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Appendix S1: Experimental protocol

All subjects were informed about the purpose and goal
of the study at the beginning of the experiment and gave
consent. After a preliminary survey about experience in
sports or performing arts and questions about any condi-
tions that would exclude them from the study (including
vision, hearing, and arm motion problems and history of
poor experience with virtual reality headsets), they were
shown how to use the motion capture suit and virtual re-
ality headset comfortably. The subject was familiarized
with the mirror game outside of the virtual reality en-
vironment through two quick practice rounds (one hand
at a time) with the researcher. Subjects were then in-
structed to “mirror [simultaneously] the motion, or ve-
locity, of the avatar” where the word “simultaneously”
was included in the training conditions because it was
unclear if all subjects understood what was implied by
mirroring in the untrained condition. When audio cues
were used, they were also told, “Try to use the sound
to predict the motion of the avatar’s hand.” Immedi-
ately previous to the start of the mirroring task, they
were reminded visually by a floating script to “Mirror
the hand.” Periodically throughout the trial, the com-
fort of subjects in the virtual environment was assessed
verbally. At the end of the experiment, all subjects filled
out a post-experiment survey to assess the comfort of the
suit and virtual headset, importance of fatigue, clarity of
instructions, and to check if they had been following in-
structions.

A sequence of trials for a single hand consisted of 16
different 30 s trials where the first and last trials were al-
ways a fully visible condition. During the experiments,
the task was paused every 2–3 minutes to assess the sub-
ject for any poor reactions to the virtual environment and
to ask explicitly about fatigue. If the subject expressed
any sign of fatigue, a rest of time of at least 15 s was
taken.

We tested four different experimental conditions in-
cluding no training and no audio (Visual Only), no train-
ing with audio (Audio), training without audio (Train),
and training with audio (Train+Audio) each with sub-
ject sample size N and unique subject and hand com-
binations M : (N = 10,M = 17), (N = 10,M = 10),
(N = 7,M = 13) and (N = 8,M = 15), respectively.
Nearly all subjects participated in two experiments, one
with each hand and the first hand chosen randomly. The
exceptions were when coding bugs prevented us from con-
tinuing the experiment.

For the Train and Train+Audio conditions, subjects

were told that the first 5 minutes of the experiment would
consist of a practice round with a single break in the
middle. During the break, subjects were asked if they
had any questions about their performance. When audio
cues were used, the experimenter emphasized the instruc-
tion to use the audio cue and asked the subjects to ex-
plain how they were using the audio cues. If they made
incorrect inferences about how the audio corresponded
to the motion—for example, one subject thought the
volume of the audio changed with the location of the
avatar’s hand—the experimenter explained to them how
they were incorrect. To all subjects, the experimenter
explained that the audio cue had pitch proportional to
the speed of the avatar and became higher in pitch when
the avatar was moving faster and lower when the avatar
was slowing down or changing directions.

We collected data from 35 participants, but one sub-
ject was excluded from the analysis because of professed
disinterest in the experiment and cursory completion of
the post-experimental survey that included answering an
inapplicable question without any mention or question
to the experimentalist. All subjects were assigned to one
experimental condition per visit. Subjects ranged in ages
from 18–42 with varying levels of experience in physical
activities requiring coordination with others. Experimen-
tal protocol was approved by the institution’s IRB and
the HRPO at the DoD.

The motion of the avatar was generated by the exper-
imenter with the goal of keeping it aperiodic and within
velocity bounds that would be well tracked by the PN
motion capture suit. In Fig. S1, we show the autocor-
relation function (ACF) of the avatar’s motion and the
distribution of velocities. The autocorrelation function

10-1 100 101 102

Time (s)

