(ω) = Γjj′(ω) + Γ∗
j′j(ω)

=
1

~2

∫ ∞

−∞
dτ ei ω

′τ ⟨Bj(τ)Bj′(0)⟩th

=
1

~2
δjj′

∑
k

|gj,k|2
((

1 +Nj(ωj,k)
) ∫ ∞

−∞
dτ ei (ω−ωj,k) τ +Nj(ωj,k)

∫ ∞

−∞
dτ ei (ω+ωj,k) τ

)
=

1

~2
δjj′

∑
k

|gj,k|2
(
2πδ(ω − ωj,k) (1 +Nj(ωj,k)) + 2πδ(ω + ωj,k)Nj(ωj,k)

)
=

2

~
δjj′

∫ ∞

0

dω′Jj(ω
′)
((

1 +Nj(ω
′)
)
δ(ω − ω′) +Nj(ω

′)δ(ω + ω′)
)

=
2

~
δjj′

{
Jj(ω)

(
1 +Nj(ω)

)
for 0 < ω < ∞

Jj(−ω)Nj(−ω) for −∞ < ω < 0
(14)

≡ δjj′γj(ω),

where the sum over the absolute square of the discrete coupling constants gj,k is replaced by an integral over a
continuous function Jj(ω) that is defined as π/~

∑
k |gj,k|2δ(ω − ωj,k) and called the spectral density function. This

function encapsulates all the effects of the jth bath on the associated pseudo-spin.
Note that −Nj(−ω) equals to 1 + Nj(ω). Hence, if Jj(ω) is an odd function, γjj(ω) ≡ γj(ω) turns out to be

2/~ Jj(ω)
(
1 +Nj(ω)

)
for all values of ω. Also note that γjj′(ω) is reduced to γj(ω) above because each pseudo-spin

is associated to an independent environment. This is expected for the imaginary part of one-sided Fourier transforms

of ⟨B†
j (t)Bj′(0)⟩th as well, i.e., Sjj′(ω) =

1
2i

(
Γjj′(ω)− Γ∗

j′j(ω)
)
= δjj′Sjj(ω) ≡ Sj(ω).

3. Lamb shift Hamiltonian and dissipator

To start analyzing the open system dynamics of pseudo-spins, eigenoperators of the self-Hamiltonian HHB should

be calculated using Eq. (2.10) with Aj = σ
(j)
z . Since HHB has 4 non-degenerate energy levels, there are

(
4
2

)
= 12

different transitions in the system. Each possible nonzero value of Bohr frequency ω corresponds to one of these
transitions. However, an interaction with the environment does not need to give rise to a transition always. Hence,
to account for such situations where no transition is enabled, ω can take one more value that is equal to zero.
Only 3 of the 13 values of ω correspond to non-zero eigenoperators, which are

Aj(0) = − |e3⟩⟨e3|+ |e4⟩⟨e4|,
Aj(ω12) = (−1)j |e2⟩⟨e1|, (15)

Aj(ω21) = (−1)j |e1⟩⟨e2|.

Then, the Lamb shift Hamiltonian HLS becomes H
(1)
LS +H

(2)
LS such that

H
(j)
LS = S 0

j

(
|e3⟩⟨e3|+ |e4⟩⟨e4|

)
+ S 1,2

j |e1⟩⟨e1|+ S 2,1
j |e2⟩⟨e2| (16)
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where S 0
j = Sj(0) and S j′,j′′

j = Sj(ωj′j′′). Similarly, the dissipator D(ρ) is decomposed into two dissipators each of
which takes the following form

