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1. Extended Methods:
(a) Whole genome sequencing and QC

To assist with probe design, whole genome sequencing (WGS) was conducted for nine
exemplar decapod species (Table S2): Panulirus argus (Achelata: Palinuridae), Coenobita
clypeatus (Anomura: Coenobitidae), Emerita talpoida (Anomura: Hippidae), Procambarus
clarkii (Astacidea: Cambaridae), Menippe nodifrons (Brachyura: Menippidae), Ocypode
quadrata (Brachyura: Ocypodidae), Periclimenes rathbunae (Caridea: Palaemonidae), Penaeus
duorarum (Dendrobranchiata: Penaeidae), and Stenopus hispidus (Stenopodidea: Stenopodidae).
These species were targeted as they span the phylogenetic breath of Decapoda, and could be
freshly collected (or represented recently collected material). All material was selected from the
Florida International Crustacean Collection (FICC) or newly collected in localities around
southern Florida. All identifications were done by H. Bracken-Grissom using dichotomous keys
for these groups.

DNA was extracted from gills, legs or abdominal muscle tissue using the Qiagen Blood
and Tissue Extraction Kit following manufacturers’ protocols. For these nine decapod lineages,
low-coverage genome data were newly collected after DNA extracts were sonicated to a
distribution of 200-500 bp and used to produce 8 bp single-indexed Illumina libraries following
Lemmon et al. [1] and Prum et al. [2]. Libraries were pooled and sequenced on 18 PE-150
[lumina HiSeq2500 lanes with onboard clustering, producing 711 Gb of data (6x to 31x genomic
coverage, Table S2). After sequencing, paired reads passing Illumina Casava High Chastity filter
were merged following Rokyta et al. [3], i.e. if the paired reads overlapped at their 3’ ends
(updating quality scores for the overlapping positions, but leaving nonoverlapping bases
unchanged). At this point, sequencing errors were corrected and library adapters were removed.
These genomes were not assembled; the short reads were screened for probe design (discussed
below).

(b) Transcriptome sequencing

Transcriptomes were sequenced from multiple developmental stages for each of four
exemplar decapod species: Homarus americanus (Astacidea: Nephropidae), Lysmata
wurdemannii (Caridea: Lysmatidae), Mithraculus sculptus (Brachyura: Mithracidae), and
Paralithodes camtschaticus (Anomura: Lithodidae). For adult females, brain and/or muscle
tissues were dissected. For embryos (mid-germband stage) and larvae (first zoea), several
individuals were pooled into 1-3 replicates for each stage. Each sample was preserved in
RNALater for transport to AMNH. Collecting and sample information are found in Table S3.

Total RNA was extracted separately from individual tissues. Prior to immersion in
RNALater, whole animals were rinsed in 10% bleach followed by deionized water (to minimize
microbial contaminants). Samples were separately macerated in Trizol using the Xpedition
mechanical sample processor (Zymo Research), followed by RNA extraction with the Direct-zol
kit (Zymo), including a poly-A binding step to isolate mRNA. The quality and quantity of
mRINA was measured with the BioAnalyzer 2100 (Agilent) and Qubit 2.0 fluorometer



(Invitrogen). cDNA libraries were generated with TruSeq DNA preps (Illumina) at Weill Cornell
Medical College (for L. wurdemanni) and the New York Genome Center (for the other three
species). Transcriptomes were sequenced at the above respective labs, using Illumina HiSeq with
2x100 paired end reads, and 9-10 samples multiplexed per flow cell.

(c) Transcriptome QC and assembly

Raw Illumina reads were filtered for each sample using a Galaxy workflow based on the
FASTQ toolkit, following [4]. Briefly, adapter sequences were removed, followed by FASTQ
Groomer, removal of sequencing artifacts, and quality filtering. De novo transcriptome assembly
of filtered reads, combining all sequenced samples of a species, used Trinity [5] with the default
minimum k-mer threshold abundance (=1, so all k-mers were used in assembly). As in
Alexandrou et al. [4], Trinity output was re-assembled using iAssembler [6]. The number of raw
and filtered reads and assembly statistics are compiled in Table S4.

(d) Probe design

AHE targets conserved coding regions that are flanked by less conserved sequence
regions, with the goal of optimizing phylogenetic informativeness at multiple levels of
divergence [1]. Short probe sequences are hybridized to genomes of interest, and then those
targeted regions are enriched prior to sequencing [1]. Capture efficiency depends strongly on the
similarity between the probes and the genomes of interest, thus we created a new probe set
targeting highly conserved regions in decapod genomes. Target AHE regions were identified at
the FSU Center for Anchored Phylogenomics (www.anchoredphylogeny.com), using an
approach similar to that successfully employed for other arthropod groups, including Diptera [7],
Arachnida [8], Hemiptera [9], Coleoptera [10], Neuroptera [11], and Lepidoptera [12]. First, as
few annotated genomes were available, genomic resources from 23 species representing a variety
of Decapoda were obtained from published and new sources (see Table 1 for an overview and
Table S1 for details), including the nine new genomic and four new transcriptome datasets
described above. These were used as references for probe design.

To identify AHE target regions in Decapoda, genomic reads from two species (RefsA in
Table 1) identified in preliminary tests to yield the highest sequence recovery, Coenobita
clypeatus (Anomura: Coenobitidae) and Procambarus clarkii (Astacidea: Cambaridae) were
mapped to reference sequences from Tribolium castanaeum. The Tribolium sequences were
obtained from the Coleoptera AHE probe design alignments developed by Haddad et al. [10],
who targeted 941 protein coding regions conserved across Insecta. The mapping process, which
follows that described in detail by Hamilton et al. [8], identifies matching raw reads using a 17
bp of 20 bp spaced-k-mer threshold for preliminary matching, and 55% similarity score for final
placement of a read. As in [8], each target region was required to be at least 150 bp in length, and
containing no known exon boundaries. For each target region, reads matched by these criteria
were aligned and then extended into flanking regions. For each target region, the obtained
decapod sequences were aligned together with the corresponding Tribolium sequence using
MAFFT v7.023 [13]. Geneious R9 (Biomatters Ltd.; [14]) was used to identify and select well-
aligned regions that were utilized downstream. This process resulted in 823 preliminary AHE
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target regions for decapods, based on sequences from the references T. castanaeum, C. clypeatus
and P. clarkii.

To expand references across six selected decapod ‘major lineages’ (Achelata, Anomura,
Astacidea, Brachyura, Caridea, and Dendrobranchiata), we scanned six assembled
transcriptomes (RefsB in Table 1, including the four newly sequenced transcriptomes above, as
well as Litopenaeus vannamei (Dendrobranchiata: Penaeidae) and Cherax quadricarinatus
(Astacidea: Parastacidae [15])) for the 823 preliminary AHE target regions. Following Hamilton
et al. [8], we identified for each preliminary AHE target the best-matching transcript (with 55%
match minimum) in each of the six transcriptomes, to establish target regions. The resulting
sequences were aligned using MAFFT [13] and inspected in Geneious. After selecting the well-
aligned regions and removing 21 poorly aligned sequences, targets represented in fewer than four
of the six selected major decapod lineages were removed from downstream analyses. Removal of
overlapping loci (identified as having one or more shared 60-mer for any species) resulted in 352
final AHE targets, which contained both exonic and intronic regions.