1.0

0.5

0.0

0.5

1.0

A
C

F

1.5 0.0 1.5
Velocity (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vy

vz

|v|

FIG. S1. Statistics on the avatar’s motion. (left) Autocorre-
lation function (ACF) of the velocity along the y and z axes
on which we assessed performance and the norm velocity |v|.
There is little structure in the velocities after the 1 s time
scale because the motion is aperiodic. (right) Cumulative
distribution function (CDF) of the velocities. The velocities
are relatively slow and nearly all within a speed of 1 m/s.
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FIG. S2. Architecture of the experimental apparatus. The
Python backend collects data from the Perception Neuron
(PN) motion capture system and compares it with prere-
corded motion of the avatar that is displayed in the Oculus
Rift virtual reality headset in the environment designed using
Unreal Engine 4 (UE4). Subject performance is then assessed
and the result used to train the learning algorithm that deter-
mines the next set of visibility parameters. Those parameters
are communicated back to UE4 for the next 30 s trial.

shows small periodicities at the 1 Hz time scale but oth-
erwise little other periodicity at longer time scales. The
CDFs show that the velocity of the avatar was limited to
a small regime bounded by 1 m/s.

Appendix S2: Experimental apparatus architecture

To run the experiment, we combine several commer-
cially available or open source platforms to run the vir-
tual environment, capture the motion of the subject, and
train the online learning algorithm. We discuss how these
are combined in an overview and then discuss details of
the platforms in more detail.

The main components of the system are detailed in
Fig. S2. The apparatus involves running a virtual reality
environment on Unreal Engine 4 (UE4), a game develop-
ment engine. Subjects are immersed in the environment
with the Oculus Rift virtual reality headset. We cap-
ture their motion using the Perception Neuron motion
capture suit. We compare the subject’s motion with the
prerecorded avatar’s on a Python backend and learn the
subject’s performance landscape the results of which are
sent to UE4 to determine the course of the experiment.

UE4 is a standard game development engine used
to develop applications for virtual reality environments
built on a C++ backend [1]. Since it is widely used, many
plugins and features are ready to use, and the Oculus
Rift requires no further programming to interact with
the three-dimensional environment that we build. We
use the environment to display visual instructions to the
subjects, manipulate the visual appearance of the avatar,
play the audio cue, and provide feedback to the subjects
on their performance in the form a green “health bar”
above the avatar’s head. This environment is displayed

in the Oculus Rift virtual reality headset that was orig-
inally designed for gaming and is available on the con-
sumer market. It provides a 3-dimensional perspective
through two lenses that refresh the visual field at 90 Hz.
Although each eye has a high definition 1080p view of
the world, the width of the field of view means that pix-
elation is visible, if not conspicuous.

To check that this environment was adequate for con-
trolling the visual appearance of the avatar during our
experiments, we verified that the internal loop control-
ling whether or not the avatar was visible was accurate
to the tens of milliseconds level. We did this by recording
the system clock time every iteration of the loop found it
to be accurate within tens of milliseconds. Instead, the
limiting factor in how low we can reduce the shortest vi-
sual gap or visual appearance of the avatar is the refresh
rate of the headset. This pins us at a lower limit of about
0.1 s which is close to the minimum for human reaction
time.

Perception Neuron (PN) is a motion capture suit de-
veloped by Noitom. Instead of relying on optical marker
tracking, PN is based on a network of inertial measure-
ment units (IMUs) that measure local acceleration and
angular velocities. This is a relatively new technology
because drift error can become a serious problem for sys-
tems not tethered to a fixed coordinate system.1 Nev-
ertheless, it is the case that in recent years IMU-based
systems have made notable advances and easily portable,
energy efficient, and significantly cheaper than most op-
tical marker tracking systems.

PN comes with software that rapidly (within a delay
of 15 ms) computes and transmits via port the motion
of the subject including position, velocity, acceleration,
and rotation angles [2]. However, these measurements
are processed by a custom algorithm based on propri-
etary technology and the raw acceleration and orientation
data from the suit sensors are inaccessible. Although we
cannot inspect the algorithm in detail, we note that the
widely-used algorithm used to calculate lower order mo-
ments of motion (velocity and position) are almost always
variations on the Kalman filter [3]. Typically, results are
more biased by particular assumptions of the algorithm
the higher the order of the integral or derivative one takes
from the data, so we focus on measuring the velocities of
the subjects and do not consider positions or orientations
of the body.

