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Supplementary Methods and Results 

1. Ruling out soil contamination 

Because our samples were collected from the ground, we could not exclude the 

possibility that some samples were contaminated with microbes from the soil. However, fecal 

samples from all 14 baboon populations in our data set were compositionally similar to those of 

other primates such that Firmicutes and Bacteroidetes are the most common phyla [1-3]. In 

contrast, around the globe and in Western Kenya, soil communities are typically dominated by 

Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes, and Verrucomicrobia [2, 4-6]. 

In addition to these broad compositional differences, soil contamination is unlikely to 

explain our results for three main reasons. First, mammalian feces contain one of the densest 

microbial communities on earth, with approximately 1011 microbes per gram [7]. In contrast, a 

typical soil sample contains 108 microbes per gram [8]. If a 4 g fecal sample was coated with 

~200 mg of soil (a generous estimate), the soil would contribute ~0.005% of the microbial cells 

in the sample (2 x107 cells in 200 mg of soil / 4 x 1011 cells in a 2 g fecal sample). These 

contaminating cells might represent rare taxa in baboon gut microbiota, if they differ from 

microbes already present in the gut, or they might contribute to read counts of taxa already 

present in the gut, especially to microbes ingested incidentally along with the baboons’ food. If 

they fall into the first category, we find that our results are robust to the removal of rare taxa, 

both in terms of the percent of samples a microbe is found (prevalence) in and mean microbial 

abundance across samples (see Applying BEDASSLE to microbial presence/absence data). 

These results imply that contamination from rare microbes are not disproportionately 

contributing to the patterns we see in our data 

Second, if the contaminating microbes overlap with (i.e. are not different from) those 

already present in the gut, then their addition should not substantially alter the observed 

proportions of these microbes in our data. In other words, if fecal samples are contaminated by 

soil after defecation, the microbes in the soil should be similar to those that the baboons are 

ingesting and thus should not distort the proportions. Specifically, the upper bound of a possible 

difference in abundance is around the 0.005% contribution of soil microbial reads to the overall 

read pool, estimated above (note, this assumes that all contaminating reads belonged to the same 

OTU, which is conservative and extremely unlikely). However, the mean difference in microbial 

abundance between populations was 0.037%, an order of magnitude larger than 0.005%. Our 
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effect sizes are hard to attribute to the addition of such a small number of reads. For beta 

diversity, the Mantel Pearson’s r correlations for significant soil traits were very large, indicating 

that 59% of the variation could be explained by exchangeable sodium, 36% by soil pH, or 18% 

by geology. In Figure 3, it’s hard to explain such large shifts in beta diversity (weighted UniFrac 

ranges from 0.3 to 0.5) with the addition of a small number of contaminating reads. For alpha 

diversity, a shift from the least to most salty soils (1% to 23% exchangeable sodium) led to a 

gain of 323 OTUs, which is striking, given that the median number of OTUs in our samples was 

414 OTUs.  

Third, it is theoretically possible that differences in soil microbe abundance are so great 

between populations that even a small amount of contamination could falsely point to between-

population differences. However, even if the host-microbe abundances did not differ between 

populations at all, the relative proportion of contaminant microbes is so small (<0.005%) that 

between-population differentiation in the soil microbes would have to be enormous to generate 

the results we observe. For example, even if the abundance of an OTU contaminant differed 

between populations by 10 standard deviations (i.e., the abundance of the OTU in soil from any 

given population was completely non-overlapping with the abundance in any other population), 

we would never observe significant between-population differences with only a 0.005% 

contribution to the read pool (based on conservative simulation using ANOVA). 

 

2. Ruling out technical differences between Amboseli and other populations 

In our dataset, we found that baboons sampled from Amboseli had gut microbiota that 

were distinct from samples from other populations. We were concerned that this difference was 

attributable to differences in the time to sample preservation in Amboseli versus the other 

populations. Specifically, fecal samples from Amboseli baboons were collected and preserved 

within 15 minutes of defecation, while fecal samples from some of the other populations were 

collected from a few hours to two days after defecation. Exposure to the environment could 

affect microbiota composition through exposure to environmental microbes or microbial growth 

before preservation. Two prior studies have found that time to preservation does not explain 

significant variation in gut microbiota measured in fecal samples [9, 10]. However, to confirm 

that time to preservation did not drive between-population differences between Amboseli and 
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other populations, we ran a time series experiment to test the effects of exposure time on gut 

microbiome alpha and beta diversity.  