Unlike previous studies of vertebrate and terrestrial arthropod clades [1,2,7-12], decapods
diverged over 450 million years ago (e.g. Figure 3). Therefore, our initial investigations revealed
that a single probe set covering all of this evolutionary history was not practical if we wanted to
sequence a sufficient number of target regions per species. The remaining genomic resources
were therefore utilized to build alignments representing the diversity within each of the six
selected major lineages. Raw reads from 16 additional species (see Table S1) were mapped to
major lineage-specific reference sequences (developed above) and used to extend the resulting
sequences into flanking regions [8]. The best matching genomic region in the assembled
Neocardina denticulata genome (Caridea: Atyidae; [16]) was also identified (4000 bp containing
each region was utilized downstream). For each AHE target region x major lineage combination
(n = 352 targets x 6 major lineages), an alignment containing all of the recovered sequences
(together with the major lineage-specific reference sequence) was then generated using MAFFT
and inspected in Geneious. As each alignment contained at least one sequence derived from a
genome, we were able to identify and mask intronic regions. To improve capture efficiency, we
also masked repetitive regions identified using k-mer counts in the N. denticulata genome. This
was done by creating a database for each species using all 15-mers found in the trimmed probe
region alignments, and all 15-mers that were 1 bp removed from the observed 15-mers [8]. We
scanned the N. denticulata genome for the presence of exact matches to the 15-mer repeats, and
alignment regions containing >100,000 counts were masked to prevent probe tiling across these
regions [8]. Probes were tiled at 4x density across all sequences in each of the alignments from
the 352 final AHE targets, and similar probes were removed. Table S5 provides details of the
target size and number of taxa representing each major lineage. The probes were divided across
two Agilent SureSelect XT kits as follows: 1) Decapodala ELID=801331 containing Denl1,
Carl, and Ast1 (56698 probes total), and 2) Decapodalb ELID=801341 containing Ach1, Anol,
and Bral (54854 probes total). The final probe sequences are available in the associated Dryad
repository (https://doi.org/10.5061/dryad.k7505mn; subfolder D_Probe_design).
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(e) AHE sequencing

Samples of 94 species (Table S6) were processed at the FSU Center for Anchored
Phylogeny (www.anchoredphylogeny.com) following Lemmon et al. [1] and Prum et al. [2].
Briefly, DNA extracts passing QC by Qubit were sonicated to a size range of 200-500 bp using a
Covaris E220 focused-ultrasonicator with Covaris microTUBES, and prepared to include single
8 bp library adapters. Libraries were pooled in groups of 16 and enriched using the
aforementioned probes from the two Agilent SureSelect XT kits (probes from the two kits were
pooled prior to the enrichment reaction). Enriched library pools of 16 samples were then pooled
for sequencing such that each of two 48-sample pools were sequenced on an Illumina HiSeq2500
lane with a PE150 protocol and 8 bp indexing (85 Gb total).

(f) AHE QC and assembly

Preliminary investigations of the captured sequence data showed high variation across
Decapoda in non-coding genomic regions outside of conserved exons, and third codon saturation
within exons. Therefore we modified the exon-based AHE pipeline of Breinholt et al. [12] to
allow for greater sequence divergence between taxa, and assembled the relatively conserved
exons as our final loci for downstream phylogenomics.

Paired-end raw Illumina reads were cleaned using Trim Galore! v0.4.0 [17], allowing a
minimum read size of 30 bp and trimming to remove bases with a Phred score below 20. To
identify a reference set of single-copy exon loci for Iterative Baited Assembly (IBA; [12]) with
the most coverage across decapod taxa, we used our AHE capture data and exon annotations
from the published Eriocheir sinensis genome (Brachyura: Varunidae; [18]; NCBI
PRINA305216). We identified single-copy exons in the E. sinensis genome using single-hit and
ortholog location genome mapping following Breinholt et al. ([12]; scripts: s_ hit_checker.py and
ortholog_filter.py). These scripts identified exons that have either a single hit, or a second-best
hit with a bit score <90% of the best hit to the reference genome; this process determines the best
hit location of each captured AHE target to the reference genome, E. sinensis [12]. These single-
copy exons from E. sinensis were screened against de novo Bridger assemblies of our cleaned
AHE data (using default parameters: [19]) using the script genome_getprobe_ TBLASTX.py
(available: https://github.com/jessebreinholt/proteinIBA.git; [20]) that uses tblastx instead of
blastn to identify sequences that resemble the single-copy exons, which were then screened for
orthology using ortholog_filter.py [12].

A total of 675 exons that had 40% or more of the taxa sequenced for AHE samples in this
study were used as the locus reference set called crab_ref1, which were translated into amino
acids as bait for IBA. The 675 identified exon-based reference loci include nearly all exons that
are represented in the 352 final AHE targets used in the probe design (key in Dryad). The
number of exon-based reference loci in each of the 352 final AHE targets ranged from 1-15, with
a mean of 3.4. Two exon-based reference loci were not found in the 352 final AHE target regions
and are likely off-target or may flank one of the 352 final AHE target regions. The IBA
successively uses USEARCH v7.0 [21] and Bridger v2014-12-01 [19] to assemble each locus in
the reference set, and ensure it hits the targeted probe of the reference taxon (E. sinensis). IBA
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was altered to take an amino acid reference using the script protein_IBA.py (available:
https://github.com/jessebreinholt/proteinIBA.git). We assembled the set of 675 exon-based
reference loci for each sequenced decapod taxon using protein_IBA with the k-mer size set to 25
and lower k-mer coverage of assembled sequences at 10x.

(g9) Alignment, orthology, and alignment trimming

The IBA output, blast table and the assembled sequences for each exon-based locus were
processed with protein_dir_fixer.py (available: https://github.com/jessebreinholt/proteinIlBA.git).
This script put all sequences in the same direction as the E. sinensis reference sequences, and
trimmed them to match the probe region for ortholog screening. The sequences were queried
using tblastx against the E. sinensis genome, and screened for orthology using the
ortholog_filter.py following Breinholt et al. [12], which was used to parse blast tables and test if
the top hit against the E. sinensis reference genome is at the same position of the target exon. As
an alternative to the contamination screen used by Breinholt et al. [12], we used maximum kmer
depth of the sequences assembled for each locus by selecting the sequences for every taxon with
the lowest ‘comp’ number output by IBA. The lowest ‘comp’ number is the set of sequences and
isoforms that received the greatest kmer depth in the Bridger assembly of each exon-based locus.
This method provided results comparable to the contamination filter and removing duplicates
step [12] without having to make assumptions about contamination using sequence similarity
based on taxonomy. The full-length sequences of the inferred orthologs were aligned with
MAFFT v7.245 [13]. As very little data appeared to be conserved or alignable across Decapoda
in the introns flanking the exon region, we trimmed the sequence using the
Extract_probe_region.py script [12]. Consensus of isoforms for each sequence were made to
reduce to a single sequence per locus and taxon using FASconCAT-G v1.02 [22] following
Breinholt et al. [12].