For our analysis, it is important that the total latency
in our system be below 100 ms which is the lower limit
to human reaction time. Across a few tests, we find that
the PN system compares remarkably well to other well-
tested equipment systems and latency errors are easily
below 100 ms.

1 Drift error refers to the fact that the measurement components
cannot measure directly the position or velocity of the IMUs
directly, but that they must be calculated from integration of
noisy measurements.
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FIG. S3. Comparison of velocity with an ultrasound distance
meter. A box was held between the two hands of the exper-
iment and moved towards and away from the detector. We
show the resulting estimates of the velocities from the detec-
tor (black), the Perception Neuron left hand (blue), and the
right hand (red). Zero crossings in the velocities agree within
50 ms, below the lower limit of our analysis in performance
(Fig. 2).

First, we compare the PN suit with a known stan-
dard and well-tested Vicon optical marker tracking sys-
tem in a local facility. This system provides a different
way of measuring the motion of the subject because it
tracks the location of each of the markers which can be
used to calculate the velocities instead of the accelera-
tion. When properly calibrated, the Vicon system can
measure the position of its markers down to millimeter
precision and with a latency of single milliseconds. We
find that on a computer system with sufficient process-
ing power (otherwise a significant time varying delay is
incurred) and when the PN suit is physically connected
to the computer, latency is well below 50 ms as adver-
tised. The values of the velocities do not agree with
those estimated from the Vicon system but they consti-
tute roughly a scaled transformation such that velocities
< 1 m/s like those encountered in the avatar’s motion do
not incur more than 10% error in the conditions we ex-
plored. Reassurringly, the zero velocity crossings match
almost exactly in the two systems. Given the high ac-
curacy and precision in timing of direction changes but
relatively significant errors in the magnitudes, we do not
consider directly the magnitudes of the velocities in our
analysis.2

We furthermore compare the timing of the suit with
an ultrasound Vernier Motion Detector. The ultrasound
distance meter is reportedly accurate to a single millime-
ter with a maximum recording frequency of 30 Hz [4].
To compare the PN suit with the detector, we held a
box between both hands and moved it towards and away
from the detector and measured the velocities along this
axis of motion as shown in Fig. S3. By interpolating

2 For the alignment of the subject’s motion with the avatar’s, we
use the magnitude of the measured velocities but we design our
cost function to rely on linear differences between the velocities to
minimize the effects of scale. In principle, we could also account
for such scaling errors by introducing a scaling error parameter,
but we did not find this necessary.
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FIG. S4. Example velocity trajectories as measured using the
Perception Neuron suit when the subjects hands are clasped
together. Errors in the inferred orientation of the hands lead
to larger relative errors in the x direction which corresponds
to the axis pointing from the subject to the avatar (Fig. 1A).
We ignore this axis for our analysis.

the measured velocities to estimate the zero crossings,
we find that disagreements were below 50 ms. Again, we
found nothing to suggest that the latency of the PN suit
was large enough to affect our results when estimating
the velocities. Indeed, we find close agreement between
the two systems and the timing of direction changes is
precise within few tens of milliseconds.

Finally, we tested the suits by fixing the hands to-
gether checking for consistency between the two velocity
trajectories, an example of which is shown in Fig. S4.
Here, we found that rotational errors in the orientation
of the arms would leads to differences in timing and ve-
locity along the x axis (pointing from the subject to the
avatar). The other axes y and z seemed to be less affected
by this problem. For our analysis, we do not consider the
x direction.

Appendix S3: Dynamic time warping (DTW)

Although spectral techniques provide one way to com-
pare motion in coordination tasks (including variants of
cross correlation, wavelet analysis, and recurrence plots),
we use DTW to align the velocity trajectories of the sub-
ject with that of the avatar [5–7]. One major issue with
using spectral techniques to identify temporal delays in
aperiodic motion is ambiguity in deciding which local
peak in the time-lagged cross-correlation corresponds to
the time delay especially when individuals are failing to
mirror the partner well. DTW, on the other hand, finds
the globally optimal alignment and thus can use global
information to resolve these ambiguities in local align-
ment. Overall, DTW is a computationally efficient way
of accounting for strong local nonlinearities in multiple
dimensions when comparing motion trajectories.