 

Methods  

We collected one fecal sample from each of 10 Amboseli baboons and exposed equal-

sized aliquots of these samples to natural environmental conditions in Amboseli over 5 time 

points: 15 min, 1 h, 8 h, 24 h, and 48 h after defecation. After exposure, each aliquot was 

preserved in 95% ethanol. One sample was misplaced before shipment to the US, leaving a total 

of n = 49 time point samples. Although DNA extraction and 16S rRNA gene sequencing of the 

49 timepoint samples was performed separately from the 191 samples described in the main text, 

the timepoint samples are taxonomically similar to the other Amboseli samples (Fig. S13). For 

these 49 samples, we obtained 78,750 ± 19,820 (median ± sd) reads per sample and 604 ± 121 

(median ± sd) OTUs per sample. 

To test whether time to preservation predicted gut microbial alpha diversity, we ran linear 

mixed models in the lme4 [11] and lmerTest packages [12], with OTU richness as the response 

variable, per sample read count and time point as fixed effects, and baboon identity as a random 

effect.  

To test whether time to preservation predicted gut microbial beta diversity, we ran a 

PERMANOVA with weighted UniFrac as the response variable and baboon identity and time 

point as the predictor variables in the vegan package [13]. 

To test whether time to preservation predicted the relative abundance of individual gut 

microbial phyla in each sample, we ran linear mixed models with the per-sample relative 

abundance of each phylum as the response variable, per sample read count and time point as 

fixed effects, and baboon identity as a random effect. We repeated the analysis at the levels of 

class, order, family, and genus for each taxon not listed as ‘Other’ or ‘Unknown’, and then 

corrected for multiple hypothesis testing using the false discovery rate approach of Benjamini-

Hochberg [14]. There were 2,423 OTUs in the time series data that were identified to a genus or 

higher taxonomic level in QIIME. These OTUs were collapsed into 641 taxon-level 

classifications, excluding OTUs listed as unassigned or other. 
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Results 

We found no evidence that time to preservation predicted gut microbial composition. 

OTU richness did not change with exposure time (p = 0.85; Fig. S1A), and exposure time 

explained only 4.6% of the variance in microbial weighted UniFrac (r = 0.046, p = 0.051; Fig. 

S1B). Further, in taxon specific analyses, only 8 of 641 taxa changed in abundance based on time 

until sample preservation (5% FDR threshold). These included the class Coriobacteriia and, 

within it, the order Coriobacteriales and family Coriobacteriaceae; the order Lactobacillales and, 

within it, the family Lactobacillaceae and genus Lactobacillus; the family Mogibacteriaceae; and 

the genus Faecalibacterium. However, each of these taxa comprised < 3% of reads in most 

samples and 0.4 – 3.8% of OTUs per sample. They also changed by <1% over the 48-hour 

sampling period. 

 

3. Quantifying environmental differences between populations 

We characterized environmental differences between all 14 populations using 13 

environmental variables extracted from maps (Tables S2, S3; Fig. S2; [15-17]). All of these 

variables are potential predictors of the availability of baboon foods and/or microbial exposures 

from the environment, and the majority are uncorrelated with each other (Table S3; Mantel R 

(mean ± s.d.) = 0.089 ± 0.207; range=-0.241 – 0.882). For each population, we measured each 

environmental variable based on a 28 km2 circle (6 km diameter) surrounding the sampling 

location (Fig. S2) using ArcMap 10.2.2 [18]. We chose a 28 km2 circle because 6 km 

corresponds to the largest observed core home range diameter (i.e. 75% of usage time) of 

baboons in Amboseli (Grieneisen et al., unpublished data), making 28 km2 a generous estimate 

of range size. 

Vegetation. The composition of vegetation predicts the availability of plant-based foods, 

which comprise the vast majority of baboon diets [19]. We used a 1 km2 grid cell resolution 

vegetation map to measure the relative abundance of 10 vegetation types within each sampling 

circle (e.g. montane forest, closed deciduous forest, sparse grassland, etc.; Table S2; Fig. S2A; 

[17] [19]). We then calculated a single vegetation Bray-Curtis dissimilarity matrix between 

populations using vegan [13].  

