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1. Extended Methods:

(a) Whole genome sequencing and QC

To assist with probe design, whole genome sequencing (WGS) was conducted for nine 
exemplar decapod species (Table S2): Panulirus argus (Achelata: Palinuridae), Coenobita 
clypeatus (Anomura: Coenobitidae), Emerita talpoida (Anomura: Hippidae), Procambarus 
clarkii (Astacidea: Cambaridae), Menippe nodifrons (Brachyura: Menippidae), Ocypode 
quadrata (Brachyura: Ocypodidae), Periclimenes rathbunae (Caridea: Palaemonidae), Penaeus 
duorarum (Dendrobranchiata: Penaeidae), and Stenopus hispidus (Stenopodidea: Stenopodidae). 
These species were targeted as they span the phylogenetic breath of Decapoda, and could be 
freshly collected (or represented recently collected material). All material was selected from the 
Florida International Crustacean Collection (FICC) or newly collected in localities around 
southern Florida. All identifications were done by H. Bracken-Grissom using dichotomous keys 
for these groups.

DNA was extracted from gills, legs or abdominal muscle tissue using the Qiagen Blood 
and Tissue Extraction Kit following manufacturers’ protocols. For these nine decapod lineages, 
low-coverage genome data were newly collected after DNA extracts were sonicated to a 
distribution of 200-500 bp and used to produce 8 bp single-indexed Illumina libraries following 
Lemmon et al. [1] and Prum et al. [2]. Libraries were pooled and sequenced on 18 PE-150 
Illumina HiSeq2500 lanes with onboard clustering, producing 711 Gb of data (6x to 31x genomic
coverage, Table S2). After sequencing, paired reads passing Illumina Casava High Chastity filter
were merged following Rokyta et al. [3], i.e. if the paired reads overlapped at their 3’ ends 
(updating quality scores for the overlapping positions, but leaving nonoverlapping bases 
unchanged). At this point, sequencing errors were corrected and library adapters were removed. 
These genomes were not assembled; the short reads were screened for probe design (discussed 
below).

(b) Transcriptome sequencing

Transcriptomes were sequenced from multiple developmental stages for each of four 
exemplar decapod species: Homarus americanus (Astacidea: Nephropidae), Lysmata 
wurdemannii (Caridea: Lysmatidae), Mithraculus sculptus (Brachyura: Mithracidae), and 
Paralithodes camtschaticus (Anomura: Lithodidae). For adult females, brain and/or muscle 
tissues were dissected. For embryos (mid-germband stage) and larvae (first zoea), several 
individuals were pooled into 1-3 replicates for each stage. Each sample was preserved in 
RNALater for transport to AMNH. Collecting and sample information are found in Table S3.

Total RNA was extracted separately from individual tissues. Prior to immersion in 
RNALater, whole animals were rinsed in 10% bleach followed by deionized water (to minimize 
microbial contaminants). Samples were separately macerated in Trizol using the Xpedition 
mechanical sample processor (Zymo Research), followed by RNA extraction with the Direct-zol 
kit (Zymo), including a poly-A binding step to isolate mRNA. The quality and quantity of 
mRNA was measured with the BioAnalyzer 2100 (Agilent) and Qubit 2.0 fluorometer 
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(Invitrogen). cDNA libraries were generated with TruSeq DNA preps (Illumina) at Weill Cornell 
Medical College (for L. wurdemanni) and the New York Genome Center (for the other three 
species). Transcriptomes were sequenced at the above respective labs, using Illumina HiSeq with
2x100 paired end reads, and 9-10 samples multiplexed per flow cell.

(c) Transcriptome QC and assembly

Raw Illumina reads were filtered for each sample using a Galaxy workflow based on the 
FASTQ toolkit, following [4]. Briefly, adapter sequences were removed, followed by FASTQ 
Groomer, removal of sequencing artifacts, and quality filtering. De novo transcriptome assembly 
of filtered reads, combining all sequenced samples of a species, used Trinity [5] with the default 
minimum k-mer threshold abundance (=1, so all k-mers were used in assembly). As in 
Alexandrou et al. [4], Trinity output was re-assembled using iAssembler [6]. The number of raw 
and filtered reads and assembly statistics are compiled in Table S4.

(d) Probe design

AHE targets conserved coding regions that are flanked by less conserved sequence 
regions, with the goal of optimizing phylogenetic informativeness at multiple levels of 
divergence [1]. Short probe sequences are hybridized to genomes of interest, and then those 
targeted regions are enriched prior to sequencing [1]. Capture efficiency depends strongly on the 
similarity between the probes and the genomes of interest, thus we created a new probe set 
targeting highly conserved regions in decapod genomes. Target AHE regions were identified at 
the FSU Center for Anchored Phylogenomics (www.anchoredphylogeny.com), using an 
approach similar to that successfully employed for other arthropod groups, including Diptera [7],
Arachnida [8], Hemiptera [9], Coleoptera [10], Neuroptera [11], and Lepidoptera [12]. First, as 
few annotated genomes were available, genomic resources from 23 species representing a variety
of Decapoda were obtained from published and new sources (see Table 1 for an overview and 
Table S1 for details), including the nine new genomic and four new transcriptome datasets 
described above. These were used as references for probe design.

To identify AHE target regions in Decapoda, genomic reads from two species (RefsA in 
Table 1) identified in preliminary tests to yield the highest sequence recovery, Coenobita 
clypeatus (Anomura: Coenobitidae) and Procambarus clarkii (Astacidea: Cambaridae) were 
mapped to reference sequences from Tribolium castanaeum. The Tribolium sequences were 
obtained from the Coleoptera AHE probe design alignments developed by Haddad et al. [10], 
who targeted 941 protein coding regions conserved across Insecta. The mapping process, which 
follows that described in detail by Hamilton et al. [8], identifies matching raw reads using a 17 
bp of 20 bp spaced-k-mer threshold for preliminary matching, and 55% similarity score for final 
placement of a read. As in [8], each target region was required to be at least 150 bp in length, and
containing no known exon boundaries. For each target region, reads matched by these criteria 
were aligned and then extended into flanking regions. For each target region, the obtained 
decapod sequences were aligned together with the corresponding Tribolium sequence using 
MAFFT v7.023 [13]. Geneious R9 (Biomatters Ltd.; [14]) was used to identify and select well-
aligned regions that were utilized downstream. This process resulted in 823 preliminary AHE 
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target regions for decapods, based on sequences from the references T. castanaeum, C. clypeatus 
and P. clarkii.

To expand references across six selected decapod ‘major lineages’ (Achelata, Anomura, 
Astacidea, Brachyura, Caridea, and Dendrobranchiata), we scanned six assembled 
transcriptomes (RefsB in Table 1, including the four newly sequenced transcriptomes above, as 
well as Litopenaeus vannamei (Dendrobranchiata: Penaeidae) and Cherax quadricarinatus 
(Astacidea: Parastacidae [15])) for the 823 preliminary AHE target regions. Following Hamilton 
et al. [8], we identified for each preliminary AHE target the best-matching transcript (with 55% 
match minimum) in each of the six transcriptomes, to establish target regions. The resulting 
sequences were aligned using MAFFT [13] and inspected in Geneious. After selecting the well-
aligned regions and removing 21 poorly aligned sequences, targets represented in fewer than four
of the six selected major decapod lineages were removed from downstream analyses. Removal of
overlapping loci (identified as having one or more shared 60-mer for any species) resulted in 352
final AHE targets, which contained both exonic and intronic regions.