The goal of DTW is to align two curves by allowing lo-
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cal temporal stretching. This is accomplished by a combi-
natorial algorithm that involves finding the optimal path
in the matrix defined by Eq S3.1

Dij = |~vs(ti)− ~va(tj)|+ λg(i, j) (S3.1)

The corresponding path minimizes the total accumulated
distance between the warped curves with some extra cost
g and strength of regularization λ for disfavoring unre-
alistic trajectories. The resulting path defines a warped
time t̃i that gives a measure of the local time delay (or
anticipation) that the subject shows while tracking the
avatar.

The first term in Eq S3.1, what we call the cost, is of-
ten quadratic in the distance. For our system, the linear
distance between the two velocities is essential because of
both human motion and limitations of the experimental
apparatus that we are using to capture motion. Some
subjects change directions very rapidly to correct for er-
rors in direction and this results in large velocities with
temporal profiles that are almost correct while velocity
magnitude deviations can be large. With a cost function
that grows superlinearly with the velocity, error peaks
would be aligned even at the expense of many features
smaller in magnitude but indicative of mirroring. Fur-
thermore, we have found that the motion capture system
can overestimate absolute velocities especially when the
acceleration is large. Thus, peaks in velocities are espe-
cially prone to systematic error. In both these cases, a su-
perlinear distance measure between the velocities would
favor weight large peak matching instead of aligning the
many smaller features of trajectories, and so we rely on
a cost linear with distance between the trajectories.

As for second term in Eq S3.1, the regularization, we
design g to avoid situations in which the subject is im-
possibly anticipating the motion of the avatar (as can
happen when motion seems briefly periodic) and when
the inferred delay is so large that subjects would have to
remember far into the past while memorizing new mo-
tion simultaneously. To design a sensible regularization
function in Eq S3.1, we find that when λ = 0 DTW will
find some trajectories where the subject is leading the
avatar by seconds or is behind the avatar by seconds.
These trajectories tend to appear in cases where the sub-
ject is doing very poorly and so it is difficult to find a
temporally local trajectory that resembles the avatar’s
motion. They also occur where brief periodicities mean
a phase shift of 2π overlays the trajectories. Noting that
when the avatar is fully visible, subjects infrequently ven-
ture outside a time delay of 3/2 s or are ahead by more
than 1/2 s, we define g to be zero within the interval
∆t ∈ [−1/2 s, 3/2 s] and then sharply increasing outside
of that range.

g(i, j) =

{
0, |ti − tj + 1/2| < 1

|ti − tj + 1/2|6, |ti − tj + 1/2| ≥ 1
(S3.2)

with λ = 10−3 controlling the strength of regularization.
To calculate alignment, we first use FastDTW which

can calculate the time warp in nearly linear time instead

of quadratic time [8]. If the found trajectory ventures
outside of the bounding interval ∆t ∈ [−1/2 s, 3/2 s], we
then solve the problem using our own (slower) implemen-
tation including the regularization. We find that about
60% of the untrained trials were regularized whereas only
35% of the trained trials were. We might expect this
difference because untrained individuals typically do not
replicate the trajectory of the avatar as well and the al-
gorithm is more prone to misaligning stretches of motion.

Appendix S4: Velocity error thresholds

In the main text, we only consider the temporal de-
lays ε∗ to characterize the performance of the subjects.
Here, we explore the effect of a threshold in the align-
ment of the velocities ε∗v. In agreement with our results
when only considering the time delay threshold as shown
in Fig. 2, we find that Visual Only performance is much
worse when compared to the other conditions, there is
a range of timescales from about 200–800 ms where the
largest variation in performance between conditions ap-
pear, and that beyond those limits performance variation
is small. We also find that audio cues have a larger effect
on performance for the shortest time scales, in contrast
with training where performance is worse at faster time
scales. Overall, inclusion of the velocity error threshold
reaffirms our results about the change in mean perfor-
mance in the main text where we only consider the time
delay threshold.