Soil traits. We chose ten soil traits that could influence plant and microbial communities 

for each population: bulk density, cation exchange capacity, clay cation exchange capacity, 
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drainage, exchangeable sodium percentage, pH, sand percentage, total carbon, total nitrogen, and 

SOTER Soil Units (SOil and TERrain) Soil Units (Tables S2, S3; [20-23]). SOTER Soil Units 

are a standardized soil taxonomy system that groups soils by their geological genesis, terrain, 

weathering, and chemical properties. SOTER Soil Units are not tightly correlated with the other 

9 soil characteristics (Table S3), in part because they are based on the top 20-100 cm of soil, 

while the other 9 soil metrics are derived from the topsoil alone (i.e., the top 0-20 cm). All 10 

soil traits were obtained from a high-resolution soil and terrain map of Kenya divided into 

polygons (Fig. S2B [15]). We calculated a single weighted mean value for each soil trait, except 

for SOTER Soil Units, at each population based on the relative area of each polygon in the 

sampling circle and then created a between-population distance matrix for each trait. For SOTER 

Soil Units, we calculated a Bray-Curtis dissimilarity matrix between populations  

Geology. The underlying geology of a population predicts its soil properties, especially 

nutrients and minerals, which in turn affect plant and microbial community composition [24]. 

Geological composition for each population was determined from a fine-scale (1 cm represents 

10 km) geology map (Fig. S2C; [16]). There were 9 geological types across the 14 baboon 

populations (Table S2). To calculate between-population differences in geological types, we 

used geological type composition to calculate a Bray-Curtis dissimilarity matrix. 

Elevation. Elevation is a strong proxy for rainfall and ambient temperature in Kenya, 

both of which can affect the composition of plant and microbial communities [25]. We pulled 

elevation data for each population using the strm elevation model [26]. Elevation ranged from 

623 – 1,797 m above sea level (median = 1,227 m).  

 

4. Characterizing gut microbiota in each baboon fecal sample 

DNA extraction and 16S rRNA gene sequencing. DNA was extracted from each fecal 

sample using the Powersoil DNA Isolation kit (MO BIO Laboratories, Inc., Carlsbad, CA) [27]. 

We amplified the V4 region of the bacterial 16S rRNA gene via polymerase chain reaction using 

barcoded primers 515F and 806R [28]. Multiplexed libraries were subjected to paired-end 

sequencing (301 bp per sequence) on the Illumina HiSeq 2000 platform, yielding 31,521,814 

paired raw sequencing reads. 

Bioinformatics pipeline. Read merging, quality filtering, OTU (operational taxonomic 

unit) clustering, and taxonomic assignments were conducted using a QIIME-based pipeline (Fig. 
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S3 [29]). Five of 196 samples were removed during quality filtering, yielding a final dataset of 

191 samples from 14 populations (mean=14 samples; range=1 – 27; Table S1). We retained 

26,458,080 reads after quality filtering (mean=138,524; range=30,700–430,465), which clustered 

into 2,711 OTUs overall (mean per population=1,496; range=727–2,050), and a mean of 791 

OTUs per sample (range=133–1,152). 

Alpha diversity, measured as per-sample OTU richness, was calculated in QIIME. We 

normalized the OTU table using cumulative sum scaling in metagenomeSeq to account for 

variation in the number of reads per sample [30], and then calculated weighted UniFrac to 

measure microbiome composition [31]. 

 

5. Applying BEDASSLE to microbial presence / absence data 

The BEDASSLE model assumes that populations are at migration-drift equilibrium such 

that allele presence/absence can be modeled based on geographic distance between populations 

[32]. Here, we generalized BEDASSLE to model between-population variation in OTU 

presence/absence instead of host allele frequencies at unlinked genetic loci. We also confirmed 

that its results are robust to modeling correlated OTUs (since it was originally designed to work 

with unlinked variants) and low read count (i.e. rare) OTUs ([33]). Our inputs for BEDASSLE 

were: (1) a matrix of OTU prevalence (analogous to bi-allelic count data), in which each row is a 

population, each column is an OTU (locus), and each cell gives the number of times the OTU is 

observed in each population (i.e., the number of baboons who have the OTU), and (2) a matrix of 

sample sizes, in which the rows and columns are the same as in the first matrix but each cell 

gives the total number of baboons (analogous to chromosomes) sampled in each population [33]. 