(h) Data matrix construction

The main data matrix comprised 410 exon-based loci (referred to throughout the
manuscript), assembled with IBA, with at least 60% of the taxa represented in each locus. The
average occupancy per locus = 81%; and completeness score as the total number of unambiguous
characters divided by the size of the alignment = 80%. We processed the alignment of 410 exon-
based loci with ALICUT/ALISCORE [23] to remove poorly aligned regions, but only three
nucleotides were removed (and no amino acids) across all loci, thus this step was not included in
the final dataset.A heatmap of pairwise amino acid completeness was constructed in ALISTAT
[24] for a concatenated matrix of the 410 exon-based loci (Figure S2). Details of final amino
acid and nucleotide matrices are described in Table 2.

(i) Systematic error

Systematic error is implicated in phylogenomics where the data violate assumptions of
the model, leading to convergence of ever-larger datasets towards an incorrect topology with
high support values (e.g. [25,26]). At the nucleotide level, both site-specific and lineage-specific
biases can strongly influence phylogenetic results. We investigated site-specific biases (i.e.
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multiple substitutions at the same site, or nucleotide saturation) by first building a saturation plot
for each codon position with DAMBE v6 [27]. The saturation plot (Figure S11) indicated strong
saturation of the third codon position, i.e. that this position evolved at a faster rate. Therefore, we
conducted analyses on the full nucleotide set, as well as codons 1+2 only [28] as a form of data
removal.

Broader biases in nucleotide compositional heterogeneity (lineage- and/or site-specific)
were investigated using datasets that were recoded to exclude synonymous substitutions. These
substitutions may or may not be saturated; biological base compositional bias is also accounted
for. Recoding used ambiguity codes in the degen v1.4 Perl script [12,29]. Degen recoding does
not change the matrix size; it merely reduces the degrees of freedom for possible substitution
combinations.

In the amino acid dataset, site-specific amino acid biases may be accounted for with the
CAT-GTR substitution model, but lineage-specific compositional biases do not have easily
implementable models [30]. Therefore we adopted a similar approach as we did for nucleotides,
using Dayhoff-6 recoding [30—-32]. As with degen recoding, it does not change the matrix size,
but groups the 20 amino acids into six classes that are similar on the basis of their biochemical
properties, reducing the number of possible substitution combinations. This recoding strategy has
been recommended for codon usage biases observed in pancrustacean nuclear genes in particular
[32], though it has also been observed to collapse nodal support in other taxa e.g. [30,33].

(i) Phylogenetic analysis

For maximum likelihood (ML) analysis, PartitionFinder [34] on the 410 locus dataset
(restricted to all versions of the LG model, including free rate models) obtained 149 best-fitting
partitions. The best-fitting substitution models for each of the 149 partitions were selected in 1Q-
TREE v1.63 [35]. In IQ-TREE, 50 independent searches were run with different random seeds.
All topologies were the same in each search, though branch lengths and scores differed. Support
was assessed with 250 nonparametric bootstraps, with a posteriori convergence determined in
RaxML using the MR, MRE, and MRE_IGN criteria (majority rule; convergence at 100) and FC
criterion (frequency-based; convergence at 150). ML analyses were conducted on all matrices
described in Table 2, except amino acid top 50.

For Bayesian inference, we used two chains and the CAT-GTR + G site-heterogeneous
substitution model implemented in PhyloBayes v3.3f [36]. All Bayesian analyses were
conducted on amino acid matrices; one matrix was recoded into the Dayhoff-6 functional groups.
An automatic stopping rule was implemented, with tests of convergence every 100 cycles, until
the default criteria of effective sizes and parameter discrepancies between chains were met (50
and 0.3, respectively), and with the bpcomp and tracecomp commands. Trees and posterior
probability distributions were then generated from completed chains after the initial 20% of
sampled generations were discarded as burn-in.

Coalescent (‘species tree’) methods were applied to investigate the role of incomplete
lineage sorting e.g. [37,38]. ASTRAL is statistically consistent with the multispecies coalescent,



and can be effective if there are sufficient gene trees matching the ‘true’ tree [39]. As input, we
used maximum likelihood gene trees calculated by IQ-TREE (only on amino acid data, otherwise
as above) with SH-like support. The species tree was then estimated in ASTRAL-III v5.6.1 [40],
collapsing nodes with <10% support, and estimating branch support using quartet node support
(the percentage of quartets in gene trees that agree with a branch).

(k) Divergence time estimation

Divergence times were estimated in PhyloBayes v3.3f [36] using a fixed topology input
based on the Bayesian CAT-GTR + G tree depicted in Figure 2. Preliminary runs indicated that
the distant outgroups may exhibit heterotachy, so all outgroups were removed from this topology,
except the two stomatopods. Due to the size of our data matrices and time to convergence, we
used an amino acid alignment of only the top 50 loci; selection of these was based on the amino
acid gene trees constructed for the ASTRAL analysis, with RaxML then used to calculate
Robinson-Foulds statistics to compare each gene tree topology to the concatenated fixed
topology [41]. Divergence time analysis was conducted in PhyloBayes under the CAT-GTR + G
substitution model, and two runs of four chains. We compared the uncorrelated gamma
multipliers (UGM) relaxed clock model [42], and the autocorrelated CIR model [43]. The root
prior was defined based on the Eumalacostraca node [44], thus applying a gamma distribution
with a mean of 440 Ma and SD of 20 Myr. All 19 internal fossil priors (justified in Extended
Data 2) used soft bounds with 5% of the probability distribution allowed outside of the input
ages, defined by a birth-death model [45]. An automatic stopping rule was implemented, with
tests of convergence every 100 cycles, until the default criteria of effective sizes and parameter
discrepancies between chains were met (50 and 0.3, respectively), and with the bpcomp and
tracecomp commands. Trees and posterior probability distributions were then generated from
completed chains after the initial 20% of sampled generations were discarded as burn-in. We also
compared estimated posteriors to the truncated effective prior (by removing sequence data using
the -prior flag in PhyloBayes; [46,47]; Figure S13).



2. Fossil Calibration Justifications:

We used 19 fossil calibrations, following the criteria of Parham et al. [48]. Node numbers
listed below correspond to labels in Figure 3. A summary of fossils and their ages is provided in
Table S7.

1. Node. This node comprises crown Verunipeltata (‘Stomatopoda’, or mantis shrimp) in
our tree, with nomenclature as previously discussed [44,49], and monophyly matching
Van Der Wal et al. [50]. All calibration data as in Wolfe et al. [44], node 51.

2. Node. This node represents crown Sergestoidea. In our phylogeny, this is the clade
comprising Lucifer, Parasergestes, Sergestes, and Deosergestes, their last common
ancestor and all of its descendants.

Fossil specimens. Paleomattea deliciosa Maisey and Carvalho 1995 [51]. Holotype
AMNH (American Museum of Natural History) 44985, carapace and abdominal
segments dissolved from acid prep of teleost fossil.

Phylogenetic justification. The phylogenetic position of this fossil was determined in a
total evidence analysis [52]. It was found within crown Sergestoidea in their taxon
sampling, sister taxon to Acetes. As it was outside of Sergia + Deosergestes, and we did
not sample Acetes, we allow P. deliciosa to calibrate the clade including Lucifer. Note
that a likely member of Luciferidae was recently discovered from the same deposits [53],
and could be appropriate for this node as well.