To measure velocity error, we focus only on normalized
velocities. We ignore the speed because the size of the
avatar does not scale with the size of subject and because
we find that the PN suit system is prone to scaling errors
with velocity estimation (See SI Section S2). To compare
the velocity directions, we define the error to be

εv
(
t̃
)

=
1

2
− 1

2

~va
(
t̃
)
· ~vs
(
t̃
)∣∣~va (t̃)∣∣ ∣∣~vs (t̃)∣∣ (S4.1)

that is 1 when the velocities are anti-aligned, 1/2 when
they are orthogonal, and 0 when they are exactly paral-
lel. As with the timing delays, we choose a threshold ε∗v
and measure when subjects are below the fixed threshold.
Now instead of a single threshold, we have two thresholds
in both velocity ε∗v and timing ε∗,

π̂(τ, f) =
1

T̃ + 2

1 +

T̃∑
t̃

Θ
[
ε∗ −

∣∣ε (t̃)∣∣]×
Θ
[
ε∗v −

∣∣εv (t̃)∣∣]). (S4.2)

We calculate the mean performance 〈πi〉ε∗ over the av-
erage per subject as we change the thresholds. To do
this, we infer the entire predicted landscape given the
data points from Eq S4.2 for every combination of ε∗ and
ε∗v of interest. We summarize the results of the predicted
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FIG. S5. (A) Difference in average performance of Visual Only relative to Train+Audio for different combinations of the time
delay ε∗ and velocity direction ε∗v threshold. Rightmost column corresponds to the difference between the mean performance
values shown in the bottom of Fig. 2. (B) Comparison of Train with Train+Audio. (C) Comparison of Audio with Train+Audio.
Negative values (blue) indicate that performance is worse relative to Train+Audio.

landscapes in Fig. S5 where we show the change in aver-
age performance from (A) Visual Only to Train+Audio,
(B) from Train to Train+Audio, then (C) from Audio to
Train+Audio. The deepness of the blue indicates how
much worse average performance in the shown condi-
tion is relative to Train+Audio, whereas red indicates
relatively better performance. Consistent with results
in the main text, subjects do much better with either
training or audio than in the Visual Only condition as
indicated by the blue-dominated leftmost graph. The
rightmost column of these graphs corresponds to the dif-
ferences in the mean performance values shown in Fig. 2.
In the Train and Audio conditions in Figs. S5B and
C, the enhancement for Train+Audio is concentrated at
0.2 s < ε∗ < 0.8 s across all ε∗v. At the smallest shown
ε∗v = 0.1, we again are at the limit where subjects all
perform poorly because the threshold for error is so low,
and so we find, as expected, a narrowing the range of
performance across all conditions.

Appendix S5: Learning the performance landscape

Mapping the topology of the performance landscape
by measuring every combination of parameters (τ, f) is
infeasible. If, however, we assume that that the average
performance landscape changes smoothly as we change
the visual appearance of the avatar with parameters τ
and f , we can measure a few key points and interpolate
the missing ones. We model any particular measurement
of the subject i’s performance as a stochastic variable.

π∗i (τ, f) = pi(τ, f) + ηi, (S5.1)

where π ∈ [0, 1] has been mapped to the real line with the
inverse logistic transform π∗ = − log [1/π − 1] such that
0→ −∞ and 1→∞. The first term in Eq S5.1 refers

to the variation inherent to the subject, embodying how
fluctuations in the performance landscape are correlated
across different τ and f . It has mean 〈pi〉 = µi. The
second term in Eq S5.1 refers to an independent source
of statistical noise ηi with mean 〈ηi〉 = 0 and width〈
η2i
〉

= α2
i . The expected covariance between any two

measurements is then

〈πi(τ, f)πi(τ
′, f ′)〉 = 〈[pi(τ, f)− µi] [pi(τ

′, f ′)− µi]〉+
δτ,τ ′δf,f ′α

2
i (S5.2)

with delta function δx,x′ = 1 only if x = x′ and 0 other-
wise.