Unlike previous studies of vertebrate and terrestrial arthropod clades [1,2,7-12], decapods
diverged over 450 million years ago (e.g. Figure 3). Therefore, our initial investigations revealed
that a single probe set covering all of this evolutionary history was not practical if we wanted to 
sequence a sufficient number of target regions per species. The remaining genomic resources 
were therefore utilized to build alignments representing the diversity within each of the six 
selected major lineages. Raw reads from 16 additional species (see Table S1) were mapped to 
major lineage-specific reference sequences (developed above) and used to extend the resulting 
sequences into flanking regions [8]. The best matching genomic region in the assembled 
Neocardina denticulata genome (Caridea: Atyidae; [16]) was also identified (4000 bp containing
each region was utilized downstream). For each AHE target region x major lineage combination 
(n = 352 targets x 6 major lineages), an alignment containing all of the recovered sequences 
(together with the major lineage-specific reference sequence) was then generated using MAFFT 
and inspected in Geneious. As each alignment contained at least one sequence derived from a 
genome, we were able to identify and mask intronic regions. To improve capture efficiency, we 
also masked repetitive regions identified using k-mer counts in the N. denticulata genome. This 
was done by creating a database for each species using all 15-mers found in the trimmed probe 
region alignments, and all 15-mers that were 1 bp removed from the observed 15-mers [8]. We 
scanned the N. denticulata genome for the presence of exact matches to the 15-mer repeats, and 
alignment regions containing >100,000 counts were masked to prevent probe tiling across these 
regions [8]. Probes were tiled at 4x density across all sequences in each of the alignments from 
the 352 final AHE targets, and similar probes were removed. Table S5 provides details of the 
target size and number of taxa representing each major lineage. The probes were divided across 
two Agilent SureSelect XT kits as follows: 1) Decapoda1a ELID=801331 containing Den1, 
Car1, and Ast1 (56698 probes total), and 2) Decapoda1b ELID=801341 containing Ach1, Ano1, 
and Bra1 (54854 probes total). The final probe sequences are available in the associated Dryad 
repository (https://doi.org/10.5061/dryad.k7505mn; subfolder D_Probe_design).
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(e) AHE sequencing

Samples of 94 species (Table S6) were processed at the FSU Center for Anchored 
Phylogeny (www.anchoredphylogeny.com) following Lemmon et al. [1] and Prum et al. [2]. 
Briefly, DNA extracts passing QC by Qubit were sonicated to a size range of 200-500 bp using a 
Covaris E220 focused-ultrasonicator with Covaris microTUBES, and prepared to include single 
8 bp library adapters. Libraries were pooled in groups of 16 and enriched using the 
aforementioned probes from the two Agilent SureSelect XT kits (probes from the two kits were 
pooled prior to the enrichment reaction). Enriched library pools of 16 samples were then pooled 
for sequencing such that each of two 48-sample pools were sequenced on an Illumina HiSeq2500
lane with a PE150 protocol and 8 bp indexing (85 Gb total).

(f) AHE QC and assembly

Preliminary investigations of the captured sequence data showed high variation across 
Decapoda in non-coding genomic regions outside of conserved exons, and third codon saturation
within exons. Therefore we modified the exon-based AHE pipeline of Breinholt et al. [12] to 
allow for greater sequence divergence between taxa, and assembled the relatively conserved 
exons as our final loci for downstream phylogenomics. 

Paired-end raw Illumina reads were cleaned using Trim Galore! v0.4.0 [17], allowing a 
minimum read size of 30 bp and trimming to remove bases with a Phred score below 20. To 
identify a reference set of single-copy exon loci for Iterative Baited Assembly (IBA; [12]) with 
the most coverage across decapod taxa, we used our AHE capture data and exon annotations 
from the published Eriocheir sinensis genome (Brachyura: Varunidae; [18]; NCBI 
PRJNA305216). We identified single-copy exons in the E. sinensis genome using single-hit and 
ortholog location genome mapping following Breinholt et al. ([12]; scripts: s_ hit_checker.py and
ortholog_filter.py). These scripts identified exons that have either a single hit, or a second-best 
hit with a bit score <90% of the best hit to the reference genome; this process determines the best
hit location of each captured AHE target to the reference genome, E. sinensis [12]. These single-
copy exons from E. sinensis were screened against de novo Bridger assemblies of our cleaned 
AHE data (using default parameters: [19]) using the script genome_getprobe_TBLASTX.py 
(available: https://github.com/jessebreinholt/proteinIBA.git; [20]) that uses tblastx instead of 
blastn to identify sequences that resemble the single-copy exons, which were then screened for 
orthology using ortholog_filter.py [12]. 

A total of 675 exons that had 40% or more of the taxa sequenced for AHE samples in this
study were used as the locus reference set called crab_ref1, which were translated into amino 
acids as bait for IBA. The 675 identified exon-based reference loci include nearly all exons that 
are represented in the 352 final AHE targets used in the probe design (key in Dryad). The 
number of exon-based reference loci in each of the 352 final AHE targets ranged from 1-15, with
a mean of 3.4. Two exon-based reference loci were not found in the 352 final AHE target regions
and are likely off-target or may flank one of the 352 final AHE target regions. The IBA 
successively uses USEARCH v7.0 [21] and Bridger v2014-12-01 [19] to assemble each locus in 
the reference set, and ensure it hits the targeted probe of the reference taxon (E. sinensis). IBA 
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was altered to take an amino acid reference using the script protein_IBA.py (available: 
https://github.com/jessebreinholt/proteinIBA.git). We assembled the set of 675 exon-based 
reference loci for each sequenced decapod taxon using protein_IBA with the k-mer size set to 25 
and lower k-mer coverage of assembled sequences at 10x.

(g) Alignment, orthology, and alignment trimming

The IBA output, blast table and the assembled sequences for each exon-based locus were 
processed with protein_dir_fixer.py (available: https://github.com/jessebreinholt/proteinIBA.git).
This script put all sequences in the same direction as the E. sinensis reference sequences, and 
trimmed them to match the probe region for ortholog screening. The sequences were queried 
using tblastx against the E. sinensis genome, and screened for orthology using the 
ortholog_filter.py following Breinholt et al. [12], which was used to parse blast tables and test if 
the top hit against the E. sinensis reference genome is at the same position of the target exon. As 
an alternative to the contamination screen used by Breinholt et al. [12], we used maximum kmer 
depth of the sequences assembled for each locus by selecting the sequences for every taxon with 
the lowest ‘comp’ number output by IBA. The lowest ‘comp’ number is the set of sequences and 
isoforms that received the greatest kmer depth in the Bridger assembly of each exon-based locus.
This method provided results comparable to the contamination filter and removing duplicates 
step [12] without having to make assumptions about contamination using sequence similarity 
based on taxonomy. The full-length sequences of the inferred orthologs were aligned with 
MAFFT v7.245 [13]. As very little data appeared to be conserved or alignable across Decapoda 
in the introns flanking the exon region, we trimmed the sequence using the 
Extract_probe_region.py script [12]. Consensus of isoforms for each sequence were made to 
reduce to a single sequence per locus and taxon using FASconCAT-G v1.02 [22] following 
Breinholt et al. [12].