Age justification. Minimum as in Wolfe et al. [44], node 43. As the oldest decapod,
Palaeopalaemon newberryi (node 6), is crownward of shrimps and prawns, a
phylogenetic bracketing approach to obtain a soft maximum age for these groups is not
appropriate. If we were to use a maximum age from the oldest crown Malacostraca,
which would be 434.2 Ma [44], it would create priors that come into conflict with that of
P. newberryi and its older age range for all decapods. Thus we conservatively adopt a soft
maximum age of 521 Ma, as in node 1.

3. Node. This node represents crown Penaeoidea (penaeid shrimp/prawns). In our
phylogeny it is the clade comprising Penaeidae, Sicyoniidae, Aristeidae, and
Benthesicymidae, their last common ancestor and all of its descendants. Monophyly of
this clade was also supported by a recent total evidence (morphology + three nuclear
gene) phylogeny [52].

Fossil specimens. Ifasya madagascariensis Van Straelen 1933 [54]. Several specimens
examined for coding in Robalino et al. [52], including: MSNM (Museo di Storia Naturale
di Milano, Milan, Italy) i11309, 19311, 19408, 114229, 19383, 19406, 19328, 111243, and
i9328.



Phylogenetic justification. The phylogenetic position of this fossil was determined in a
total evidence analysis [52]. It was found within crown Penaeidae, thus also crown
Penaeoidea.

Age justification. I. madagascariensis was discovered in the Ambilobé region of
northwest Magadascar [55,56]. The fossiliferous sediments bear the index conchostracan
Euestheria (Magniestheria) truempyi, which may be correlated to the Bernburg
Formation of Germany [57]. Although this correlation was used as an indicator of
Olenekian age for Ambilobé [57], revisions to conchostracan biostratigraphy correlate M.
truempyi to the Dienerian substage of the global Induan stage, Early Triassic [58]. The
minimum age of the Induan (or the lower boundary of the Olenekian) is 251.2 Ma, based
on the 2017 International Chronostratigraphic Chart, thus providing a minimum age for I.
madagascariensis. Soft maximum as in node 2 herein.

. Node. This node represents crown Stenopodidea (cleaner/boxer shrimp). In our
phylogeny, this is the clade comprising the (currently recognized) genera Stenopus,
Microprosthema, and Macromaxillocaris, their last common ancestor and all of its
descendants.

Fossil specimens. Phoenice pasinii Garassino 2001 [59]. Holotype, MSNM i24799.

Phylogenetic justification. Recently, a need to revise the systematics of crown
Stenopodidea has been identified based on a molecular phylogeny [60]. Only three fossil
species have been described, and none have yet been evaluated using phylogenetics. Of
these, two, Devonostenopus pennsylvaniensis Jones et al. 2014 [61] and Jilinocaris
chinensis Schram et al. 2000 [62], were placed within Stenopodidea on characters that
were admittedly poorly preserved and not conclusive. In contrast, P. pasinii is better
preserved, and has a number of diagnostic characters confirming its stenopodidean
affinity [59]. In particular, the subtriangular telson and presence of two longitudinal
dorsal carinae on the uropodal endopods suggest a relationship to the Stenopodidae [59].
While it is not clear if P. pasinii belongs within crown versus stem Stenopodidae, it is
reasonable to assign this fossil within crown Stenopodidea.

Age justification. P. pasinii was discovered in the Hakel/Hagel (holotype) and
Hadjula/Hjofila outcrops, northeast of Beirut, Lebanon [59]. Presence of the ammonite
Allocrioceras cf. annulatum in the Hjotila limestone correlates the deposit to the
Sciponoceras gracile Zone in the Western Interior of the USA and the Metoicoceras
geslinianum Zone globally [63]. The S. gracile Zone has a cyclostratigraphic minimum
age of 94.39 Ma + 0.12 Myr [64], providing a minimum age constraint of 94.27 Ma for P.
pasinii. Soft maximum as in node 2 herein, to allow for the possibility that
Devonostenopus is within the crown.

. Node. This node represents crown Caridea. In our phylogeny, this clade is represented by

Alpheidae (snapping shrimp), Atyidae (freshwater shrimp), Barbouriidae, Hippolytidae
(cleaner and broken-back shrimp), Lysmatidae (cleaner and peppermint shrimp),
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Oplophoridae (bioluminescent shrimp), Palaemonidae (freshwater and symbiotic
anemone shrimp), and Thoridae (anemone shrimp), their last common ancestor and all of
its descendants. Based on previous molecular trees, and our topology, Procarididea
(anchialine shrimp) are excluded from the otherwise monophyletic crown Caridea [65].
Although we did not sequence Amphionidacea, recent analysis of four genes [66] placed
this organism as a suspected larval pseudo-taxon within our concept of Caridea, thus the
calibration node would not need to be modified if they are added in future.

Fossil specimens. Blaculla haugi Winkler 2015 [67], holotype SMNS (Staatliches
Museum fiir Naturkunde, Stuttgart, Germany) 70286.

Phylogenetic justification. B. haugi is within crown Caridea based on overlap of the
pleonal pleurae, and the first two pereiopods being chelate while the third, fourth, and
fifth are achelate [67]. The first two pereiopods have some characteristics in common
with the extant clade ‘Alpheoidea’ (see below), with stouter first pereiopods and multi-
jointed second pereiopods [67]. However, pereiopod appendage morphology across
caridean families appears to be convergent [68], which challenges the ability to correctly
assign fossils to crown families based on these morphologies (also challenging the
confidence in older putative caridean fossils). Mandibular structure is possibly more
diagnostic [68], however, mouthparts are not well preserved in Solnhofen material [67].
Furthermore, the assumed composition of crown Alpheoidea does not include
Palaemonidae [69,70], but these are found within a paraphyletic group within our tree
(also supported in previous molecular trees: [71,72]). Additional putative caridean fossils
are also known from the Solnhofen limestones, e.g. [73-75], and are thus of the same
age, suggesting Caridea had begun to diversify. We remain agnostic on proposed, but not
diagnostic, caridean fossils from the Early Triassic Paris Biota of Idaho [76]. The several
possible Solnhofen taxa, together with the morphology of B. haugi, permit a conservative
minimum age constraint on crown Caridea in its entirety, rather than on any specific
families.

Age justification. The fossil of B. haugi was found in the Solnhofen Plattenkalk
(lithographic limestone) of Eichstitt, Bavaria, Germany [67]. As discussed by Benton et
al. ([771], node 31), a minimum age for Solnhofen fossils is 150.94 Ma. Soft maximum as
in node 2 herein.