We model the distribution characterized by the covari-
ance in Eq S5.2 using Gaussian process regression (GPR).
This technique is equivalent to a multivariate normal dis-
tribution of the observed data points with covariance that
typically decays with increasing distance between two pa-
rameter sets (τ, f) and (τ ′, f ′) [9, 10], where the decay
length determines the typical size of local features in the
performance landscape.

When modeling the covariance function during the
course of an experiment, we used different formulations
for running the experiments including radial basis kernel
G or an exponential kernel K, which are both common
parameterizations of the kernel function. They are, re-
spectively,

Ki(d) = θi exp
(
−d2/2σ2

i

)
(S5.3)

Gi(d) = φi exp (−d/λi) (S5.4)

with coefficients φi and θi and scale parameters λi and σi.
Typically, the diagonal terms representing the noise are
considered separate from the kernel function such that
the covariance is the sum of the two:

〈πi(τ, f)πi(τ
′, f ′)〉 = Ki(d) + α2

i δτ,τ ′δf,f ′ (S5.5)
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In addition to the kernel, we must also decide on a ge-
ometry for the performance landscape that determines
the distance d in Eq S5.5. We use the geodesic distance
on a hemisphere to observe the singularities at f = 1
and f = 0 corresponding to the north and south poles,
where the longitude lines of performance at different τ
all converge [11].

Combining these elements, the log-likelihood of the set
of observed data points for subject i is given by the mul-
tivariate normal distribution

logLi ∝ −
∑

x=(τ,f)
x′=(τ ′,f ′)

πi(x)Kx,x′πi(x
′)− 1

2
log |K| (S5.6)

If the hyperparameters are not optimized at every step,
the parameter combination (τ, f) of maximal predicted
uncertainty is deterministic after every measurement be-
cause the log-likelihood does not depend on the value
of performance measured at that point. If the hyperpa-
rameters are optimized, then the parameter combination
with maximal uncertainty can change, but the computa-
tional cost of the calculation can be much higher.

We used different formulations of GPR depending on
the experimental condition. For the untrained condi-
tions, we used a radial basis kernel function without hy-
perparameter optimization at every trial. Thus for all
the untrained trials, all the same points were measured
on the performance landscape in the same order, though
ensuring that the parameter combination with maximum
uncertainty was selected next. For the trained conditions,
we used an exponential kernel with online hyperparam-
eter optimization. The difference in procedures means
that the sets of points collected for the untrained trials
are fixed throughout all subjects whereas for the trained
subjects the measured points are scattered differently
throughout the parameter space. When we model the
aggregate landscapes at the end, however, we model all
performance landscapes in the same way.

Appendix S6: Aggregate performance landscape

We combine the measured values across all subjects
for a given experimental condition to construct an ag-
gregate performance landscape that captures subject-
specific fluctuations and structure common across sub-
jects. We add onto Eq S5.1 a common landscape P across
all subjects and noise H that is iid for every observation
made with 〈H〉 = 0 and

〈
H2
〉

= β.

πi(τ, f) = pi(τ, f) + ηi + P (τ, f) +H (S6.1)

The terms P and H do not have indices because they are
shared across all subjects.

Then, we assume the corresponding covariance matrix
has the block form

Kij(d) = aKco(d) + δij
(
biKi(d) + δτ,τ ′δf,f ′α

2
i

)
+

δijδτ,τ ′δf,f ′δn,n′β
2 (S6.2)
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FIG. S6. Aggregated performance landscapes for the Visual
Only, Audio, and Train conditions from top to bottom as
predicted using Gaussian process regression. Blue lines are
best fits to level contours of the rescaled performance 〈π̃〉 =
1/2 of the form given by Eq 1.

with common kernel Kco, weight coefficients a and b, and
each data point has a unique index n. Here, we use the
more flexible Màtern kernel,

K(d) = Θ
21−ν

Γ(ν)
(d/λ)νκν(d/λ) (S6.3)

where κ is the modified Bessel function of the second kind
[12]. The Màtern kernel has a smoothness parameter ν
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such that when ν = 1/2 (with 0 ≤ ν ≤ 1/2 on a spherical
surface) it is the exponential kernel from Eq S5.4.

