
1 Text-mined fossil biodiversity dynamics using ma-1

chine learning: Extended methods2

1.1 Plain text preprocessing3

We simplified the information retrieval task by using the language detection method of4

Shuyo (2014) to filter any non-English documents. We attempted to remove the reference5

lists by doing a reverse, single match, case-insensitive regular expression search of the6

phrases “references”, “literature list”, and “bibliography”, and disregarding the trailing7

plain text. While titles of publications may contain valuable fossil occurrence information,8

information retrieval using the reference list could lead to improper crediting of candidate9

sources.10

1.2 Named-entity recognition11

We present simplified examples of how we performed named-entity recognition using12

TokensRegex expressions (Chang and Manning 2014).13

( [/Bugula|Steginoporella/] [/cf.|aff./]{0,1} [/magnifica|bugula/]{0,1} [/sp./]{0,1} [/nov./]{0,1} )14

The expression above will match e.g. “Bugula”, “Bugula bugula”, “Steginoporella cf.15

magnifica”, “Steginoporella magnifica sp. nov.”. Not all combinations of genus names and16

species epithets are valid bryozoan species names. However, we argue that this is not a17

problem; non-existent species such as “Steginoporella bugula” are not usually found in the18

corpus. Making this assumption when designing the rules allows the computation to be19

faster and more memory-efficient.20

( [/[A-Z][.]/] [/cf.|aff./]{0,1} [/magnifica|bugula/] [/sp./]{0,1} [/nov./]{0,1} )21

The expression above will match e.g. “B. bugula”, “S. magnifica sp. nov.”, but not “S. sp.”22

or “S. sp. nov.”. Named-entity recognition of geologic time intervals is simpler:23

( [/lower|Lower|early|Early|middle|Middle|upper|Upper|late|Late/]{0,1} [/Cretaceous|Paleocene|Miocene/] )24

This last expression will match “lower Miocene”, “Early Cretaceous”, “Paleocene”, etc.25

For the full named-entity recognition, we populated these expressions with comprehensive26

lists of genus names, species epithet names, and geologic time interval names (see main27

text for sources).28

1.3 Shortest dependency path29

As tree-based Stanford Basic Dependencies (with the “basicDependencies” parser, De30

Marneffe et al. 2006) have been found to perform better than the more general Universal31
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Dependencies (De Marneffe et al. 2014) for the purposes of relation classification (Noora-32

lahzadeh and Øvrelid 2018), we opted to use the former. The relation between the two33

spans is often characterized using the shortest dependency path (SDP, e.g. Bunescu and34

Mooney 2005, Xu et al. 2015), and we use a similar approach here. We repeat the first35

example candidate from the main text (Di Martino and Taylor 2014 p. 54):36

Remarks – A few, small, infertile colonies of Setosellina cf. roulei have37

been found encrusting the undersides of very thin platy corals from the [late38

Burdigalian] and the Serravallian.39

Bold font indicates the relevant spans, and square brackets indicate spans that are40

not currently under consideration. The dependency grammar for the example above is41

illustrated in Fig. S4. The shortest dependency path between the last token of the first42

span (roulei) and the first token of the last span (Serravallian) is:43

44

roulei← cf.→ found→ encrusting→ Burdigalian→ Serravallian,

in which “cf.” is the root or lowest common ancestor. We note that “Setosellina cf. roulei”45

is separated by “colonies” in the dependency tree (Fig. S4), even though it is a single46

entity. The words along the SDP are the primary units of information. Since long SDPs47

were rare (0.5% had length > 12, see Fig. S5), we only considered candidates with SDP48

of length ≤ 12.49

1.4 Labelled candidates50

We created a dataset of labeled candidates as detailed in the main text. One thousand51

of these candidates were labeled by two annotators, of which 159 were disagreements.52

We collapsed the candidates that were annotated twice before fitting the classifier, as53

duplication of training data could lead to the classifier being overfitted or regularized.54

For the 861 agreed-upon candidates, we simply used one. For the 159 disagreements,55

we used a random gold label, as we had too few annotators to use majority rule or a56

similar approach. We decided not to leave out the disagreements, as artificially removing57

ambiguity may upward bias the performance metrics. In addition, we do not have good58

criteria for removing this ambiguity.59

1.5 Word embeddings60

A naive approach to represent words would be to treat each word in the vocabulary61

independently. A more efficient and commonly used approach is to project each word as a62

point in a lower-dimensional vector space (i.e. fewer dimensions than the vocabulary size).63

