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I. TIME AND SPACE INTEGRATION

We note that ∂θ(s,t)
∂s ≡ κ(s, t) is the local curvature,

and we can rewrite Eq. 2

∂κ(s, t)

∂t
= −γκ(s, t)

−
t∫

−∞

β(τ)µ(t− τ) sin(θ(s, τ) − θp)dτ.
(1)

We use a simple explicit Euler scheme to integrate Eq. 1
over time, for each point s along the organ. The organ
is set to size L = 1, and is divided into NL = 100 bins,
i.e. each segment size is ds = L/NL = 0.01. The time
step is fixed at dt = 0.005. Within the Euler scheme, we

generally have κ(s, t+ 1) = κ(s, t) + dt · ∂κ(s,t)∂t , where we
substitute the derivative with the right-hand-side of Eq.
1, yielding:

κ(t+ 1, s) = κ(t, s) + dt · (−γκ(t, s)−
N∑
n=0

dtβ(t− n) sin(θ(s, n) − π

2
)e(−ndt/τc).

(2)

Here we demonstrated the case of an exponential re-
sponse function. After each time step we also integrate
the derived curvature over space, in order to get the lo-
cal angle, since θ(s, t) = θ(s = 0, t) +

∫ s
s′=0

κ(s′, t). We
therefore loop over the organ segments s = 0, .., NL:

θ(s, t) = θ(s− 1, t) + ds · κ(s, t) (3)

II. ANALYTIC CALCULATION OF THE
RESPONSE FUNCTION

In order to extract the form of the kernel response func-
tion from the kinematics of tropic responses, we solve

Eq. 2 for the case of a pulse stimulus, by substituting
β(t) = β0δ(t0 = 0) in the linearized limit (i.e we substi-
tute sin(θ(s, t) − θp) with (θ(s, t) − θp). Since we know
that

∫
dtf(t − τ)δ(t) = f(τ), substituting a pulse stim-

ulus eliminates the convolution, and together with the
initial condition θ(s, t = 0) = 0 leads to:

∂2θ(s, t)

∂t∂s
+ γ

∂θ(s, t)

∂s
= −β0θpµ(t). (4)

We now recall that
∫ L
0
dsdf(s)ds = f(L) − f(0). Therefore

if we integrate over Eq. 4 we get the following:

∂θ(L, t)

∂t
−∂θ(0, t)

∂t
+γθ(L, t)−γθ(0, t) = −β0θpµ(t)

∫ L

0

ds.

(5)
We substitute the clamped boundary conditions, θ(s =

0, t) = ∂θ(0,t)
∂t = 0, and

∫ L
0
ds = L, and rearrange the

equation, finally leading to Eq. 4:

µ(t) =
1

Lθpβ0

(
∂θ(L, t)

∂t
+ γθ(L, t)

)
. (6)

Moreover, rescaling the characteristic time and length
scales in the problem using l = L/Lc, τ = t/Tc and
ϕ = θ(L, t)/θp, we can write Eq. 4 yielding:

µ(τ) =
1

l

(
∂ϕ(l, τ)

∂τ
+ ϕ(l, τ)

)
, (7)

where Lc = γ/β is the convergence length, and is given by
the decay length of the exponential toward the vertical,
and it results from the balance between graviception and
proprioception [20].