Given the large number of parameters, we regularize
the problem by imposing a sparseness constraint on the
coefficients of the subjects when maximizing likelihood

f({θi}) =
1

N

N∑
i=1

|θi| (S6.4)

such that subject specific terms in Eq S6.2 are driven to
zero when the common landscape is sufficient to describe
the subject’s behavior. When the coefficient θi is driven
to 0, the other parameters for that subject’s kernel be-
come irrelevant so this is an efficient way of reducing the
dimensionality of the parameter space. We also find that
the noise terms are often driven to 0 if they are not con-
strained even though fluctuations in the data seems to be
strongly important even when comparing the same sub-
ject’s performance for f = 1. Therefore, we add a weak
regularization for the noise terms

1
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N∑
i=1

|αi − 1/2| (S6.5)

As validation of our choice of the structure of the covari-
ance matrix, we find that the ratio of coefficients a/ 〈b〉i
is not driven to 0, but varies from 0.2 to 4.8 indicating
that shared structure in the performance landscape is
important.

The maximum likelihood parameters we find describe
a model that agrees well with the measured data points
across all 24 combinations of the 4 experimental condi-
tions and 6 values of ε∗ with correlation coefficient of
ρ = 0.98 when comparing π with π̂. We also perform
a cross-validation test by leaving one data point out of
the data (such that the covariance matrix is one row and
one column smaller) and comparing the prediction with
the measured data point and find still yet ρ = 0.95 [13].
For each single landscape (for a fixed ε∗ and experimen-
tal condition), we check directly the prediction error of
this cross-validation procedure and find that the aver-
age norm error per landscape is less than 0.01. These
statistics show that we have found a good fit to the per-
formance landscape.

As we describe in the main text, we must aggregate
over rescaled performance landscapes to show the tran-
sition curve shown in Fig. 1C. First, we rescale them
such that they all reach the value of π̃ = 1/2 at (τ, f) =
(2.0, 0.6). Then, we set π̃(f = 1) ≈ 1 and π̃(f = 0) ≈ 0.
The precise values for this last step in rescaling are cho-
sen for maximum contrast, but the shape of the transition
region does not depend on the upper and lower limits of
the rescaled performance landscape. The result of this
aggregation for the Train+Audio condition is in Fig. 1C
and the other conditions are shown in Fig. S6.

Appendix S7: Modeling the transition

In the main text, we fit the level curve of performance
in the region between high and low performance using
a linear relation between the visible duration τvis and
the invisible duration τinv parameterized by the two con-
stants a and b in Eq 1. We find this curve by minimiz-
ing the total value of the boxes that the contour passes
through

C =

K∑
k=0

π

(
τk, f =

1

1 + b
− a

(1 + b)τ

)2

(S7.1)

where τK = 2 s. Since we restrict our contour to the
limits of the parameter space we explore in this work,
however, Eq S7.1 can be minimized by simply reducing
the length of the contour.

In order to ensure that the contour passes through the
grid and does not minimize length at the expense of fit-
ting the level curve, we normalize by the length of the
contour on the grid. This length is

L =

∫ τ=2

τ=τ0

√
1 +

df

dτ

2

dτ (S7.2)

where τ0 corresponds to value of τ where the contour
crosses the bottom limit of the measured performance
landscape where f = 0.1,

τ0 =
a

−0.1b− 0.9
(S7.3)

Combining Eqs S7.1 and S7.2, we have the objective
function that we use to find the parameters in Eq 1

min
a,b
C(a, b) = C(a, b)/L(a, b). (S7.4)

The discreteness of the landscape means that a gradient-
based minimization routine will fail. Instead, we evaluate
the function across a grid of a and b to find the optimal
solution. For all the experimental conditions, we find the
values of a and b to yield very similar transition curves.
The values are shown in Table II.