We tested the two major ways in which microbial presence/absence data could vary from 

genotype data under the assumptions of the BEDASSLE model.  

First, the absence of an allelic variant in an individual likely represents true absence of 

the allele. This assumption is reasonable because genotype data are generally treated as if they 

were known without error, and each allele in a diploid organism represents 50% of the 

signal/read depth in most genotyping approaches. Rare OTUs, however, could go undetected 

during sampling because they represent a very small fraction of the total microbe pool; OTUs 

that are rare in all individuals in a population sample might therefore also be missed in the 

population as a whole, and therefore indicate a false negative. To test if rare or missing OTUs 
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had an undue influence on the model output, we limited the dataset to more common OTUs 

based on two natural breaks in OTU abundance (Fig. S4). Specifically, we excluded the rarest 

27.4% of OTUs (those found in < 2.1% of samples; 742 OTUs excluded) and ran BEDASSLE 

using the same MCMC control parameters as in the full dataset. We also ran the model excluding 

the rarest 40.3% of OTUs (those found in < 4.7% of samples; 1,093 OTUs excluded; Fig. S4). 

We ran 2 MCMC replicates for each subsampled dataset, and the results were consistent across 

replicates. The outputs from both the 27.4% and 40.3% models were consistent with the full 

dataset, suggesting that the BEDASSLE results are robust to the presence of rare OTUs (Table 

S4; Fig. S5-S7).  

Second, BEDASSLE assumes that the input data are uncorrelated (i.e., that variants in the 

original model are not in linkage disequilibrium). Violating the assumption of independence 

between estimates is not expected to bias parameter estimation, but it can make the posterior 

credible intervals artificially narrow. To determine if the OTUs in our dataset violated the 

assumption of non-linkage, we ran two sets of analyses. First, we calculated the Phi coefficient 

of association using the rcorr function in Hmisc [34] on sample-level presence / absence for all 

possible pairs of OTUs. Few OTUs demonstrated strong correlations (0.39% of OTU pairs 

exhibited correlations > 0.5), and this effect was further weakened when Amboseli was excluded 

(0.2% of OTU pairs exhibited correlations > 0.5; Fig. S8A, S8B).  

We additionally ran a sensitivity analysis to break up any potentially correlated sets of 

OTUs. Following the rare OTU analysis, we randomly excluded 27.4% of OTUs from the full 

dataset (n = 742 OTUs) and ran BEDASSLE on the random subset. We repeated the analysis on 

4 additional random subsets of 27.4% of OTUs removed. We also ran BEDASSLE on 5 random 

subsets of the data in which 40.3% of OTUs (n = 1,093 OTUs) were excluded. Outputs from 9 

models (one model failed to run) revealed that, although the actual parameter estimates 

fluctuated, the qualitative ordering of effect sizes was consistent across fairly substantial 

perturbations of the dataset (Table S4; Fig. S5-S7).  

Taken together, our results suggest that BEDASSLE is a reliable method to test 

predictors of microbial OTU distributions across geographically disparate populations. Future 

applications of the BEDASSLE model to microbiome data could explore extensions that 

incorporate uncertainty in OTU detection as a function of abundance patterns.  
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BEDASSLE settings specific to our dataset 

We ran BEDASSLE using the beta-binomial model (code available on the Archie Lab 

github: https://github.com/ArchieLab/grieneisen_etal_2019_PRSB), which prevents outlier 

populations from having an undue influence on the effect size estimates of the predictor variables 

[32] (Amboseli was a clear outlier in our analysis). We ran the final model for 10 million 

generations with an 8 million generation burn-in, and then ran 1,000 posterior predictive sample 

replicates to evaluate model fit (Fig. S9). 
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Figure S1. (A) Time to sample collection did not influence OTU richness. (B) A PCoA showing 

that time to sample collection did not predict gut microbiome composition (weighted UniFrac).   
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Figure S2. Maps show the 6 km diameter buffers drawn around 3 of the 14 baboon populations. 