This is known as word embeddings or word vectors (e.g. Mikolov et al. 2013, Pennington64
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et al. 2014). Word embeddings are immensely useful because they significantly improve65

performance for almost any natural language processing task (Young et al. 2018). In66

preliminary analyses, we explored whether a set of word embeddings tailor-made for the67

bryozoan literature would perform better than a generic one. Specifically, we used English68

word embeddings based on the FastText skipgram model (Bojanowski et al. 2017), one69

pre-trained on the English Wikipedia corpus, and one trained on a subset of the bryozoan70

literature. Both sets of word embeddings were lower-cased, non-lemmatized, and 300-71

dimensional. We found that 88% of the word vocabulary in the labelled candidates were72

covered by the bryozoan-based word embeddings, and 64% were covered by the pre-trained73

Wikipedia-based word embeddings. FastText is special in that word morphology can74

be utilized to generate embeddings for words that are not in the embedding vocabulary.75

This feature of FastText is crucial for us not least because our corpus contains misspelled76

and rare words. Despite this, we were able to obtain word embeddings for the full word77

vocabulary in all of the candidates. Although the bryozoan-based word embeddings78

better covering the vocabulary in the labelled candidates, we chose to present results from79

the embeddings based on the more generic Wikipedia corpus, primarily for two reasons.80

First, the relation classification performed similarly for either set of word embeddings.81

Second, we argue that the metrics based on the Wikipedia-corpus embeddings are more82

representative of out-of-sample candidates. Thus, we can add additional documents to83

our pipeline, and more safely assume that the Wikipedia-based embeddings work just as84

well as before, and avoid having to retrain the embeddings and relation classifier.85

1.6 Machine-learning classifiers86

In our preliminary testing, we used Support Vector Machine (SVM, Cortes and Vapnik87

1995), logistic regression and neural networks to classify our candidates. The SVM (using88

a radial-basis kernel function) and logistic regression were implemented using Scikit-learn89

(Pedregosa et al. 2011). Due to slightly unbalanced relation classes (56% positive, 44%90

negative in our training set), we weighed the inputs by the inverse frequency of their91

respective class when we fitted the SVM and the logistic regression. For the SVM we92

used two different features; “bag of words” along the SDP, and the “sum of word-vectors”93

along the SDP. Our baseline is a weighted coin toss (56% probability of being positive)94

random variable.95

The neural network models we explored consist primarily of three layers. The first96

layer is an embedding layer (see previous section for word embeddings) that takes user-97

specified features as input. We experimented with several different features (Table S1,98

Fig. S1). These included words, part-of-speech labels, named-entity types, the governing99

dependency labels and SDP-subpath (“left”, “root”, “right”). Next, the embedded features100

were concatenated if applicable (Fig. S1A). The embedding layers are maps that translate101

the features into real-valued vectors, and we did this for all the tokens along the SDP (Fig.102
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S1A). The second is a bidirectional LSTM (Long Short-Term Memory recurrent neural103

network) layer with the hyperbolic tangent activator function. The third hidden layer104

used a binary softmax activation function. The softmax transformation ensures that the105

outputs y0, y1 are constrained to y0, y1 ∈ [0, 1] and y0 +y1 = 1, thus obtaining a probability106

mass for the candidate relation classification task. The interpretation of the outputs y0, y1107

follows from the criteria we set for our candidate labeling procedure. We interpret y0, y1108

as probabilities that the sentence either 1) explicitly states or strongly implies, or 2) does109

not state that the species in question occurred in the given age, respectively.110

We fitted the neural networks using the back-propagation algorithm (Rumelhart et al.111

1986). The weight parameters of the network were randomly initialized (uniformly112

distributed), except for the word embedding layer. In training, the weights were iteratively113

optimized using gradient descent, where automatic differentiation (Abadi et al. 2016) was114

used to find the derivative of an optimization objective with respect to the weights. We115

chose to estimate the optimization objective using binary cross-entropy,116

−(g0 log(y0) + g1 log(y1)),

where g0, g1 ∈ {0, 1} are the gold labels, and y0, y1 ∈ [0, 1] are the predictions. In other117

words, the optimization objective (or loss function) compares the classifier predictions118

with the gold labels. We used the Adam optimization algorithm (Kingma and Ba 2015)119

to control the learning rates. One iteration of training is one “epoch” (i.e. the classifier120

sees the entire training dataset once), and each epoch is subdivided in multiple “batches”.121

We used regular and recurrent dropout rates of 0.2 in the LSTM layer, meaning that only122