. Node. This node represents crown Reptantia. In our phylogeny, this is the clade
comprising Axiidea, Astacidea, Achelata, Polychelida, Gebiidea, Anomura, and
Brachyura, their last common ancestor and all of its descendants. Glypheidea are
included in previous formulations of Reptantia, and if corroborated by future
phylogenomic data (as already suggested in the mitogenome tree of Tan et al. [78]), they
will not affect our calibration choice. As in the discussion of Wolfe et al. [44] node 49,
the Devonian fossil Palaeopalaemon newberryi Whitfield 1880 [79] is within crown
Reptantia. This is implicitly confirmed in the phylogenetic analysis of Jones et al. [80].
Thus all calibration data including both age priors as in Wolfe et al. [44], nodes 49, 55,
and 56.
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7. Node. This node represents crown Achelata, a clade comprising the families Palinuridae
(spiny lobsters) and Scyllaridae (slipper lobsters), their last common ancestor and all of
its descendants.

Fossil specimens. Yunnanopalinura schrami Feldmann et al. 2012 [81]. Holotype LPI
(Luoping section, Invertebrate Paleontology Collection, Chengdu Institute of Geology
and Mineral Resources) 40169.

Phylogenetic justification. This species has been previously justified as a calibration for
Achelata [81,82].

Age justification. Y. schrami was recovered from limestone of the Luoping Biota,
Member II of the Guanling Formation, near Luoping, Yunnan, south China [81,83].
Extensive stratigraphy of the Luoping biota places the Guanling Formation just below the
uppermost boundary of the Anisian stage [83]. The upper boundary of the Anisian is
estimated at 241.5 Ma + 1 Myr [58], thus providing a minimum age at 240.5 Ma. A soft
maximum age is obtained by phylogenetic bracketing, with the generous assumption that
crown Achelata are not older than the oldest known crown Decapoda, which is
Palaeopalaemon newberryi [44]. The age of the Chagrin Shale, which bears P.
newberryi, is late Fammenian based on the presence of index algae; there is no lower
bound index fossil mentioned [44]. Thus a maximum age of this deposit is estimated as
the lower bound of the Fammenian, at 372.2 Ma [84].

8. Node. This node represents crown Nephropidae (true lobsters). In our tree, this includes
Thaumastocheles, Nephropoides, and Nephropsis, their last common ancestor and all of
its descendants. Note that the family Thaumastochelidae is now synonymized with
Nephropidae [85].

Fossil specimens. Jagtia kunradensis Tshudy & Sorhannus 2000 [86]. Holotype IRScNB
(Institut Royal des Sciences Naturelles de Belgique, Brussels) 90-33h.

Phylogenetic justification. Morphological phylogenetic analysis places J. kunradensis as
more closely related to Nephropsis and Nephropoides than to Thaumastocheles [87].
Thus J. kunradensis is in the crown group. Another lobster fossil (Oncopareia) within the
crown group in this analysis was not referred to specific material, and is of similar age to
J. kunradensis. Hoploparia stokesi was also found within the crown group Nephropidae
by Karasawa et al. [87], but the systematics of this genus demand revision [88]. Such
revisions would likely compromise the wider stratigraphic range reported for Hoploparia
[89]. Thus J. kunradensis is the most conservative calibration fossil for Nephropidae.

Age justification. J. kunradensis has been collected from the Kunrade Limestone facies
of the Maastricht Formation, southeast Netherlands [86]. The Maastricht Formation is
eponymous for the Maastrichtian stage of the latest Cretaceous (although it does not bear
the GSSP for either lower or upper stage boundary; [64]). The upper boundary of the
Maastrichtian is well constrained at 66.0 Ma [90], thus providing a minimum age for
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10.

Nephropidae. Soft maximum as in node 8 herein.

Node. This clade, in our tree, comprises Cambaridae, Cambaroididae, Astacidae, and
Parastacidae (together: crayfish), their last common ancestor and all of its descendants.
Monophyly of freshwater crayfishes has been previously established by a number of
molecular and morphological analyses, e.g. [82,91].

Fossil specimens. Cricoidoscelosus aethus Taylor et al. 1999 [92]. Based on holotype
NIGP (Nanjing Institute of Geology and Palaeontology) 126337 and NIGP 126355 [87].

Phylogenetic justification. Morphological phylogenetic analysis places C. aethus as the
sister of a clade comprising the extant crayfish Cambarus and Procambarus, both
members of Cambaridae [87]. The published morphological tree places C. aethus further
crownward than Parastacidae [87], in relationships that mirror our AHE topology.
Therefore, it is an appropriate fossil to calibrate the freshwater crayfish crown group.

Age justification. Minimum as in Wolfe et al. [44], node 60. Soft maximum as in node 8
herein.

Node. This node represents crown Axiidea (mud shrimp/ghost shrimp). In our tree, this
clade is represented by Axiidae, Callianassidae, Callianideidae, Gourretiidae, their last
common ancestor and all of its descendants. Monophyly of this clade is established by
molecular phylogeny of the 16S, 28S, and 18S genes [93,94].

Fossil specimens. Protaxius isochela Woodward 1876 [95]. Calibration material is from
specimens MAN (Museum-Aquarium at Nancy, France) 11700-11762 [96].

Phylogenetic justification. As discussed by HyZny & Klompmaker [97], the fossil record
of mud shrimps usually preserves only the distal cheliped elements, and many are
assumed to be members of a wastebasket ‘Callianassa’, which compromises systematic
identification. The oldest putative members are Jurassic, all of which are likely most
closely related to crown Axiidae [97]. The very oldest, Magila bonjouri Etallon 1861,
was described from a preserved dactylus + propodus, but the holotype cannot be found
[97]. The only Jurassic species with full body preservation is P. isochela, where the
specimen figured (drawn) by Woodward is unfortunately not identified ([97],
supplement). However, HyZny & Klompmaker [97] mention material of P. isochela from
France as accepted within this taxon, thus we may calibrate a minimum age from the
specimens discussed by Breton et al. [96]. Although the relationship of P. isochela to
crown Axiidae is not precisely known, it is well within the crown-group of Axiidea.

Age justification. French P. isochela material was recovered from wells at Bure, Meuse,
in the northeast of France [96]. The locality belongs to the Rasenia cymodoce to
Aulacostephanus mutabilis ammonite Zone [96]. The upper boundary of the A. mutabilis
Zone is Chron M23r.2r.1, with an age of 153.55 Ma [98], in the Kimmeridgian. This
provides a minimum age estimate for Axiidea. Soft maximum as in node 8 herein.
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11. Node. This node represents crown Gebiidea (mud shrimp/mud lobster/ghost shrimp). In
our tree, this is only represented by Laomediidae and Axianassidae, their last common
ancestor and all of its descendants.

Fossil specimens. Laurentiella imaizumii Karasawa 1993 [99]. Material figured by
Karasawa [99] includes MFM (Mizunami Fossil Museum, Mizunami, Gifu Prefecture,
Japan) 39003-39006, and MFM 39117.

Phylogenetic justification. Based on molecular phylogenetics, Laomediidae and
Axianassidae are sister clades within Gebiidea, exclusive of the clades we did not sample:
Thalassinidae and Upogebiidae [93,94]. No fossil Axianassidae are recorded, thus we
must calibrate based on fossil Laomediidae. While the position of L. imaizumii within
either the crown or stem of Laomediidae is unknown, it does share characters indicating
its membership within the total group of Laomediidae (e.g. strongly heterochelate
chelipeds; [99]). Thus, L. imaizumii is within the crown group of the represented
Gebiidea. Note that the extant genus Laurentiella is considered a junior homonym of
Saintlaurentiella [100]; this does not influence the calibration choice.