D(j)[ρ] =− 2γ 0
j

(
℘3,4|e3⟩⟨e4|+ ℘4,3|e4⟩⟨e3|

)
− 1

2

(
γ 0
j + γ 1,2

j

)(
℘3,1|e3⟩⟨e1|+ ℘1,3|e1⟩⟨e3|+ ℘4,1|e4⟩⟨e1|+ ℘1,4|e1⟩⟨e4|

)
− 1

2

(
γ 0
j + γ 2,1

j

)(
℘3,2|e3⟩⟨e2|+ ℘2,3|e2⟩⟨e3|+ ℘4,2|e4⟩⟨e2|+ ℘2,4|e2⟩⟨e4|

)
− 1

2

(
γ 1,2
j + γ 2,1

j

)(
℘1,2|e1⟩⟨e2|+ ℘2,1|e2⟩⟨e1|

)
−
(
γ 1,2
j ℘1,1 − γ 2,1

j ℘2,2

)(
|e1⟩⟨e1| − |e2⟩⟨e2|

)
(17)

with γ 0
j = γj(0), γ

j′,j′′

j = γj(ωj′j′′), and ℘j,j′ = ℘j,j′(t) ≡ ⟨ej | ρ(t)|ej′⟩ are the elements of the pseudo-spin density

matrix in energy eigenbasis {|ej⟩}.

4. Exact solution of the master equation

When we substitute (2), (16) and (17) into Eq. (2.7), we end up with a master equation for the system of our
interest. It is straightforward to solve this master equation analytically. Exact solution in the energy eigenbasis is
given by

℘1,1(t) =
γ̃2,1

γ̃1,2 + γ̃2,1

(
℘1,1(0) + ℘2,2(0)

)
+ e−(γ̃1,2+γ̃2,1)t

( γ̃1,2
γ̃1,2 + γ̃2,1

℘1,1(0)−
γ̃2,1

γ̃1,2 + γ̃2,1
℘2,2(0)

)
,

℘1,2(t) = e−i
(
S̃1,2−S̃2,1+ω12

)
te−

1
2

(
γ̃1,2+γ̃2,1

)
t℘1,2(0),

℘1,3(t) = e+i
(
S̃0−S̃1,2+ω31

)
te−

1
2

(
γ̃0+γ̃1,2

)
t℘1,3(0),

℘1,4(t) = e+i
(
S̃0−S̃1,2+ω41

)
te−

1
2

(
γ̃0+γ̃1,2

)
t℘1,4(0),

℘2,2(t) =
γ̃1,2

γ̃1,2 + γ̃2,1

(
℘1,1(0) + ℘2,2(0)

)
− e−(γ̃1,2+γ̃2,1)t

( γ̃1,2
γ̃1,2 + γ̃2,1

℘1,1(0)−
γ̃2,1

γ̃1,2 + γ̃2,1
℘2,2(0)

)
,

℘2,3(t) = e+i
(
S̃0−S̃2,1+ω32

)
te−

1
2

(
γ̃0+γ̃2,1

)
t℘2,3(0),

℘2,4(t) = e+i
(
S̃0−S̃2,1+ω42

)
te−

1
2

(
γ̃0+γ̃2,1

)
t℘2,3(0),

℘3,3(t) = ℘3,3(0),

℘3,4(t) = e−iω34te−2γ̃0t℘3,4(0),

℘4,4(t) = ℘4,4(0), (18)

where S̃0 = S 0
1 + S 0

2 , S̃j′,j′′ = S j′,j′′

1 + S j′,j′′

2 , γ̃0 = γ 0
1 + γ 0

2 , and γ̃j′,j′′ = γ j′,j′′

1 + γ j′,j′′

2 .