(h) Data matrix construction

The main data matrix comprised 410 exon-based loci (referred to throughout the 
manuscript), assembled with IBA, with at least 60% of the taxa represented in each locus. The 
average occupancy per locus = 81%; and completeness score as the total number of unambiguous
characters divided by the size of the alignment = 80%. We processed the alignment of 410 exon-
based loci with  ALICUT/ALISCORE [23] to remove poorly aligned regions, but only three 
nucleotides were removed (and no amino acids) across all loci, thus this step was not included in 
the final dataset.A heatmap of pairwise amino acid completeness was constructed in ALISTAT 
[24] for a concatenated matrix of the 410 exon-based loci (Figure S2). Details of final amino 
acid and nucleotide matrices are described in Table 2. 

(i) Systematic error

Systematic error is implicated in phylogenomics where the data violate assumptions of 
the model, leading to convergence of ever-larger datasets towards an incorrect topology with 
high support values (e.g. [25,26]). At the nucleotide level, both site-specific and lineage-specific 
biases can strongly influence phylogenetic results. We investigated site-specific biases (i.e. 
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multiple substitutions at the same site, or nucleotide saturation) by first building a saturation plot 
for each codon position with DAMBE v6 [27]. The saturation plot (Figure S11) indicated strong 
saturation of the third codon position, i.e. that this position evolved at a faster rate. Therefore, we
conducted analyses on the full nucleotide set, as well as codons 1+2 only [28] as a form of data 
removal.

Broader biases in nucleotide compositional heterogeneity (lineage- and/or site-specific) 
were investigated using datasets that were recoded to exclude synonymous substitutions. These 
substitutions may or may not be saturated; biological base compositional bias is also accounted 
for. Recoding used ambiguity codes in the degen v1.4 Perl script [12,29]. Degen recoding does 
not change the matrix size; it merely reduces the degrees of freedom for possible substitution 
combinations. 

In the amino acid dataset, site-specific amino acid biases may be accounted for with the 
CAT-GTR substitution model, but lineage-specific compositional biases do not have easily 
implementable models [30]. Therefore we adopted a similar approach as we did for nucleotides, 
using Dayhoff-6 recoding [30–32]. As with degen recoding, it does not change the matrix size, 
but groups the 20 amino acids into six classes that are similar on the basis of their biochemical 
properties, reducing the number of possible substitution combinations. This recoding strategy has
been recommended for codon usage biases observed in pancrustacean nuclear genes in particular
[32], though it has also been observed to collapse nodal support in other taxa e.g. [30,33].

(j) Phylogenetic analysis

For maximum likelihood (ML) analysis, PartitionFinder [34] on the 410 locus dataset 
(restricted to all versions of the LG model, including free rate models) obtained 149 best-fitting 
partitions. The best-fitting substitution models for each of the 149 partitions were selected in IQ-
TREE v1.63 [35]. In IQ-TREE, 50 independent searches were run with different random seeds. 
All topologies were the same in each search, though branch lengths and scores differed. Support 
was assessed with 250 nonparametric bootstraps, with a posteriori convergence determined in 
RaxML using the MR, MRE, and MRE_IGN criteria (majority rule; convergence at 100) and FC 
criterion (frequency-based; convergence at 150). ML analyses were conducted on all matrices 
described in Table 2, except amino acid top 50.

For Bayesian inference, we used two chains and the CAT-GTR + G site-heterogeneous 
substitution model implemented in PhyloBayes v3.3f [36]. All Bayesian analyses were 
conducted on amino acid matrices; one matrix was recoded into the Dayhoff-6 functional groups.
An automatic stopping rule was implemented, with tests of convergence every 100 cycles, until 
the default criteria of effective sizes and parameter discrepancies between chains were met (50 
and 0.3, respectively), and with the bpcomp and tracecomp commands. Trees and posterior 
probability distributions were then generated from completed chains after the initial 20% of 
sampled generations were discarded as burn-in. 

Coalescent (‘species tree’) methods were applied to investigate the role of incomplete 
lineage sorting e.g. [37,38]. ASTRAL is statistically consistent with the multispecies coalescent, 
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and can be effective if there are sufficient gene trees matching the ‘true’ tree [39]. As input, we 
used maximum likelihood gene trees calculated by IQ-TREE (only on amino acid data, otherwise
as above) with SH-like support. The species tree was then estimated in ASTRAL-III v5.6.1 [40], 
collapsing nodes with <10% support, and estimating branch support using quartet node support 
(the percentage of quartets in gene trees that agree with a branch).    

(k) Divergence time estimation

Divergence times were estimated in PhyloBayes v3.3f [36] using a fixed topology input 
based on the Bayesian CAT-GTR + G tree depicted in Figure 2. Preliminary runs indicated that 
the distant outgroups may exhibit heterotachy, so all outgroups were removed from this topology,
except the two stomatopods. Due to the size of our data matrices and time to convergence, we 
used an amino acid alignment of only the top 50 loci; selection of these was based on the amino 
acid gene trees constructed for the ASTRAL analysis, with RaxML then used to calculate 
Robinson-Foulds statistics to compare each gene tree topology to the concatenated fixed 
topology [41]. Divergence time analysis was conducted in PhyloBayes under the CAT-GTR + G 
substitution model, and two runs of four chains. We compared the uncorrelated gamma 
multipliers (UGM) relaxed clock model [42], and the autocorrelated CIR model [43]. The root 
prior was defined based on the Eumalacostraca node [44], thus applying a gamma distribution 
with a mean of 440 Ma and SD of 20 Myr. All 19 internal fossil priors (justified in Extended 
Data 2) used soft bounds with 5% of the probability distribution allowed outside of the input 
ages, defined by a birth-death model [45]. An automatic stopping rule was implemented, with 
tests of convergence every 100 cycles, until the default criteria of effective sizes and parameter 
discrepancies between chains were met (50 and 0.3, respectively), and with the bpcomp and 
tracecomp commands. Trees and posterior probability distributions were then generated from 
completed chains after the initial 20% of sampled generations were discarded as burn-in. We also
compared estimated posteriors to the truncated effective prior (by removing sequence data using 
the -prior flag in PhyloBayes; [46,47]; Figure S13).

8



2. Fossil Calibration Justifications:

We used 19 fossil calibrations, following the criteria of Parham et al. [48]. Node numbers
listed below correspond to labels in Figure 3. A summary of fossils and their ages is provided in 
Table S7.

1. Node. This node comprises crown Verunipeltata (‘Stomatopoda’, or mantis shrimp) in 
our tree, with nomenclature as previously discussed [44,49], and monophyly matching 
Van Der Wal et al. [50]. All calibration data as in Wolfe et al. [44], node 51.

2. Node. This node represents crown Sergestoidea. In our phylogeny, this is the clade 
comprising Lucifer, Parasergestes, Sergestes, and Deosergestes, their last common 
ancestor and all of its descendants. 

Fossil specimens. Paleomattea deliciosa Maisey and Carvalho 1995 [51]. Holotype 
AMNH (American Museum of Natural History) 44985, carapace and abdominal 
segments dissolved from acid prep of teleost fossil.

Phylogenetic justification. The phylogenetic position of this fossil was determined in a 
total evidence analysis [52]. It was found within crown Sergestoidea in their taxon 
sampling, sister taxon to Acetes. As it was outside of Sergia + Deosergestes, and we did 
not sample Acetes, we allow P. deliciosa to calibrate the clade including Lucifer. Note 
that a likely member of Luciferidae was recently discovered from the same deposits [53], 
and could be appropriate for this node as well.