Age justification. The oldest occurrence of L. imaizumii is in the Akeyo Formation of the
Mizunami Group, Gifu Prefecture, Japan [99,101]. The type locality, the Toyoda
Formation, is slightly younger [99,102]. Thus we calibrate based on the Akeyo
Formation, which is the uppermost member of the Mizunami Group, and correlated to the
C5Dr chron based on diatom fossils [101]. Globally, these strata underlie the correlated
NMU 5 (Asia) and MN 5 (Europe) units. Thus a conservative upper bound age for the
Akeyo Formation is 17 Ma. Soft maximum as in node 8 herein.

12. Node. This clade, in our tree, comprises Porcellanidae (porcelain crabs) and Munididae
(some squat lobsters), their last common ancestor and all of its descendants. Based on
previous total evidence analysis [103], these families are close relatives. The full breadth
of Galatheoidea are not represented here.

Fossil specimens. Juracrista perculta Robins et al. 2012 [104]. Holotype NHMW
2007z0149/036 (Natural History Museum of Vienna) and paratypes NHMW
2007z0149/0370 and NHMW 2007z0149/0371.

Phylogenetic justification. J. perculta is known from dorsal carapace material, and was
previously used to calibrate Munididae [103]. Its carapace exhibits pronounced
supraorbital spines and broad rostral shape, which typify Munididae [104]. This fossil
differs from Galatheidae and Munidopsidae in its possession of transverse ornamentation
without a triangular rostrum (preservation of the rostrum is rare and diagnostic) [104].
The breadth of the rostrum in J. perculta is larger than extant munidids, suggesting a
close relationship but perhaps indeterminate whether it is in the crown group. Therefore
J. perculta is at the least, a member of the total group of Munididae, and thus belongs
within the crown group of Porcellanidae + Munididae. Putative members of
Munidopsidae [105] and Porcellanidae [106] were also discovered in the Ernstbrunn
Limestone, although the porcellanid awaits a major revision (A. Klompmaker, pers.
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13.

comm.). These discoveries further support divergence of the major Galatheoidea lineages
prior to the Cretaceous.

Age justification. J. perculta was recovered from the Ernstbrunn Limestone, lower
Austria [104]. Ammonites are unavailable for precise biostratigraphy from this locality,
but a nearby locality from the same unit preserves the ammonites Richterella richteri,
Simplisphinctes, and the diagnostic Micracanthoceras microcanthum constraint for the
late Tithonian [98,107]. However, benthic foraminifera and calcareous algae suggest the
Ernstbrunn Limestone may have been deposited as late as the early Cretaceous, early
Berriasian stage [108]. Although most literature accepts a Tithonian age, we recognize
that the more conservative constraint should allow some probability density in the early
Berriasian, which has a minimum age of approximately 142 Ma [98]. A soft maximum
age is obtained by phylogenetic bracketing, with the generous assumption that crown
Porcellanidae + Munididae are not older than the oldest putative crown Anomura.
Previous studies have suggested the oldest Anomura is Platykotta akaina [103,109].
However, its second pair of chelate pereiopods makes this affinity uncertain and it could
even be stem-group Meiura [110]; nevertheless, P. akaina is surely older than crown
Porcellanidae + Munididae. P. akaina was collected at Wadi Nagab close to Ras Al
Khaimah City, United Arab Emirates, from limestone of the Ghalilah Formation [109].
No precise constraint is available, so a soft maximum age is the base of the Norian stage,
at ~227 Ma.

Node. This node represents crown Paguroidea (hermit and king crabs). In our tree, this
includes Coenobitidae, Diogenidae, Paguridae, Lithodidae, their last common ancestor
and all of its descendants. Our AHE results follow the topology of the Bayesian
molecular-only analysis of Bracken-Grissom et al. ([103], their Figure 2) in excluding
Parapaguridae from a monophyletic Paguroidea.

Fossil specimens. Diogenicheles theodorae Fraaije et al. 2012 [111]. Holotype
I-F/MP/3957/1533/08 (Institute of Systematics and Evolution of Animals, Polish
Academy of Sciences, Krakow, Poland).

Phylogenetic justification. The assignment of D. theodorae to crown Paguroidea is based
on carapace material, and was justified in Bracken-Grissom et al. [103]. It bears
similarities (a distinct threefold junction of keraial, massetic and anterior branchial areas
of the outer carapace) with the family Parapylochelidae, which is likely closely related to
the other symmetrical hermit crabs in Pylochelidae [111]. The total evidence phylogeny
of Bracken-Grissom et al. [103] places Pylochelidae as the most deeply branching lineage
within Paguroidea.

Age justification. D. theodorae was discovered in an abandoned quarry in Bzéw,
southern Poland [111]. As discussed by Fraaije et al. [111], this locality preserves the
ammonites Ochetoceras canaliculatum, Trimarginites trimarginatus,
Dichotomosphinctes sp., and Glochioceras subclausum. Together, these ammonites are
globally correlated to the Gregoriceras transversarium ammonite Zone of the Oxfordian.
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15.

Cyclo- and magnetostratigraphy indicate a minimum age of 159.44 Ma [98] for the G.
transversarium Zone, and thus for D. theodorae. Soft maximum as in node 13 herein.

Node. This clade, in our tree, comprises Paguridae (hermit crabs) and Lithodidae (king
crabs), their last common ancestor and all of its descendants.

Fossil specimens. Paralithodes bishuensis Karasawa et al. 2017 [112]. Holotype MFM
83077.

Phylogenetic justification. No phylogenetic analysis has yet been conducted to evaluate
the relationships among extant and fossil pagurids, and the taxonomy of fossil members
remains problematic [113]. As Paguridae is paraphyletic with respect to Lithodidae in
previous molecular and total evidence analyses [103,114], fossils that may be within
Paguridae are not guaranteed to fall within this node (as they may be members of
lineages leading to pagurids that are outside of our AHE taxon sampling). Therefore we
conservatively use the oldest likely fossil of Lithodidae. P. bishuensis possesses several
diagnostic features allying it with members of the extant genus Paralithodes, particularly
the sparsely arranged low, pointed dorsal tubercles on the carapace [112]. Thus, a position
within crown Lithodidae is confirmed. Although previous publications have suggested
the oldest Lithodidae is Paralomis debodeorum Feldmann 1998 [115], the sediments in
which it is found are poorly constrained and may be as young as the Pliocene.

Age justification. The type locality for P. bishuensis is ‘locality MRZ06’,
Minamichita-cho, Aichi Prefecture, Japan, found in sandstone of the Yamami Formation
of the Morozaki Group [112]. Biostratigraphic index fossils include the diatom
Crucidenticula sawamurae, which is correlated in North America to the C5Cn chron,
ECDZ2, and Delphineis ovata Zone [116]. The approximate age of the top of the ECDZ2
is 15.8 Ma [116], providing a minimum age constraint. Soft maximum as in node 13
herein.