5. Steady state of the master equation

℘3,3 and ℘4,4 are found to be constants of the open system dynamics in (18). Besides this, ℘1,1 and ℘2,2 seem to
go to nonzero constant values as well in the asymptotic limit. On the other hand, all the other elements of density
matrix vanish when t goes to infinity. Let’s show it more clearly by checking the stationary state that is obtained by
taking the left-hand side of master equation given in (2.7) as zero:

ρ∞ = ℘3,3(0)|e3⟩⟨e3|+ ℘4,4(0)|e4⟩⟨e4|+
1− ℘3,3(0)− ℘4,4(0)

γ̃1,2 + γ̃2,1

(
γ̃2,1|e1⟩⟨e1|+ γ̃1,2|e2⟩⟨e2|

)
. (19)

To elaborate on this calculation, we need to find γ̃1,2/(γ̃1,2 + γ̃2,1) and γ̃2,1/(γ̃1,2 + γ̃2,1). We can evaluate them
for two baths at the same temperature, e.g, N1(ω) = N2(ω) = N(ω) by using (14) together with the fact that
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ω12 = −ω21 < 0:

γ̃1,2
γ̃1,2 + γ̃2,1

=
N(ω21)

N(ω21) +
(
1 +N(ω21)

) =
1

1 + e+β(e2−e1)
=

e−βe2

e−βe2 + e−βe1
, (20)

γ̃2,1
γ̃1,2 + γ̃2,1

=

(
1 +N(ω21)

)
N(ω21) +

(
1 +N(ω21)

) =
e+β(e2−e1)

1 + e+β(e2−e1)
=

e−βϵ1

e−βϵ2 + e−βϵ1
. (21)

Then, the steady state solution given in (19) can be cast into the following simple form:

ρ∞ = ℘3,3(0)|e3⟩⟨e3|+ ℘4,4(0)|e4⟩⟨e4|+
1− ℘3,3(0)− ℘4,4(0)

e−βe1 + e−βe2

(
e−βe1 |e1⟩⟨e1|+ e−βe2 |e2⟩⟨e2|

)
. (22)

For the initial states satisfying ℘3,3(0) = e−βe3/
∑

i e
−βei and ℘4,4(0) = e−βe4/

∑
i e

−βei , this stationary state turns
out to be the thermal state. However, it doesn’t mean that thermalization is the underlying mechanism for this
result. Actually, a partial dephasing appears to be in charge: environment washes out all the coherence in the basis
of {|e3⟩, |e4⟩}, while it imposes a detailed balance between |e1⟩ and |e2⟩. As none of the eigenoperators of HHB that
corresponds to a transition from and/or to e3 or e4 survives in (15), environment can only exchange information with
these two energy levels and this results in a partial dephasing in the associated energy eigenstates. On the other hand,
the same environment can exchange heat with the remaining energy levels since there are non-zero eigenoperators for
these transitions and so, it equilibrates energy eigenstates |e1⟩ and |e2⟩.
In the meantime, note that this two-qubit steady state shares exactly the same form with the twelve-qubit steady

state given in Eq. (3.1).

B. Nonlocal proton-phonon coupling

We will extend the open system dynamics to include the oscillations of O−O separation R12 in what follows.
Assume that ûj is the displacement of the jth O atom from its reference position. Then the deviation of R12 from its
equilibrium value Req

12 can be defined as ∆R12 = û2 − û1. By considering this, let’s expand the hopping constant J12
about the point R12 = Req

12:

J12(R12) ≈ J12(R
eq
12) +

∂J12
∂R12

∣∣∣∣∣
R12=Req

12

(û2 − û1) ≡ J
(0)
12 (Req

12) + J
(1)
12 (Req

12)(û2 − û1). (23)

To reduce in complexity and extent, we assume that the first O atom is stationary, i.e., û1 = 0. Then, we switch

into the second-quantization representation of û2 replacing it with
∑

k

√
~/(2µΩk)(d

†
2,k + d2,k) where Ωk are the

frequencies of the oscillation of R12, and d†2,k and d2,k are respectively the phonon creation and annihilation operators

associated with the vibration of the second O atom. After this replacement, substitution of (23) into (2) causes the

transformation HHB → HHB +Hnl
I where the value of parameter Jx in HHB turns out to be −J