Age justification. Minimum as in Wolfe et al. [44], node 43. As the oldest decapod, 
Palaeopalaemon newberryi (node 6), is crownward of shrimps and prawns, a 
phylogenetic bracketing approach to obtain a soft maximum age for these groups is not 
appropriate. If we were to use a maximum age from the oldest crown Malacostraca, 
which would be 434.2 Ma [44], it would create priors that come into conflict with that of 
P. newberryi and its older age range for all decapods. Thus we conservatively adopt a soft
maximum age of 521 Ma, as in node 1. 

3. Node. This node represents crown Penaeoidea (penaeid shrimp/prawns). In our 
phylogeny it is the clade comprising Penaeidae, Sicyoniidae, Aristeidae, and 
Benthesicymidae, their last common ancestor and all of its descendants. Monophyly of 
this clade was also supported by a recent total evidence (morphology + three nuclear 
gene) phylogeny [52].

Fossil specimens. Ifasya madagascariensis Van Straelen 1933 [54]. Several specimens 
examined for coding in Robalino et al. [52], including: MSNM (Museo di Storia Naturale
di Milano, Milan, Italy) i11309, i9311, i9408, i14229, i9383, i9406, i9328, i11243, and 
i9328.

9



Phylogenetic justification. The phylogenetic position of this fossil was determined in a 
total evidence analysis [52]. It was found within crown Penaeidae, thus also crown 
Penaeoidea.

Age justification. I. madagascariensis was discovered in the Ambilobé region of 
northwest Magadascar [55,56]. The fossiliferous sediments bear the index conchostracan 
Euestheria (Magniestheria) truempyi, which may be correlated to the Bernburg 
Formation of Germany [57]. Although this correlation was used as an indicator of 
Olenekian age for Ambilobé [57], revisions to conchostracan biostratigraphy correlate M.
truempyi to the Dienerian substage of the global Induan stage, Early Triassic [58]. The 
minimum age of the Induan (or the lower boundary of the Olenekian) is 251.2 Ma, based 
on the 2017 International Chronostratigraphic Chart, thus providing a minimum age for I.
madagascariensis. Soft maximum as in node 2 herein.

4. Node. This node represents crown Stenopodidea (cleaner/boxer shrimp). In our 
phylogeny, this is the clade comprising the (currently recognized) genera Stenopus, 
Microprosthema, and Macromaxillocaris, their last common ancestor and all of its 
descendants. 

Fossil specimens. Phoenice pasinii Garassino 2001 [59]. Holotype, MSNM i24799. 

Phylogenetic justification. Recently, a need to revise the systematics of crown 
Stenopodidea has been identified based on a molecular phylogeny [60]. Only three fossil 
species have been described, and none have yet been evaluated using phylogenetics. Of 
these, two, Devonostenopus pennsylvaniensis Jones et al. 2014 [61] and Jilinocaris 
chinensis Schram et al. 2000 [62], were placed within Stenopodidea on characters that 
were admittedly poorly preserved and not conclusive. In contrast, P. pasinii is better 
preserved, and has a number of diagnostic characters confirming its stenopodidean 
affinity [59]. In particular, the subtriangular telson and presence of two longitudinal 
dorsal carinae on the uropodal endopods suggest a relationship to the Stenopodidae [59]. 
While it is not clear if P. pasinii belongs within crown versus stem Stenopodidae, it is 
reasonable to assign this fossil within crown Stenopodidea.

Age justification. P. pasinii was discovered in the Hakel/Hâqel (holotype) and 
Hadjula/Hjoûla outcrops, northeast of Beirut, Lebanon [59]. Presence of the ammonite 
Allocrioceras cf. annulatum in the Hjoûla limestone correlates the deposit to the 
Sciponoceras gracile Zone in the Western Interior of the USA and the Metoicoceras 
geslinianum Zone globally [63]. The S. gracile Zone has a cyclostratigraphic minimum 
age of 94.39 Ma ± 0.12 Myr [64], providing a minimum age constraint of 94.27 Ma for P.
pasinii. Soft maximum as in node 2 herein, to allow for the possibility that 
Devonostenopus is within the crown.

5. Node. This node represents crown Caridea. In our phylogeny, this clade is represented by 
Alpheidae (snapping shrimp), Atyidae (freshwater shrimp), Barbouriidae, Hippolytidae 
(cleaner and broken-back shrimp), Lysmatidae (cleaner and peppermint shrimp), 
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Oplophoridae (bioluminescent shrimp), Palaemonidae (freshwater and symbiotic 
anemone shrimp), and Thoridae (anemone shrimp), their last common ancestor and all of 
its descendants. Based on previous molecular trees, and our topology, Procarididea 
(anchialine shrimp) are excluded from the otherwise monophyletic crown Caridea [65]. 
Although we did not sequence Amphionidacea, recent analysis of four genes [66] placed 
this organism as a suspected larval pseudo-taxon within our concept of Caridea, thus the 
calibration node would not need to be modified if they are added in future.

Fossil specimens. Blaculla haugi Winkler 2015 [67], holotype SMNS (Staatliches 
Museum für Naturkunde, Stuttgart, Germany) 70286.

Phylogenetic justification. B. haugi is within crown Caridea based on overlap of the 
pleonal pleurae, and the first two pereiopods being chelate while the third, fourth, and 
fifth are achelate [67]. The first two pereiopods have some characteristics in common 
with the extant clade ‘Alpheoidea’ (see below), with stouter first pereiopods and multi-
jointed second pereiopods [67]. However, pereiopod appendage morphology across 
caridean families appears to be convergent [68], which challenges the ability to correctly 
assign fossils to crown families based on these morphologies (also challenging the 
confidence in older putative caridean fossils). Mandibular structure is possibly more 
diagnostic [68], however, mouthparts are not well preserved in Solnhofen material [67]. 
Furthermore, the assumed composition of crown Alpheoidea does not include 
Palaemonidae [69,70], but these are found within a paraphyletic group within our tree 
(also supported in previous molecular trees: [71,72]). Additional putative caridean fossils 
are also known from the Solnhofen limestones, e.g. [73–75], and are thus of the same 
age, suggesting Caridea had begun to diversify. We remain agnostic on proposed, but not 
diagnostic, caridean fossils from the Early Triassic Paris Biota of Idaho [76]. The several 
possible Solnhofen taxa, together with the morphology of B. haugi, permit a conservative
minimum age constraint on crown Caridea in its entirety, rather than on any specific 
families.

Age justification. The fossil of B. haugi was found in the Solnhofen Plattenkalk 
(lithographic limestone) of Eichstätt, Bavaria, Germany [67]. As discussed by Benton et 
al. ([77], node 31), a minimum age for Solnhofen fossils is 150.94 Ma. Soft maximum as 
in node 2 herein.

