Spatiotemporal Integration in Plant Tropisms SUPPLEMENTARY MATERIAL

Yasmine Meroz, ${ }^{1,2, *}$ Renaud Bastien, ${ }^{3}$ and L. Mahadevan ${ }^{4}$, \dagger
${ }^{1}$ School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
${ }^{2}$ School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
${ }^{3}$ Department of Collective Behaviour, Max Planck Institute for Ornithology
and Department of Biology, University of Konstanz, Konstanz, Germany
${ }^{4}$ School of Engineering and Applied Sciences, and Departments of Physics, and Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA

I. TIME AND SPACE INTEGRATION

We note that $\frac{\partial \theta(s, t)}{\partial s} \equiv \kappa(s, t)$ is the local curvature, and we can rewrite Eq. 2

$$
\begin{align*}
\frac{\partial \kappa(s, t)}{\partial t} & =-\gamma \kappa(s, t) \\
& -\int_{-\infty}^{t} \beta(\tau) \mu(t-\tau) \sin \left(\theta(s, \tau)-\theta_{p}\right) d \tau \tag{1}
\end{align*}
$$

We use a simple explicit Euler scheme to integrate Eq. 1 over time, for each point s along the organ. The organ is set to size $L=1$, and is divided into $N L=100$ bins, i.e. each segment size is $\mathrm{d} s=L / N L=0.01$. The time step is fixed at $\mathrm{d} t=0.005$. Within the Euler scheme, we generally have $\kappa(s, t+1)=\kappa(s, t)+\mathrm{d} t \cdot \frac{\partial \kappa(s, t)}{\partial t}$, where we substitute the derivative with the right-hand-side of Eq. 1 , yielding:

$$
\begin{align*}
\kappa(t+1, s) & =\kappa(t, s)+\mathrm{d} t \cdot(-\gamma \kappa(t, s)- \\
& \sum_{n=0}^{N} \mathrm{~d} t \beta(t-n) \sin \left(\theta(s, n)-\frac{\pi}{2}\right) e^{\left(-n \mathrm{~d} t / \tau_{c}\right)} \tag{2}
\end{align*}
$$

Here we demonstrated the case of an exponential response function. After each time step we also integrate the derived curvature over space, in order to get the local angle, since $\theta(s, t)=\theta(s=0, t)+\int_{s^{\prime}=0}^{s} \kappa\left(s^{\prime}, t\right)$. We therefore loop over the organ segments $s=0, . ., N L$:

$$
\begin{equation*}
\theta(s, t)=\theta(s-1, t)+\mathrm{d} s \cdot \kappa(s, t) \tag{3}
\end{equation*}
$$

II. ANALYTIC CALCULATION OF THE RESPONSE FUNCTION

In order to extract the form of the kernel response function from the kinematics of tropic responses, we solve

Eq. 2 for the case of a pulse stimulus, by substituting $\beta(t)=\beta_{0} \delta\left(t_{0}=0\right)$ in the linearized limit (i.e we substitute $\sin \left(\theta(s, t)-\theta_{p}\right)$ with $\left(\theta(s, t)-\theta_{p}\right)$. Since we know that $\int d t f(t-\tau) \delta(t)=f(\tau)$, substituting a pulse stimulus eliminates the convolution, and together with the initial condition $\theta(s, t=0)=0$ leads to:

$$
\begin{equation*}
\frac{\partial^{2} \theta(s, t)}{\partial t \partial s}+\gamma \frac{\partial \theta(s, t)}{\partial s}=-\beta_{0} \theta_{p} \mu(t) \tag{4}
\end{equation*}
$$

We now recall that $\int_{0}^{L} d s \frac{d f(s)}{d s}=f(L)-f(0)$. Therefore if we integrate over Eq. 4 we get the following:
$\frac{\partial \theta(L, t)}{\partial t}-\frac{\partial \theta(0, t)}{\partial t}+\gamma \theta(L, t)-\gamma \theta(0, t)=-\beta_{0} \theta_{p} \mu(t) \int_{0}^{L} d s$.
We substitute the clamped boundary conditions, $\theta(s=$ $0, t)=\frac{\partial \theta(0, t)}{\partial t}=0$, and $\int_{0}^{L} d s=L$, and rearrange the equation, finally leading to Eq. 4:

$$
\begin{equation*}
\mu(t)=\frac{1}{L \theta_{p} \beta_{0}}\left(\frac{\partial \theta(L, t)}{\partial t}+\gamma \theta(L, t)\right) \tag{6}
\end{equation*}
$$

Moreover, rescaling the characteristic time and length scales in the problem using $l=L / L_{c}, \tau=t / T_{c}$ and $\varphi=\theta(L, t) / \theta_{p}$, we can write Eq. 4 yielding:

$$
\begin{equation*}
\mu(\tau)=\frac{1}{l}\left(\frac{\partial \varphi(l, \tau)}{\partial \tau}+\varphi(l, \tau)\right) \tag{7}
\end{equation*}
$$

where $L_{c}=\gamma / \beta$ is the convergence length, and is given by the decay length of the exponential toward the vertical, and it results from the balance between graviception and proprioception [20].