(0)
12 (Req

12)/2 and the
Hnl

I is a nonlocal proton-phonon interaction described by

Hnl
I =

(
σ(1)
x ⊗ σ(2)

x + σ(1)
y ⊗ σ(2)

y

)∑
k

hk

(
d†2,k + d2,k

)
≡ A3 ⊗B3,

(24)

with hk equals to −J
(1)
12 (Req

12)
√

~/(8µΩk). This new proton-phonon interaction requires to entail the calculation of
one more non-zero eigenoperators of HHB :

A3(0) = 2(|e1⟩⟨e1| − |e2⟩⟨e2|), (25)

that give rise to the emergence of the following Lamb-shift Hamiltonian in addition to the ones given in (16):

H
(3)
LS = 4S 0

3 (|e1⟩⟨e1|+ |e2⟩⟨e2|) , (26)
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and the following dissipator in addition to the ones given in (17):

D(3)[ρ] =− 2γ 0
3

(
℘3,1|e3⟩⟨e1|+ ℘1,3|e1⟩⟨e3|+ ℘4,1|e4⟩⟨e1|+ ℘1,4|e1⟩⟨e4|

)
− 2γ 0

3

(
℘3,2|e3⟩⟨e2|+ ℘2,3|e2⟩⟨e3|+ ℘4,2|e4⟩⟨e2|+ ℘2,4|e2⟩⟨e4|

)
− 8γ 0

3

(
℘1,2|e1⟩⟨e2|+ ℘2,1|e2⟩⟨e1|

)
. (27)

Inclusion of these additional terms into the master equation changes the exact solution from (18) to:

℘1,1(t) =
γ̃2,1

γ̃1,2 + γ̃2,1

(
℘1,1(0) + ℘2,2(0)

)
+ e−(γ̃1,2+γ̃2,1)t

( γ̃1,2
γ̃1,2 + γ̃2,1

℘1,1(0)−
γ̃2,1

γ̃1,2 + γ̃2,1
℘2,2(0)

)
,

℘1,2(t) = e−i
(
S̃1,2−S̃2,1+ω12

)
te−

1
2

(
γ̃1,2+γ̃2,1+16γ 0

3

)
t℘1,2(0),

℘1,3(t) = e+i
(
S̃0−S̃1,2−4S 0

3 +ω31

)
te−

1
2

(
γ̃0+γ̃1,2+4γ 0

3

)
t℘1,3(0),

℘1,4(t) = e+i
(
S̃0−S̃1,2−4S 0

3 +ω41

)
te−

1
2

(
γ̃0+γ̃1,2+4γ 0

3

)
t℘1,4(0),

℘2,2(t) =
γ̃1,2

γ̃1,2 + γ̃2,1

(
℘1,1(0) + ℘2,2(0)

)
− e−(γ̃1,2+γ̃2,1)t

( γ̃1,2
γ̃1,2 + γ̃2,1

℘1,1(0)−
γ̃2,1

γ̃1,2 + γ̃2,1
℘2,2(0)

)
,

℘2,3(t) = e+i
(
S̃0−S̃2,1−4S 0

3 +ω32

)
te−

1
2

(
γ̃0+γ̃2,1+4γ 0

3

)
t℘2,3(0),

℘2,4(t) = e+i
(
S̃0−S̃2,1−4S 0

3 +ω42

)
te−

1
2

(
γ̃0+γ̃2,1+4γ 0

3

)
t℘2,3(0),

℘3,3(t) = ℘3,3(0),

℘3,4(t) = e−iω34te−2γ̃0t℘3,4(0),

℘4,4(t) = ℘4,4(0). (28)

On the other hand, since the diagonal elements have no dependence on either γ 0
3 or S 0

3 , the stationary state remains
the same as

ρ∞ = ℘3,3(0)|e3⟩⟨e3|+ ℘4,4(0)|e4⟩⟨e4|+
1− ℘3,3(0)− ℘4,4(0)

γ̃1,2 + γ̃2,1

(
γ̃2,1|e1⟩⟨e1|+ γ̃1,2|e2⟩⟨e2|

)
= ℘3,3(0)|e3⟩⟨e3|+ ℘4,4(0)|e4⟩⟨e4|+

1− ℘3,3(0)− ℘4,4(0)

e−βe1 + e−βe2

(
e−βe1 |e1⟩⟨e1|+ e−βe2 |e2⟩⟨e2|

)
.