80% (randomly selected per batch) of the nodes in the LSTM layer were used in forward-123

and back-propagation during the training stage. This effectively reduces overfitting and124

regularizes the classifier, which in turn allows for better performance on the validation set.125

After training for a number of epochs, we selected the weights corresponding to the model126

epoch with the best F1 score (the harmonic mean of the recall and precision) evaluated127

on the validation set.128

1.7 Classifier performances129

We tested several relation classifiers in various configurations in preliminary analyses130

(Table S1). Our aim was not to select the best classifier, but rather to evaluate the131

prediction errors in a few good classifiers.132

Our baseline SVM with “bag of words” (65.1% F1) performed only a little better than133

guessing (57.4% F1), see Table S1. Word embeddings appeared to be crucial in order134

to achieve good performance. Logistic regression with the “sum of word-vectors” along135

the SDP performed somewhat better than SVM with “bag of words” along the SDP.136

The non-linear SVM performs better than (linear) logistic regression when applied to137
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the same features. The LSTM models with domain-specific (i.e. Bryozoa) vs Wikipedia-138

based embeddings perform similarly, however keeping the word embedding layers static139

as opposed to dynamic (i.e. trainable) appears to achieve better performance. The140

SVM with word-vectors and the best LSTM have accuracies of 81.2% and 83.3± 1.0%,141

respectively, only a little short of the inter-annotator labeling accuracy (84.1%). Several142

classifiers worked comparably well, and it was especially difficult to distinguish the143

performance between the LSTM models. As using several features did not noticeably144

improve performance compared with using the words along the SDP, we opted to present145

the simpler LSTM model in the main text.146

1.8 Beginning and truncation time for geologic intervals147

When we encountered a time interval preceeded by a positional or temporal adjective148

(e.g. “lower”, “early”) not found in Macrostrat, we divided the unit in three and used the149

appropriate part. As an example, for “Upper Messinian” we used the most recent third150

(5.97-5.33 Ma, million years ago) of the Messinian (7.25-5.33 Ma).151

1.9 Error inspections152

While most genera have reasonably short geologic durations (93% under 100 million years,153

73% under 25 million years), there are some that have suspiciously long ones (Fig. S3).154

We used only stages and dropped (geologic) epochs, periods and eras with wider time155

resolution (Fig. S3). We inspected the candidates that contribute to Fig. S3, and present156

three exemplary problematic candidates to illustrate caveats and potential solutions. We157

choose to inspect false positives rather than false negatives, because the former are more158

problematic for the purposes of estimating diversification dynamics (see main text). The159

first example (from Todd et al. 1997 p. 2) is:160

“Type-species - Cellaria smithii PHILLIPS, 1829; Cornbrash (probably161

Callovian; Taylor, 1978), Scarborough, Yorkshire, England (Fig. 3.1).”162

Our LSTM classifier gives a prediction of ŷ0 = 0.98 for the relation, above the standard163

decision boundary of b = 0.5. The sentence does indeed say that Cellaria smithii is found164

in the Callovian (166.1-163.5 Ma). This extracted relation is incorrect from a taxonomic165

perspective, however it is not a false positive from a natural language perspective. In fact,166

Todd et al. (1997) argue that Cellaria smithii (Phillips 1829), a type species, does not167

belong to the genus Cellaria, but rather belongs to Simplicidium, and hence should be168

named S. smithii. As we did not account for species-level synonymy, this entry contributes169

to a range inflation for Cellaria.170

A second example (from Nikulina 2002 p. 4) is:171
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“Electra crustulenta (Pallas) The genus Electra Lamouroux is a member172

of the earliest farnily Electridae d’Orbigny known from the Oxfordian or173

[Kimmeridgian] (Pohowsky, 1973; Taylor, 1994).”174

Here, the LSTM classifier gives a prediction of ŷ0 = 0.94. Note that “Electra crustulenta175

(Pallas)” is in fact a headline, which led to incomplete sentence splitting, and the word176

“family” appears as “farnily” in the extracted text. Despite these faults, it is obvious to177

a human reader that the quote does not state that Electra crustulenta occurred in the178

Oxfordian. However, the failed sentence split is not obvious to our automatic information179

retrieval tools. For instance, the dependency path we used (between Electra crustulenta180

and Oxfordian) was:181

crustulenta→ member→ d’Orbigny→ known→ Oxfordian.