6. Node. This node represents crown Reptantia. In our phylogeny, this is the clade 
comprising Axiidea, Astacidea, Achelata, Polychelida, Gebiidea, Anomura, and 
Brachyura, their last common ancestor and all of its descendants. Glypheidea are 
included in previous formulations of Reptantia, and if corroborated by future 
phylogenomic data (as already suggested in the mitogenome tree of Tan et al. [78]), they 
will not affect our calibration choice. As in the discussion of Wolfe et al. [44] node 49, 
the Devonian fossil Palaeopalaemon newberryi Whitfield 1880 [79] is within crown 
Reptantia. This is implicitly confirmed in the phylogenetic analysis of Jones et al. [80]. 
Thus all calibration data including both age priors as in Wolfe et al. [44], nodes 49, 55, 
and 56. 
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7. Node. This node represents crown Achelata, a clade comprising the families Palinuridae 
(spiny lobsters) and Scyllaridae (slipper lobsters), their last common ancestor and all of 
its descendants.

Fossil specimens. Yunnanopalinura schrami Feldmann et al. 2012 [81]. Holotype LPI 
(Luoping section, Invertebrate Paleontology Collection, Chengdu Institute of Geology 
and Mineral Resources) 40169.

Phylogenetic justification. This species has been previously justified as a calibration for 
Achelata [81,82].

Age justification. Y. schrami was recovered from limestone of the Luoping Biota, 
Member II of the Guanling Formation, near Luoping, Yunnan, south China [81,83]. 
Extensive stratigraphy of the Luoping biota places the Guanling Formation just below the
uppermost boundary of the Anisian stage [83]. The upper boundary of the Anisian is 
estimated at 241.5 Ma ± 1 Myr [58], thus providing a minimum age at 240.5 Ma. A soft 
maximum age is obtained by phylogenetic bracketing, with the generous assumption that 
crown Achelata are not older than the oldest known crown Decapoda, which is 
Palaeopalaemon newberryi [44]. The age of the Chagrin Shale, which bears P. 
newberryi, is late Fammenian based on the presence of index algae; there is no lower 
bound index fossil mentioned [44]. Thus a maximum age of this deposit is estimated as 
the lower bound of the Fammenian, at 372.2 Ma [84]. 

8. Node. This node represents crown Nephropidae (true lobsters). In our tree, this includes 
Thaumastocheles, Nephropoides, and Nephropsis, their last common ancestor and all of 
its descendants. Note that the family Thaumastochelidae is now synonymized with 
Nephropidae [85].

Fossil specimens. Jagtia kunradensis Tshudy & Sorhannus 2000 [86]. Holotype IRScNB 
(Institut Royal des Sciences Naturelles de Belgique, Brussels) 90-33h.

Phylogenetic justification. Morphological phylogenetic analysis places J. kunradensis as 
more closely related to Nephropsis and Nephropoides than to Thaumastocheles [87]. 
Thus J. kunradensis is in the crown group. Another lobster fossil (Oncopareia) within the
crown group in this analysis was not referred to specific material, and is of similar age to 
J. kunradensis. Hoploparia stokesi was also found within the crown group Nephropidae 
by Karasawa et al. [87], but the systematics of this genus demand revision [88]. Such 
revisions would likely compromise the wider stratigraphic range reported for Hoploparia 
[89]. Thus J. kunradensis is the most conservative calibration fossil for Nephropidae.

Age justification. J. kunradensis has been collected from the Kunrade Limestone facies 
of the Maastricht Formation, southeast Netherlands [86]. The Maastricht Formation is 
eponymous for the Maastrichtian stage of the latest Cretaceous (although it does not bear 
the GSSP for either lower or upper stage boundary; [64]). The upper boundary of the 
Maastrichtian is well constrained at 66.0 Ma [90], thus providing a minimum age for 
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Nephropidae. Soft maximum as in node 8 herein.

9. Node. This clade, in our tree, comprises Cambaridae, Cambaroididae, Astacidae, and 
Parastacidae (together: crayfish), their last common ancestor and all of its descendants. 
Monophyly of freshwater crayfishes has been previously established by a number of 
molecular and morphological analyses, e.g. [82,91].

Fossil specimens. Cricoidoscelosus aethus Taylor et al. 1999 [92]. Based on holotype 
NIGP (Nanjing Institute of Geology and Palaeontology) 126337 and NIGP 126355 [87].

Phylogenetic justification. Morphological phylogenetic analysis places C. aethus as the 
sister of a clade comprising the extant crayfish Cambarus and Procambarus, both 
members of Cambaridae [87]. The published morphological tree places C. aethus further 
crownward than Parastacidae [87], in relationships that mirror our AHE topology. 
Therefore, it is an appropriate fossil to calibrate the freshwater crayfish crown group.

Age justification. Minimum as in Wolfe et al. [44], node 60. Soft maximum as in node 8 
herein.

10. Node. This node represents crown Axiidea (mud shrimp/ghost shrimp). In our tree, this 
clade is represented by Axiidae, Callianassidae, Callianideidae, Gourretiidae, their last 
common ancestor and all of its descendants. Monophyly of this clade is established by 
molecular phylogeny of the 16S, 28S, and 18S genes [93,94].

Fossil specimens. Protaxius isochela Woodward 1876 [95]. Calibration material is from 
specimens MAN (Museum-Aquarium at Nancy, France) 11700-11762 [96].

Phylogenetic justification. As discussed by Hyžný & Klompmaker [97], the fossil record
of mud shrimps usually preserves only the distal cheliped elements, and many are 
assumed to be members of a wastebasket ‘Callianassa’, which compromises systematic 
identification. The oldest putative members are Jurassic, all of which are likely most 
closely related to crown Axiidae [97]. The very oldest, Magila bonjouri Étallon 1861, 
was described from a preserved dactylus + propodus, but the holotype cannot be found 
[97]. The only Jurassic species with full body preservation is P. isochela, where the 
specimen figured (drawn) by Woodward is unfortunately not identified ([97], 
supplement). However, Hyžný & Klompmaker [97] mention material of P. isochela from 
France as accepted within this taxon, thus we may calibrate a minimum age from the 
specimens discussed by Breton et al. [96]. Although the relationship of P. isochela to 
crown Axiidae is not precisely known, it is well within the crown-group of Axiidea.

Age justification. French P. isochela material was recovered from wells at Bure, Meuse, 
in the northeast of France [96]. The locality belongs to the Rasenia cymodoce to 
Aulacostephanus mutabilis ammonite Zone [96]. The upper boundary of the A. mutabilis 
Zone is Chron M23r.2r.1, with an age of 153.55 Ma [98], in the Kimmeridgian. This 
provides a minimum age estimate for Axiidea. Soft maximum as in node 8 herein.
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11. Node. This node represents crown Gebiidea (mud shrimp/mud lobster/ghost shrimp). In 
our tree, this is only represented by Laomediidae and Axianassidae, their last common 
ancestor and all of its descendants. 

Fossil specimens. Laurentiella imaizumii Karasawa 1993 [99]. Material figured by 
Karasawa [99] includes MFM (Mizunami Fossil Museum, Mizunami, Gifu Prefecture, 
Japan) 39003-39006, and MFM 39117.

Phylogenetic justification. Based on molecular phylogenetics, Laomediidae and 
Axianassidae are sister clades within Gebiidea, exclusive of the clades we did not sample:
Thalassinidae and Upogebiidae [93,94]. No fossil Axianassidae are recorded, thus we 
must calibrate based on fossil Laomediidae. While the position of L. imaizumii within 
either the crown or stem of Laomediidae is unknown, it does share characters indicating 
its membership within the total group of Laomediidae (e.g. strongly heterochelate 
chelipeds; [99]). Thus, L. imaizumii is within the crown group of the represented 
Gebiidea. Note that the extant genus Laurentiella is considered a junior homonym of 
Saintlaurentiella [100]; this does not influence the calibration choice.