(29)

In this respect, O−O vibrations change the dynamics of the system, but do not affect its steady state.
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II. Model Parameters

A. Estimation of the parameters

Note that if the twelve-qubit initial state ρ(t = 0) lives only in the 64-dimensional subspace Hice, the steady state

of the chosen master equation depends on two free parameters, Jx and J
(intra)
z . Here, Jx equals to half of the orbital

interaction energy J which is responsible for the tunneling of the protons between O atoms, while J
(intra)
z is a quarter

of the inter-proton interaction energy Vintra which is responsible for the ionic defect penalty.
The values of these free parameters are extracted comparing the temperature dependent behaviour of probability

PBF with the phase transition temperatures predicted by recent dielectric constant measurements [2, 3] as follows.

First, we set Jx to zero and search for the appropriate J
(intra)
z values that give the expected temperature dependence

of PBF , i.e., PBF (T ) should be sufficiently close to unity at temperatures lower than the experimentally determined
phase transition temperatures and show a decrease during the phase transition. In this way, we try to reproduce the
experimental data without any need to assume that proton tunneling takes place during the phase transition. As
shown in Table I and Fig. 1, 10 meV is the maximum value consistent with the experimental data when compared to

its close neighborhood. We set J
(intra)
z to 10 meV in this respect.

Secondly, we gradually decrease Jx and search for its minimum value that preserves the consistency with the
experimental data. The value of Jx found in this way is −0.5 meV as shown in Table II.

Note that this two-step procedure does not exclude the likelihood of the presence of any other (J
(intra)
z , Jx) pair in

the phase space that might lead to exactly the same PBF (T ) as shown in Fig. 2 in the manuscript. However, it offers

a physically motivated (J
(intra)
z , Jx) pair as described above.

B. Sensitivity of the parameters

The sensitivity of PBF (T ) to the changes in the free parameters Jx and J
(intra)
z will be investigated in what follows.

Although PBF (T ) should be sufficiently close to unity at low temperatures, Fig. 4-a given in the manuscript shows

that it cannot reach to this limit at any temperature when J
(intra)
z is kept constant at +10 meV but Jx is set to a value

less than −0.5 meV, e.g. to −5 meV. Furthermore, Fig. 2 given below displays that it is impossible to readjust the

value of J
(intra)
z to bring the temperature dependence of PBF back to the expected behaviour after decreasing Jx down

to −5 meV. In fact, some values of J
(intra)
z are found to raise PBF up to unity at low temperatures, but PBF (T ) never

decreases for these particular J
(intra)
z values, even at temperatures quite higher than the experimentally determined

phase transition temperatures. Note that PBF (T ) should show a decrease during the phase transition. Hence, an
increase in the proton tunneling rate, up to a value ten times higher than the fixed value used in the manuscript,
cannot be compensated by a further change in the energy of ionic defect penalty.

On the other hand, according to Fig. 4-b given in the manuscript, a change in the value of J
(intra)
z from 10 meV

to 20 meV (5 meV) sets the temperature at which PBF (T ) deviates from unity to a value higher (lower) than the
experimentally determined phase transition temperatures. Also, PBF (T ) fails to exhibit its proper behaviour after
(before) this turning point when compared to Fig. 2 given in the manuscript. Here, Fig. 3 (Fig. 4) demonstrates

that no further adjustment in Jx can regenerate the expected temperature dependence of PBF after varying J
(intra)
z

to 20 meV (5 meV). Hence, a change in the energy of ionic defect penalty, up to a value twice as high (low) as the
fixed value used in the manuscript, cannot be neutralized by readjusting the proton tunneling rate.
In this respect, the expected temperature dependence of PBF exhibits a sensitivity to our free parameters, i.e.,

deviations from the fixed value of one parameter prevent the appearance of a slow decline in PBF (T ) from unity
around 58.9− 73.4 K, and this behaviour cannot reappear when the second parameter is also allowed to deviate from
its fixed value at the same time.