From the perspective of the dependency parse, it is natural to think that Electra crustulenta182

occurred in the Oxfordian, as they are connected by “member” and “known”. We were183

not able to deduce the reference to the author “Pallas”. The consequence of these errors184

is that the range for Electra is falsely inflated, apparently by more than double. The185

article (Nikulina 2002) appears to be translated from Russian, and it is rife with optical186

character recognition errors, e.g. interchanging of the letters “c” and “e”, as well as “r”,187

“t”, “s” and “l”, and “rn” and “m”. A third example (from Ostrovsky 2013 p. 249) is:188

Whereas [Micropora] is known from the Cenomanian, Mollia is much189

younger, having evolved in the [Danian].190

Here, the classifier gives ŷ0 = 0.73, which is less certain than for the two previous examples.191

This gives the wrong inference, as the sentence does not state that Mollia is found in the192

Cenomanian (100-93.9 Ma). There appears to be nothing grammatically wrong or overly193

ambiguous with the sentence. This type of error could have been avoided by setting a194

more conservative decision boundary, e.g. b = 0.75.195

1.10 Impact of false positives on genus richness196

Figure S6 shows the observed range-through genus richness as we vary the false positive197

rate by subsetting the dataset with various degrees of conservatism. The false positive198

rates (FPR) in Fig. S6 are estimated for the test dataset. However, as a large portion of199

candidates overlap with the training data, the net FPR is in reality smaller. As we used200

dropout in training (see section 1.6 Machine-learning classifiers), effectively regularizing201

the classifier, the FPR for the training data does not converge to zero. Interestingly, we202

see that the data subsets with above 0.25 FPR (at recall ≥ 0.89) result in negligible203

difference for the final counts.204
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3 Supplementary figures264
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Figure S1: A: Feature embeddings. The features are part-of-speech (POS) labels,
dependency labels (DEP) for the parent relationship, named-entity recognition (NER),
subpath (e.g. “roulei” would be “left”, “cf.” would be “root”, “found” would be “right”)
and words into vectors of Rn along the shortest dependency path. The classifier discussed
in the main text uses only a single feature (Word) along the SDP. B: The unrolled
architecture. A single layer of bidirectional LSTM (45-dimensional) units in a recurrent
neural network. Horizontal dashed arrows are recurrent dropout, vertical dashed arrow
indicates standard dropout. The activation functions are the hyperbolic tangent (tanh)
and binary softmax, yi = f(zi) = ezi/(ez1 + ez2), i ∈ {1, 2}. The dependency relation
types are abbreviated; dobj = direct object, ccomp = clausal complement, xcomp = open
clausal complement, nmod = nominal modifier, conj = conjunct (de Marneffe et al. 2014).
The figure style is inspired by Miwa and Bansal (2016).
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Figure S2: Simplified histogram of genus abbreviation occurrence. The majority
of abbreviations (55.5%) were translated using full genus names found in the same sentence,
and 24.1% abbreviations were translated using the preceeding 13 sentences. There were
4509 abbreviations in a sample of 13732 candidates. This figure does not include candidates
for which the sentence exhibited two or more distinct abbreviations (1.2%), although they
are also translated.
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Figure S4: Dependency grammar (basic dependencies, De Marneffe et al.
2006) for first example in the main text (Di Martino and Taylor 2014). Each
major box (non-grey background) is a token. Each arrow is a dependency link with a
labeled dependency type (minor boxes, in grey). Bold boxes and arrows indicate the
shortest dependency path between the last token (“roulei”) of the first span (in green,
here a species) and the first token of the last span (in orange, here a geologic age).
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Figure S6: Range-through genus richness for cheilostomes. The curve from
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(2018). The false positive rates (FPR) are estimated for the test set. The changes in
range-through genus richness are small to negligible for subsets of the occurrence data
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4 Supplementary tables265

Table S1: Summary of classifiers and features explored. The F1 is the harmonic
mean of the precision and recall metrics, evaluated on the test set. SVM = Support
vector machine. LSTM = Long Short-Term Memory Recurrent Neural Network. SDP =
Shortest Dependency Path. The model discussed in the main text is indicated in bold.

Classifier Features along SDP F1 (%)
Weighted coin None 57.4
SVM Bag of words 65.1

Word vectors: Wikipedia Bryozoa
Logistic regression Sum of word-vectors Static 72.9 73.0
SVM Sum of word-vectors Static 83.9 85.3
LSTM Words Non-static 84.5± 0.5 84.2± 0.6
LSTM Words Static 85.3± 0.5 85.5± 0.4
LSTM Words, POS, NER, DEP, Subpath Non-static 85.1± 0.6 85.4± 0.4
LSTM Words, POS, NER, DEP, Subpath Static 85.9± 0.7 86.2± 0.6
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