Age justification. The oldest occurrence of L. imaizumii is in the Akeyo Formation of the 
Mizunami Group, Gifu Prefecture, Japan [99,101]. The type locality, the Toyoda 
Formation, is slightly younger [99,102]. Thus we calibrate based on the Akeyo 
Formation, which is the uppermost member of the Mizunami Group, and correlated to the
C5Dr chron based on diatom fossils [101]. Globally, these strata underlie the correlated 
NMU 5 (Asia) and MN 5 (Europe) units. Thus a conservative upper bound age for the 
Akeyo Formation is 17 Ma. Soft maximum as in node 8 herein.

12. Node. This clade, in our tree, comprises Porcellanidae (porcelain crabs) and Munididae 
(some squat lobsters), their last common ancestor and all of its descendants. Based on 
previous total evidence analysis [103], these families are close relatives. The full breadth 
of Galatheoidea are not represented here.

Fossil specimens. Juracrista perculta Robins et al. 2012 [104]. Holotype NHMW 
2007z0149/036 (Natural History Museum of Vienna) and paratypes NHMW 
2007z0149/0370 and NHMW 2007z0149/0371.

Phylogenetic justification. J. perculta is known from dorsal carapace material, and was 
previously used to calibrate Munididae [103]. Its carapace exhibits pronounced 
supraorbital spines and broad rostral shape, which typify Munididae [104]. This fossil 
differs from Galatheidae and Munidopsidae in its possession of transverse ornamentation 
without a triangular rostrum (preservation of the rostrum is rare and diagnostic) [104]. 
The breadth of the rostrum in J. perculta is larger than extant munidids, suggesting a 
close relationship but perhaps indeterminate whether it is in the crown group. Therefore 
J. perculta is at the least, a member of the total group of Munididae, and thus belongs 
within the crown group of Porcellanidae + Munididae. Putative members of 
Munidopsidae [105] and Porcellanidae [106] were also discovered in the Ernstbrunn 
Limestone, although the porcellanid awaits a major revision (A. Klompmaker, pers. 
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comm.). These discoveries further support divergence of the major Galatheoidea lineages 
prior to the Cretaceous.

Age justification. J. perculta was recovered from the Ernstbrunn Limestone, lower 
Austria [104]. Ammonites are unavailable for precise biostratigraphy from this locality, 
but a nearby locality from the same unit preserves the ammonites Richterella richteri, 
Simplisphinctes, and the diagnostic Micracanthoceras microcanthum constraint for the 
late Tithonian [98,107]. However, benthic foraminifera and calcareous algae suggest the 
Ernstbrunn Limestone may have been deposited as late as the early Cretaceous, early 
Berriasian stage [108]. Although most literature accepts a Tithonian age, we recognize 
that the more conservative constraint should allow some probability density in the early 
Berriasian, which has a minimum age of approximately 142 Ma [98]. A soft maximum 
age is obtained by phylogenetic bracketing, with the generous assumption that crown 
Porcellanidae + Munididae are not older than the oldest putative crown Anomura. 
Previous studies have suggested the oldest Anomura is Platykotta akaina [103,109]. 
However, its second pair of chelate pereiopods makes this affinity uncertain and it could 
even be stem-group Meiura [110]; nevertheless, P. akaina is surely older than crown 
Porcellanidae + Munididae. P. akaina was collected at Wadi Naqab close to Ras Al 
Khaimah City, United Arab Emirates, from limestone of the Ghalilah Formation [109]. 
No precise constraint is available, so a soft maximum age is the base of the Norian stage, 
at ~227 Ma.

13. Node. This node represents crown Paguroidea (hermit and king crabs). In our tree, this 
includes Coenobitidae, Diogenidae, Paguridae, Lithodidae, their last common ancestor 
and all of its descendants. Our AHE results follow the topology of the Bayesian 
molecular-only analysis of Bracken-Grissom et al. ([103], their Figure 2) in excluding 
Parapaguridae from a monophyletic Paguroidea. 

Fossil specimens. Diogenicheles theodorae Fraaije et al. 2012 [111]. Holotype 
I−F/MP/3957/1533/08 (Institute of Systematics and Evolution of Animals, Polish 
Academy of Sciences, Kraków, Poland).

Phylogenetic justification. The assignment of D. theodorae to crown Paguroidea is based
on carapace material, and was justified in Bracken-Grissom et al. [103]. It bears 
similarities (a distinct threefold junction of keraial, massetic and anterior branchial areas 
of the outer carapace) with the family Parapylochelidae, which is likely closely related to 
the other symmetrical hermit crabs in Pylochelidae [111]. The total evidence phylogeny 
of Bracken-Grissom et al. [103] places Pylochelidae as the most deeply branching lineage
within Paguroidea. 

Age justification. D. theodorae was discovered in an abandoned quarry in Bzów, 
southern Poland [111]. As discussed by Fraaije et al. [111], this locality preserves the 
ammonites Ochetoceras canaliculatum, Trimarginites trimarginatus, 
Dichotomosphinctes sp., and Glochioceras subclausum. Together, these ammonites are 
globally correlated to the Gregoriceras transversarium ammonite Zone of the Oxfordian. 
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Cyclo- and magnetostratigraphy indicate a minimum age of 159.44 Ma [98] for the G. 
transversarium Zone, and thus for D. theodorae. Soft maximum as in node 13 herein.

14. Node. This clade, in our tree, comprises Paguridae (hermit crabs) and Lithodidae (king 
crabs), their last common ancestor and all of its descendants.

Fossil specimens. Paralithodes bishuensis Karasawa et al. 2017 [112]. Holotype MFM 
83077.

Phylogenetic justification. No phylogenetic analysis has yet been conducted to evaluate 
the relationships among extant and fossil pagurids, and the taxonomy of fossil members 
remains problematic [113]. As Paguridae is paraphyletic with respect to Lithodidae in 
previous molecular and total evidence analyses [103,114], fossils that may be within 
Paguridae are not guaranteed to fall within this node (as they may be members of 
lineages leading to pagurids that are outside of our AHE taxon sampling). Therefore we 
conservatively use the oldest likely fossil of Lithodidae. P. bishuensis possesses several 
diagnostic features allying it with members of the extant genus Paralithodes, particularly 
the sparsely arranged low, pointed dorsal tubercles on the carapace [112]. Thus, a position
within crown Lithodidae is confirmed. Although previous publications have suggested 
the oldest Lithodidae is Paralomis debodeorum Feldmann 1998 [115], the sediments in 
which it is found are poorly constrained and may be as young as the Pliocene.

Age justification. The type locality for P. bishuensis is ‘locality MRZ06’, 
Minamichita-cho, Aichi Prefecture, Japan, found in sandstone of the Yamami Formation 
of the Morozaki Group [112]. Biostratigraphic index fossils include the diatom 
Crucidenticula sawamurae, which is correlated in North America to the C5Cn chron, 
ECDZ2, and Delphineis ovata Zone [116]. The approximate age of the top of the ECDZ2 
is 15.8 Ma [116], providing a minimum age constraint. Soft maximum as in node 13 
herein.

15. Node. This node represents crown Eubrachyura (‘higher’ true crabs). In our tree, this 
includes Heterotremata and Thoracotremata, their last common ancestor and all of its 
descendants. Monophyly of Eubrachyura has been supported in previous molecular 
analyses [117].