Node. This node represents crown Eubrachyura (‘higher’ true crabs). In our tree, this
includes Heterotremata and Thoracotremata, their last common ancestor and all of its
descendants. Monophyly of Eubrachyura has been supported in previous molecular
analyses [117].

Fossil specimens. Telamonocarcinus antiquus Luque 2015 [118]. Holotype IGM
(Colombian Geological Survey, Bogota, Colombia) p881012.

Phylogenetic justification. The phylogenetic position of T. antiquus within Eubrachyura
is based on characters shared with extant Dorippoidea (i.e. Dorippidae and Ethusidae).
While the position of gonopores is unclear [118], preventing definitive assignment to
Heterotremata, the distinctive carapace outline and groove pattern in particular ally this
fossil with crown Dorippoidea. Luque [118] concluded that Dorippoidea may be an early
branching lineage of Eubrachyura. Although no members of Dorippidae or Ethusidae
were included in our AHE sampling, their closest relative in a previous molecular
phylogeny was Leucosiidae [117], which we did include. Given the uncertainty in the
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fossil’s possession of the defining character of Heterotremata (male coxal gonopores),
and the exact position of Dorippoidea, we conservatively calibrate only the Eubrachyura
using T. antiquus.

Age justification. The fossil of T. antiquus was discovered from shales of the lowermost
Tablazo Formation, in El Batdn, Montegrande, near the town of La Fuente, Department
of Santander, Colombia [118]. The Tablazo Formation bears Parahoplites and
Douvilleiceras ammonites, and locally is within the Douvilleiceras solitae—
Neodeshayesites columbianus Zone [118]. Globally, Douvilleiceras mammillatum
straddles the early to middle Albian [64]. The D. mammillatum Zone thus provides a
conservative minimum age for T. antiquus at 110.22 Ma [64]. A soft maximum age is
obtained by phylogenetic bracketing, with the generous assumption that crown
Eubrachyura are not older than the oldest crown Brachyura. The oldest crown Brachyura
is debatable; Eocarcinus praecursor [119] and Eoprosopon klugi [120] have both been
proposed, but both lack some crown characters and are only represented by rather poorly
preserved dorsal carapaces [110]. Nevertheless, stem-lineage positions of these taxa
would imply the Brachyura crown may be even younger, so we calibrate the soft
maximum from the base of the Pliensbachian, at 191.8 Ma.

Node. This node represents crown Thoracotremata. In our tree, this clade is comprised of
the sampled families Grapsidae (marsh/shore crabs), Ocypodidae (ghost and fiddler
crabs), Plagusiidae, Sesarmidae, and Varunidae, their last common ancestor and all of its
descendants. Monophyly of Thoracotremata is supported by male gonopores located on
the sternum, and by previous molecular phylogenies [117]. Monophyly of previously
discussed superfamilies (e.g. Grapsoidea, Ocypodidea) is under suspicion from this and
other molecular phylogenies [117,121], so the clade treated herein remains
Thoracotremata.

Fossil specimens. Litograpsus parvus Miiller & Collins 1991 [122] (as revised by
Schweitzer & Karasawa 2004 [123]), holotype M.91-227 (Natural History Museum of
Hungary).

Phylogenetic justification. Members of Thoracotremata are rare and hard to identify in
the fossil record, likely because many live in difficult to preserve intertidal and semi-
terrestrial habitats. L. parvus shares characters with extant Grapsidae and Sesarmidae,
such as the rectangular carapace, size and positioning of the orbits, and a transverse ridge
formed by the cardiac region with broad branchial ridges [123]. Although the exact
relationship to the extant members is unknown, based on our topology, a position of L.
parvus on the stem of either Grapsidae or Sesarmidae would still be within crown-group
Thoracotremata. Although without sufficient confirmation, some older crown-group
fossils most likely exist for Thoracotremata. There is a possible ‘grapsoid’ crab from mid-
late Paleocene sediments of Colombia (Luque et al. 2017 [124], Fig. 8J), but it has not yet
received systematic study. Possible stem-group ‘Pinnotheridae’ fossils Viapinnixa
alvarezi and V. perrilliatae are known from the early Eocene (Ypresian; [125,126]) of
Chiapas, Mexico; however Pinnotheridae are not sampled here, and at least some
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members may fall outside of the crown-group we define [117,127—-129]. Finally, limb
fragments of Varuna? sp. have been reported from the middle Eocene (Lutetian?) of
Jamaica [124,130,131], but with limited specimen or stratigraphic information.

Age justification. L. parvus is known from limestone sediments of the Szépvolgy
Formation, Hungary [122]. Co-occurring foraminifera constrain the age of the Szépvolgy
Limestone to the NP20 zone of the C15n chron [122,132]. This is Priabonian, with an
upper boundary of 33.9 Ma, providing a minimum age constraint. Soft maximum as in
node 16 herein.

Node. This node represents crown Heterotremata. In our tree, this clade is comprised of
the sampled families Atelecyclidae, Bellidae, Corystidae, Leucosiidae (purse crabs),
Menippidae (stone crabs), Platyxanthidae, and the superfamilies Portunoidea (swimming
crabs), Xanthoidea (mud crabs) and Majoidea (spider and decorator crabs), their last
common ancestor and all of its descendants. Composition of Portunoidea as in Evans
[133]. Compositions of Xanthoidea and Majoidea are as defined in the molecular analysis
of Tsang et al. [117], although monophyly of their constituent families remains
questionable.

Fossil specimens. Cretamaja granulata Klompmaker 2013 [134]. Holotype MGSB
(Museo Geologico del Seminario de Barcelona, Spain) 77706A+B.

Phylogenetic justification. Klompmaker [134] diagnosed Cretamaja as appropriately
belonging to Majoidea based on carapace shape (which exhibits rampant convergence
among brachyurans) and presence of anterolateral spines. These characters (especially
because of the limitations of carapace shape) only permit assignment to a deeply
divergent lineage of Majoidea, however, likely outside the Majoidea crown group [117].
While monophyly of Majoidea has been supported by previous molecular and
morphological phylogenies [117,135-137], the exact relationships among constituent
families (in our tree, Epialtidae, Inachoididae, and Mithracidae) are debated. A position
for C. granulata along the stem of Majoidea would still permit assignment to the crown
group of Heterotremata, and thus a calibration of the latter clade.

Age justification. The Koskobilo fauna belongs to the Albinez Unit of the Eguino
Formation, southwest of Alsasua, Spain [134]. Either a Cenomanian or late Albian age
has been discussed for the Ablinez Unit, based on underlying ammonites and those of
contemporaneous reef deposits (summarized by Klompmaker [134]). Mortoniceras
perinflatum was one of the contemporaneous ammonites from a nearby locality, and it is
an index fossil for the late Albian [64], a convincing age. The upper boundary of the M.
perinflatum Zone is at 100.91 Ma [64], which is therefore the minimum age of C.
granulata. Soft maximum as in node 16 herein.

Node. This node represents crown Majoidea (spider and decorator crabs). In our tree, this

clade includes Epialtidae, Inachoididae, and Mithracidae, their last common ancestor and
all of its descendants. While monophyly of Majoidea has been supported by previous
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molecular and morphological phylogenies [117,135-137], the exact relationships among
constituent families are debated.