[1] Pusuluk, O., Farrow, T., Deliduman, C., Burnett, K. and Vedral, V., 2018, Proton tunneling in hydrogen bonds and its
implications in an induced-fit model of enzyme catalysis Proc. R. Soc. A 474, 20180037.

[2] Yen, F. and Chi, Z. H, 2015, Proton ordering dynamics of H2O ice. Phys. Chem. Chem. Phys. 17, 12458–12461.
[3] Yen, F. and Gao, T., 2015, Dielectric Anomaly in Ice near 20 K: Evidence of Macroscopic Quantum Phenomena. J. Phys.

Chem. Lett. 6, 2822–2825.
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TABLE I. Dependence of PBF (T ) and S(T ) to J
(intra)
z when Jx = 0.

J
(intra)
z S(20K) PBF (20K) PBF (58.9K) PBF (73.4K)

0.10meV 5.99 0.04 0.04 0.03

1.00meV 4.65 0.38 0.09 0.07

8.00meV 1.00 1.00 0.97 0.91

9.00meV 1.00 1.00 0.99 0.95

10.00meV 1.00 1.00 0.99 0.97

11.00meV 1.00 1.00 1.00 0.99

12.00meV 1.00 1.00 1.00 0.99

0.10 eV 1.00 1.00 1.00 1.00

1.00 eV 1.00 1.00 1.00 1.00

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

THKL

P
B

F

Jx = 0 meV

Jz
HintraL

= 20 meV
Jz
HintraL

= 15 meV
Jz
HintraL

= 10 meV
Jz
HintraL

= 5 meV

FIG. 1. The behaviour of probability PBF (T ) with respect to changes in the energy of ionic defect penalty when the orbital
interaction energy vanishes. Vertical solid lines coloured blue and red respectively pinpoint the experimentally determined
phase transition temperatures 58.9 K and 73.4 K [2].
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TABLE II. Dependence of PBF (T ) and S(T ) to Jx when J
(intra)
z = +10 meV.

Jx(meV) S(20K) PBF (20K) PBF (58.9K) PBF (73.4K)

−1.00 1.00 0.98 0.98 0.96

−0.90 1.00 0.99 0.98 0.96

−0.80 1.00 0.99 0.98 0.96

−0.70 1.00 0.99 0.99 0.97

−0.60 1.00 0.99 0.99 0.97

−0.50 1.00 1.00 0.99 0.97

−0.40 1.00 1.00 0.99 0.97

−0.30 1.00 1.00 0.99 0.97

−0.20 1.00 1.00 0.99 0.97

−0.10 1.00 1.00 0.99 0.97

−0.00 1.00 1.00 0.99 0.97

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

THKL
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F

Jx = - 5 meV

Jz
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= 50 meV
Jz
HintraL

= 20 meV
Jz
HintraL

= 5 meV
Jz
HintraL

= 2 meV
Jz
HintraL

= 10 meV

FIG. 2. The behaviour of probability PBF (T ) with respect to further changes in the energy of ionic defect penalty after the
orbital interaction energy is reduced to a value lower than the fixed value used in the manuscript.
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FIG. 3. The behaviour of probability PBF (T ) with respect to further changes in the orbital interaction energy after the energy
of ionic defect penalty is raised to a value higher than the fixed value used in the manuscript.
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FIG. 4. The behaviour of probability PBF (T ) with respect to further changes in the orbital interaction energy after the energy
of ionic defect penalty is reduced to a value lower than the fixed value used in the manuscript.