Fossil specimens. Telamonocarcinus antiquus Luque 2015 [118]. Holotype IGM 
(Colombian Geological Survey, Bogotá, Colombia) p881012.

Phylogenetic justification. The phylogenetic position of T. antiquus within Eubrachyura 
is based on characters shared with extant Dorippoidea (i.e. Dorippidae and Ethusidae). 
While the position of gonopores is unclear [118], preventing definitive assignment to 
Heterotremata, the distinctive carapace outline and groove pattern in particular ally this 
fossil with crown Dorippoidea. Luque [118] concluded that Dorippoidea may be an early 
branching lineage of Eubrachyura. Although no members of Dorippidae or Ethusidae 
were included in our AHE sampling, their closest relative in a previous molecular 
phylogeny was Leucosiidae [117], which we did include. Given the uncertainty in the 
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fossil’s possession of the defining character of Heterotremata (male coxal gonopores), 
and the exact position of Dorippoidea, we conservatively calibrate only the Eubrachyura 
using T. antiquus. 

Age justification. The fossil of T. antiquus was discovered from shales of the lowermost 
Tablazo Formation, in El Batán, Montegrande, near the town of La Fuente, Department 
of Santander, Colombia [118]. The Tablazo Formation bears Parahoplites and 
Douvilleiceras ammonites, and locally is within the Douvilleiceras solitae–
Neodeshayesites columbianus Zone [118]. Globally, Douvilleiceras mammillatum 
straddles the early to middle Albian [64]. The D. mammillatum Zone thus provides a 
conservative minimum age for T. antiquus at 110.22 Ma [64]. A soft maximum age is 
obtained by phylogenetic bracketing, with the generous assumption that crown 
Eubrachyura are not older than the oldest crown Brachyura. The oldest crown Brachyura 
is debatable; Eocarcinus praecursor [119] and Eoprosopon klugi [120] have both been 
proposed, but both lack some crown characters and are only represented by rather poorly 
preserved dorsal carapaces [110]. Nevertheless, stem-lineage positions of these taxa 
would imply the Brachyura crown may be even younger, so we calibrate the soft 
maximum from the base of the Pliensbachian, at 191.8 Ma.

16. Node. This node represents crown Thoracotremata. In our tree, this clade is comprised of 
the sampled families Grapsidae (marsh/shore crabs), Ocypodidae (ghost and fiddler 
crabs), Plagusiidae, Sesarmidae, and Varunidae, their last common ancestor and all of its 
descendants. Monophyly of Thoracotremata is supported by male gonopores located on 
the sternum, and by previous molecular phylogenies [117]. Monophyly of previously 
discussed superfamilies (e.g. Grapsoidea, Ocypodidea) is under suspicion from this and 
other molecular phylogenies [117,121], so the clade treated herein remains 
Thoracotremata.

Fossil specimens. Litograpsus parvus Müller & Collins 1991 [122] (as revised by 
Schweitzer & Karasawa 2004 [123]), holotype M.91-227 (Natural History Museum of 
Hungary).

Phylogenetic justification. Members of Thoracotremata are rare and hard to identify in 
the fossil record, likely because many live in difficult to preserve intertidal and semi-
terrestrial habitats. L. parvus shares characters with extant Grapsidae and Sesarmidae, 
such as the rectangular carapace, size and positioning of the orbits, and a transverse ridge 
formed by the cardiac region with broad branchial ridges [123]. Although the exact 
relationship to the extant members is unknown, based on our topology, a position of L. 
parvus on the stem of either Grapsidae or Sesarmidae would still be within crown-group 
Thoracotremata. Although without sufficient confirmation, some older crown-group 
fossils most likely exist for Thoracotremata. There is a possible ‘grapsoid’ crab from mid-
late Paleocene sediments of Colombia (Luque et al. 2017 [124], Fig. 8J), but it has not yet
received systematic study. Possible stem-group ‘Pinnotheridae’ fossils Viapinnixa 
alvarezi and V. perrilliatae are known from the early Eocene (Ypresian; [125,126]) of 
Chiapas, Mexico; however Pinnotheridae are not sampled here, and at least some 
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members may fall outside of the crown-group we define [117,127–129]. Finally, limb 
fragments of Varuna? sp. have been reported from the middle Eocene (Lutetian?) of 
Jamaica [124,130,131], but with limited specimen or stratigraphic information. 

Age justification. L. parvus is known from limestone sediments of the Szépvölgy 
Formation, Hungary [122]. Co-occurring foraminifera constrain the age of the Szépvölgy 
Limestone to the NP20 zone of the C15n chron [122,132]. This is Priabonian, with an 
upper boundary of 33.9 Ma, providing a minimum age constraint. Soft maximum as in 
node 16 herein.

17. Node. This node represents crown Heterotremata. In our tree, this clade is comprised of 
the sampled families Atelecyclidae, Bellidae, Corystidae, Leucosiidae (purse crabs), 
Menippidae (stone crabs), Platyxanthidae, and the superfamilies Portunoidea (swimming 
crabs), Xanthoidea (mud crabs) and Majoidea (spider and decorator crabs), their last 
common ancestor and all of its descendants. Composition of Portunoidea as in Evans 
[133]. Compositions of Xanthoidea and Majoidea are as defined in the molecular analysis
of Tsang et al. [117], although monophyly of their constituent families remains 
questionable.

Fossil specimens. Cretamaja granulata Klompmaker 2013 [134]. Holotype MGSB 
(Museo Geológico del Seminario de Barcelona, Spain) 77706A+B.

Phylogenetic justification. Klompmaker [134] diagnosed Cretamaja as appropriately 
belonging to Majoidea based on carapace shape (which exhibits rampant convergence 
among brachyurans) and presence of anterolateral spines. These characters (especially 
because of the limitations of carapace shape) only permit assignment to a deeply 
divergent lineage of Majoidea, however, likely outside the Majoidea crown group [117]. 
While monophyly of Majoidea has been supported by previous molecular and 
morphological phylogenies [117,135–137], the exact relationships among constituent 
families (in our tree, Epialtidae, Inachoididae, and Mithracidae) are debated. A position 
for C. granulata along the stem of Majoidea would still permit assignment to the crown 
group of Heterotremata, and thus a calibration of the latter clade.

Age justification. The Koskobilo fauna belongs to the Albinez Unit of the Eguino 
Formation, southwest of Alsasua, Spain [134]. Either a Cenomanian or late Albian age 
has been discussed for the Ablinez Unit, based on underlying ammonites and those of 
contemporaneous reef deposits (summarized by Klompmaker [134]). Mortoniceras 
perinflatum was one of the contemporaneous ammonites from a nearby locality, and it is 
an index fossil for the late Albian [64], a convincing age. The upper boundary of the M. 
perinflatum Zone is at 100.91 Ma [64], which is therefore the minimum age of C. 
granulata. Soft maximum as in node 16 herein.

18. Node. This node represents crown Majoidea (spider and decorator crabs). In our tree, this
clade includes Epialtidae, Inachoididae, and Mithracidae, their last common ancestor and 
all of its descendants. While monophyly of Majoidea has been supported by previous 
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molecular and morphological phylogenies [117,135–137], the exact relationships among 
constituent families are debated. 