Fossil specimens. Planobranchia palmuelleri Artal et al. 2014 [138]. Holotype MGSB
79782.

Phylogenetic justification. The most distinctive characters for majoids are the carapace
shape. P. palmuelleri has an advanced carapace front with straight lateral margins,
rounded longitudinal frontal ridges, lateral orbits with a strong outer-orbital subtriangular
tooth, and dorsal conical spines: these characters refer Planobranchia to the Inachidae.
Membership on the stem-lineage of Inachidae tentatively confirms the ability to provide a
minimum calibration for the crown Majoidea we have sampled. Late Cretaceous
[124,139], Eocene [140,141], and Oligocene [142] putative majoids have been discovered
with preserved carapaces, but they either fall outside of our molecular crown taxon
sampling, or lack specimen information.

Age justification. P. palmuelleri is known from strata of the Vic area, Barcelona
province, Catalonia, Spain, most likely assigned to the Coll de Malla Formation [138]. As
there is some controversy over the precise lithostratigraphic unit [143], we agree with
Artal et al. [138] that a Lutetian age is conservatively appropriate. The upper bound of the
Lutetian is 41.2 Ma, providing a minimum age. Soft maximum as in node 16 herein.

Node. This node represents crown Xanthoidea (mud crabs). In our tree, the members are
‘Xanthidae’ and Panopeidae, their last common ancestor and all of its descendants.
Monophyly of a clade containing at least these members of Xanthoidea is supported by
previous molecular and total evidence phylogenies [117,144].

Fossil specimens. Phlyctenodes tuberculosus Milne Edwards 1862 [145]. The holotype
MNHN (Muséum National d’Histoire Naturelle, Paris) R03826, and specimen MCZ
(Museum of Comparative Zoology, Harvard University) 2456 are figured by Busulini et
al. [146].

Phylogenetic justification. Phlyctenodes fossils are only known from carapaces, which
are linked with members of the xanthid subfamily Actaeinae based on the ornamentation
of the carapace with tubercles [146,147]. However, as many of the subfamilies within
Xanthidae, including Actaeinae, are very likely polyphyletic [144,148], and even our
focal analysis suggests that Xanthidae may be paraphyletic, the exact relationship of P.
tuberculosus to sampled taxa is unclear. Thus we calibrate the crown group of all of
sampled Xanthoidea. Of contemporaneous Xanthoidea fossils [147], P. tuberculosus has
recently refigured and discussed specimens, and is thus selected.

Age justification. The holotype of P. tuberculosus was attributed to the locality
Hastingues, Landes, France, in the ‘middle Eocene’ [146]. The MCZ specimen was
discovered in the better known San Feliciano Hill quarry of the Berici Hills, Vicenza,
Italy [146]. The decapod-bearing strata of the quarry are correlated to the lower
Priabonian stage, late Eocene, based on calcareous nannofossils [149,150]. The upper
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boundary of the Priabonian is 33.9 Ma, providing a minimum age constraint. Soft
maximum as in node 16 herein.
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Figure S1. Workflow for our AHE data collection and analysis. Yellow boxes represent

published genomic resources, blue boxes are newly sequenced in this paper, and red boxes are

the focal results in Figures 2-3.
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Figure S2. Pairwise heat map of species-pairwise amino acid dataset completeness for all 410
exon-based loci, in the unrecoded amino acid dataset. Numbers in parentheses are total exon-
based loci captured per species. Low shared site coverage in shades of red and high shared site
coverage in shades of green.
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Figure S3. Phylogenetic hypothesis for Decapoda based on the topology from the ML

partitioned amino acid analysis. Values at nodes represent nonparametric bootstraps. Unlabeled

nodes are considered strongly supported.
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Figure S4. Phylogenetic hypothesis for Decapoda based on the topology from the Bayesian
CAT-GTR+G analysis with Dayhoff-6 recoding. Values at nodes represent posterior probabilities.
Unlabeled nodes are considered strongly supported.
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Figure S5. Phylogenetic hypothesis for Decapoda based on the topology from the ML
partitioned amino acid analysis with Dayhoff-6 recoding. Values at nodes represent
nonparametric bootstraps. Unlabeled nodes are considered strongly supported.
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Figure S6. Phylogenetic hypothesis for Decapoda based on the topology from ASTRAL species
tree analysis. Values at nodes represent quartet node support. Unlabeled nodes are considered
strongly supported, following posterior probabilities (i.e. > 0.98 for strong support).
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Figure S7. Phylogenetic hypothesis for Decapoda based on the topology from the ML

partitioned nucleotide analysis. Values at nodes represent nonparametric bootstraps. Unlabeled
nodes are considered strongly supported.
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Figure S8. Phylogenetic hypothesis for Decapoda based on the topology from the ML
partitioned nucleotide analysis with only codon positions 1+2 included. Values at nodes represent
nonparametric bootstraps. Unlabeled nodes are considered strongly supported.
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Figure S9. Phylogenetic hypothesis for Decapoda based on the topology from the ML
partitioned nucleotide analysis with Degen recoding. Values at nodes represent nonparametric
bootstraps. Unlabeled nodes are considered strongly supported.
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Figure S10. Phylogenetic hypothesis for Decapoda based on the topology from the ML
partitioned nucleotide analysis with Degen recoding and only codon positions 1+2 included.
Values at nodes represent nonparametric bootstraps. Unlabeled nodes are considered strongly

supported.
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Figure S11. Saturation plot for each codon position with transversions (v) and transitions (s)
plotted against F84 distance. The third codon position clearly deviates from expected values, and
thus has experienced saturation.
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Figure S12. Divergence time estimates for Decapoda based on the topology in Figure 2.
Posterior ages were estimated in PhyloBayes using the CAT-GTR+G substitution model, the

UGAM clock model, and a gamma distributed root prior of 440 Ma +

bars represent 95% confidence intervals. Numbered circles represent nodes with fossil

calibrations.
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Figure S13. Comparison of posterior probability distributions for divergence times assessed as in
Figure 3 (posterior), and using the same analyses under the effective prior (removing sequence
data). The posterior analyses are shaded; effective priors are superimposed on the same axes with
a heavy line of the same color. Grey/black analyses with the CIR autocorrelated clock model
(depicted in Figure 3); orange analyses with the UGAM uncorrelated clock model. (a) Selected
nodes directly calibrated by fossils and their calibration number; (b) Selected nodes calibrated by
only a birth-death tree prior.
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All Extended Tables are available as .xslx or .csv files attached.
Table S1. Details of all transcriptome and genome sequences used in probe design.

Table S2. Sample information for whole genome sequencing, including SRA accession
information.

Table S3. Sample information for transcriptome sequencing, including SRA accession
information.

Table S4. Assembly statistics for transcriptome sequencing.

Table S5. Brief description of enrichment kits for each of six selected major lineages (Achelata,
Anomura, Astacidea, Brachyura, Caridea, and Dendrobranchiata).

Table S6. Sample information for AHE sequencing, including SRA accession information.
Table S7. Formatted list of node calibration priors.

Table S8. Assembly statistics for AHE sequencing, and exon-based loci sequenced for each
species. For each locus, 1 represents presence and O represents absence in the main data matrix.
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