Appendix S8: Decay distributions

When we inspect the durations of time t that sub-
jects are tracking the avatar closely, we find that the
distributions p(t) can be described by three main classes
characterized by either an exponential tail, a gamma-like
function with a dearth of the shortest decay times, or
a heavier-tailed distribution. Although the exponential
decay is a signature of a memoryless process, the remain-
ing two distributions indicate that the dynamics of how
subjects are tracking the motion of the avatar are not
generated from an time-independent process. Here, we
provide more detail on a few possible explanations for
the form and origin of these distributions.
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FIG. S7. Distribution of decay times for stable runs as indicated by shaded regions in Fig. 1B. (left) The most frequently
occurring distribution is close to an exponential decay. (middle) “Sticky” distributions show a dearth of very short decay times.
(right) “Robust” distributions show a power-law like decay with a heavy tail.

TABLE I. *

Transition contour parameters

Condition a b

Visual Only 0.41 0.28

Train 0.38 0.42

Audio 0.49 0.25

Train+Audio 0.34 0.50

TABLE II. Parameters found for Eq 1 using objective function
in Eq S7.4. Compared to the other conditions, Train+Audio
has a flatter transition zone showing that the transition to
poor performance varies less with τ .

The predominant class of distributions are exponen-
tial. In the language of control theory, exponential de-
cays are considered a “first to failure” process in a multi-
component system where failure manifests when the first
component fails. This intuition suggests that while the
average decay rate of the subject might depend on sub-
ject handedness, fatigue, difficulty of the task, or other
factors, much of the variation around the average can be
explained by a memoryless process as if the subject is
susceptible to random fluctuations that lead to failure.

In contrast, we find another class of decay distribu-
tions that show a characteristic depletion of short decay
times as indicated by a flat region of the CDF at small
durations. If it were the case that subjects were not to
decay straight from success (S) to failure (F) at mirroring
but first had to decay to intermediary states behaviorally
indistinguishable from S, we say subjects show “sticky”
mirroring:

S0
k0→ S∗1

k1→ · · · kN−1→ S∗N
kN→ F (S8.1)

with decay rate constants ki. For N > 1, we would expect
a flat region in the complementary CDF near t = 0 whose
extent depends on the number of intermediary states be-

fore decay. Since the average time to decay is only deter-

mined by the sum of the rate constants K =
∑N

i=0 ki, we
write the complementary CDF of decay times, otherwise
known as the survival function, as a function of a single
rate constant

1− CDF(t′) = e−Kt
′

N∑
n=0

Knt′n

n!
(S8.2)

where the distributions have been rescaled such that
K = 1 in Fig. S7. In the limit of N→∞, we recover the
gamma distribution. We find that the measured values
of N as calculated with maximum likelihood are concen-
trated at smaller values. Over 50% of the observed values
smaller than or equal to 5 when ε∗ = 1/2 s, suggesting
that enhanced dynamical stability corresponding to the
“sticky” distribution is slight.

In the remaining trials, we find distributions domi-
nated by very short decay times but with a heavy tail of
“robust” long runs. With the exponential and “sticky”
distributions, we observe dynamics that are consistent
with subjects occupying success or failure states sepa-
rated by “energy barriers.” When the dynamics are dom-
inated by the time it takes to escape a local energy mini-
mum, we may expect an exponential distribution for de-
cay times. When one energy minimum becomes strongly
dominant such that there is little switching, however, the
dynamics will instead be dominated by the width of the
local energy basin. Using this intuition, we might ex-
pect that the first passage time for simple diffusion as
shown in Fig. S7 model the data better than the other
distributions,

1− CDF (t′) = 1−
√
α

π

∫ t′=tα∗/α

1/30

t−3/2e−α/t dt.

(S8.3)

Here, the lower limit is important and is given by our
interpolation of the velocity trajectories at 30 Hz. We
cannot get a scaling collapse by rescaling by the mean.
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Instead, we rescale by the parameter α using a constant
α∗ = 0.05 as we show in Fig. S7. For robust mirroring,

it is as if the subject is trapped in some wide region
characterized by successful mirroring.
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