Fossil specimens. Planobranchia palmuelleri Artal et al. 2014 [138]. Holotype MGSB 
79782.

Phylogenetic justification. The most distinctive characters for majoids are the carapace 
shape. P. palmuelleri has an advanced carapace front with straight lateral margins, 
rounded longitudinal frontal ridges, lateral orbits with a strong outer-orbital subtriangular 
tooth, and dorsal conical spines: these characters refer Planobranchia to the Inachidae. 
Membership on the stem-lineage of Inachidae tentatively confirms the ability to provide a
minimum calibration for the crown Majoidea we have sampled. Late Cretaceous 
[124,139], Eocene [140,141], and Oligocene [142] putative majoids have been discovered
with preserved carapaces, but they either fall outside of our molecular crown taxon 
sampling, or lack specimen information.

Age justification. P. palmuelleri is known from strata of the Vic area, Barcelona 
province, Catalonia, Spain, most likely assigned to the Coll de Malla Formation [138]. As
there is some controversy over the precise lithostratigraphic unit [143], we agree with 
Artal et al. [138] that a Lutetian age is conservatively appropriate. The upper bound of the
Lutetian is 41.2 Ma, providing a minimum age. Soft maximum as in node 16 herein.

19. Node. This node represents crown Xanthoidea (mud crabs). In our tree, the members are 
‘Xanthidae’ and Panopeidae, their last common ancestor and all of its descendants. 
Monophyly of a clade containing at least these members of Xanthoidea is supported by 
previous molecular and total evidence phylogenies [117,144].

Fossil specimens. Phlyctenodes tuberculosus Milne Edwards 1862 [145]. The holotype 
MNHN (Muséum National d’Histoire Naturelle, Paris) R03826, and specimen MCZ 
(Museum of Comparative Zoology, Harvard University) 2456 are figured by Busulini et 
al. [146].

Phylogenetic justification. Phlyctenodes fossils are only known from carapaces, which 
are linked with members of the xanthid subfamily Actaeinae based on the ornamentation 
of the carapace with tubercles [146,147]. However, as many of the subfamilies within 
Xanthidae, including Actaeinae, are very likely polyphyletic [144,148], and even our 
focal analysis suggests that Xanthidae may be paraphyletic, the exact relationship of P. 
tuberculosus to sampled taxa is unclear. Thus we calibrate the crown group of all of 
sampled Xanthoidea. Of contemporaneous Xanthoidea fossils [147], P. tuberculosus has 
recently refigured and discussed specimens, and is thus selected.

Age justification. The holotype of P. tuberculosus was attributed to the locality 
Hastingues, Landes, France, in the ‘middle Eocene’ [146]. The MCZ specimen was 
discovered in the better known San Feliciano Hill quarry of the Berici Hills, Vicenza, 
Italy [146]. The decapod-bearing strata of the quarry are correlated to the lower 
Priabonian stage, late Eocene, based on calcareous nannofossils [149,150]. The upper 
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boundary of the Priabonian is 33.9 Ma, providing a minimum age constraint. Soft 
maximum as in node 16 herein.
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Figure S1. Workflow for our AHE data collection and analysis. Yellow boxes represent 
published genomic resources, blue boxes are newly sequenced in this paper, and red boxes are 
the focal results in Figures 2-3.
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Figure S2. Pairwise heat map of species-pairwise amino acid dataset completeness for all 410 
exon-based loci, in the unrecoded amino acid dataset. Numbers in parentheses are total exon-
based loci captured per species. Low shared site coverage in shades of red and high shared site 
coverage in shades of green.
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Figure S3. Phylogenetic hypothesis for Decapoda based on the topology from the ML 
partitioned amino acid analysis. Values at nodes represent nonparametric bootstraps. Unlabeled 
nodes are considered strongly supported.
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Figure S4. Phylogenetic hypothesis for Decapoda based on the topology from the Bayesian 
CAT-GTR+G analysis with Dayhoff-6 recoding. Values at nodes represent posterior probabilities.
Unlabeled nodes are considered strongly supported.
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Figure S5. Phylogenetic hypothesis for Decapoda based on the topology from the ML 
partitioned amino acid analysis with Dayhoff-6 recoding. Values at nodes represent 
nonparametric bootstraps. Unlabeled nodes are considered strongly supported.
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Figure S6. Phylogenetic hypothesis for Decapoda based on the topology from ASTRAL species 
tree analysis. Values at nodes represent quartet node support. Unlabeled nodes are considered 
strongly supported, following posterior probabilities (i.e. ≥ 0.98 for strong support).
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Figure S7. Phylogenetic hypothesis for Decapoda based on the topology from the ML 
partitioned nucleotide analysis. Values at nodes represent nonparametric bootstraps. Unlabeled 
nodes are considered strongly supported.
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Figure S8. Phylogenetic hypothesis for Decapoda based on the topology from the ML 
partitioned nucleotide analysis with only codon positions 1+2 included. Values at nodes represent
nonparametric bootstraps. Unlabeled nodes are considered strongly supported.
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Figure S9. Phylogenetic hypothesis for Decapoda based on the topology from the ML 
partitioned nucleotide analysis with Degen recoding. Values at nodes represent nonparametric 
bootstraps. Unlabeled nodes are considered strongly supported.
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Figure S10. Phylogenetic hypothesis for Decapoda based on the topology from the ML 
partitioned nucleotide analysis with Degen recoding and only codon positions 1+2 included. 
Values at nodes represent nonparametric bootstraps. Unlabeled nodes are considered strongly 
supported.
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Figure S11. Saturation plot for each codon position with transversions (v) and transitions (s) 
plotted against F84 distance. The third codon position clearly deviates from expected values, and
thus has experienced saturation.
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Figure S12. Divergence time estimates for Decapoda based on the topology in Figure 2. 
Posterior ages were estimated in PhyloBayes using the CAT-GTR+G substitution model, the 
UGAM clock model, and a gamma distributed root prior of 440 Ma ± 20 Myr. Horizontal shaded
bars represent 95% confidence intervals. Numbered circles represent nodes with fossil 
calibrations.
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Figure S13. Comparison of posterior probability distributions for divergence times assessed as in
Figure 3 (posterior), and using the same analyses under the effective prior (removing sequence 
data). The posterior analyses are shaded; effective priors are superimposed on the same axes with
a heavy line of the same color. Grey/black analyses with the CIR autocorrelated clock model 
(depicted in Figure 3); orange analyses with the UGAM uncorrelated clock model. (a) Selected 
nodes directly calibrated by fossils and their calibration number; (b) Selected nodes calibrated by
only a birth-death tree prior.
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All Extended Tables are available as .xslx or .csv files attached.

Table S1. Details of all transcriptome and genome sequences used in probe design.

Table S2. Sample information for whole genome sequencing, including SRA accession 
information.

Table S3. Sample information for transcriptome sequencing, including SRA accession 
information.

Table S4. Assembly statistics for transcriptome sequencing.

Table S5. Brief description of enrichment kits for each of six selected major lineages (Achelata, 
Anomura, Astacidea, Brachyura, Caridea, and Dendrobranchiata).

Table S6. Sample information for AHE sequencing, including SRA accession information.

Table S7. Formatted list of node calibration priors. 

Table S8. Assembly statistics for AHE sequencing, and exon-based loci sequenced for each 
species. For each locus, 1 represents presence and 0 represents absence in the main data matrix.
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