(A) Vegetation types indicated by different colors at a 1 km2 grid resolution [17]. (B) All ten soil 

traits were obtained from a high-resolution soil and terrain map of Kenya divided into polygons, 

where each polygon was assigned a soil trait value. Soil traits are reflected in different colors and 

are given on a numeric scale; the example soil trait shown here is soil pH. Polygon construction 

is detailed in [15]. (C) Geology types indicated by different colors [16]. All 3 maps extract data 

at the scale of 1 km or finer resolution.  
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Figure S3. Bioinformatics pipeline. Green boxes indicate read counts, grey boxes are conceptual 

steps, and white boxes indicate specific computational steps. We used USEARCH 

v8.0.1623_i86osx32 [35, 36], cutadapt v1.6 [37], greengenes v13.5 [38], and the fasttree method 

of tree construction [39] as implemented in MacQIIME 1.8.0-20140103 [29, 40, 41]. 
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Figure S4. OTU presence / absence distribution across the dataset. The red and blue lines 

indicate the natural breaks in the data used to run the rare and random OTU BEDASSLE models.  
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Figure S5. BEDASSLE output graphs of the geographic distance equivalent (km) per 1 unit 

geology Bray-Curtis across rare and random OTU subset models. After an 80% burn-in, the 

models all demonstrated a ‘fuzzy caterpillar’ pattern that indicates a well-mixed model [33]. 

Black lines indicate the mean geographic distance equivalent (km) per 1 unit geology Bray-

Curtis, highlighting that the average value fluctuates between models, but is qualitatively similar.  
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Figure S6. BEDASSLE output graphs of the geographic distance equivalent (km) per 1 unit soil 

PC1 across rare and random OTU subset models. After an 80% burn-in, the models all 

demonstrated a ‘fuzzy caterpillar’ pattern that indicates a well-mixed model [33]. Black lines 

indicate the mean geographic distance equivalent (km) per 1 unit soil PC1, highlighting that the 

average value fluctuates between models, but is qualitatively similar. 
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Figure S7. BEDASSLE output graphs of the geographic distance equivalent (km) per 1 unit 

genetic FST across rare and random OTU subset models. After an 80% burn-in, the models all 

demonstrated a ‘fuzzy caterpillar’ pattern that indicates a well-mixed model [33]. Black lines 

indicate the mean geographic distance equivalent (km) per 1 unit genetic FST, highlighting that 

the average value fluctuates between models, but is qualitatively similar. 
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Figure S8. Correlation heatmap for OTU presence (A) for the full dataset and (B) excluding 

Amboseli. Each column and row represents an OTU. Cell values are phi correlations ranging 

from -1 (OTU pair was never found in the same individuals) to +1 (OTU pair was always found 

in the same individuals). 
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Figure S9. BEDASSLE output graphs. The BEDASSLE model was run with geographic 

distance and genetic FST normalized by their standard deviations. (A) After an 80% burn-in, the 

predictor variables all demonstrated a ‘fuzzy caterpillar’ pattern that indicates a well-mixed 

model [33]. (B) We ran 1,000 posterior predictive samples to determine that the model was a 

good fit for the data. Red dots are the observed values and black streaks are the distribution of 

predicted values from the model, indicating that the model did an accurate job predicting the data 

distribution.  
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Figure S10. (A) PCoA of weighted UniFrac dissimilarities colored by baboon genetic ancestry. 

(B) Genetic ancestry did not predict the residuals of OTU richness, correcting for read count and 

significant environmental variables. (C) Pairwise genetic relatedness between baboons did not 

predict gut microbial dissimilarity, controlling for population co-residency. Each dot represents 

one pair of samples. 
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Figure S11. For genera with many OTUs, OTU prevalence is not explained by host ancestry. 

Specifically, for the 13 genera represented by at least 10 OTUs in the dataset, some OTUs were 

found in only unadmixed yellow or unadmixed anubis baboons, but the majority were found in 

baboons of various degrees of hybrid ancestry. For the purposes of this figure, anubis, yellow, 

and hybrid baboons are defined following [42], such that a hybrid score < 0.02 is categorized as 

anubis, 0.02 – 0.98 is categorized as hybrid, and > 0.98 is categorized as yellow.  
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Figure S12. (A) The presence of microbial OTUs across populations follows a U-shaped 

distribution: some OTUs were found in all populations (light grey), while the remainder were not 

(dark grey). (B) OTUs found in some populations were enriched for an aerobic lifestyle and 

depleted for an anaerobic lifestyle relative to OTUs found in all populations. (C) OTUs found in 

all populations tended to be depleted for sporulation. In (B) and (C), the proportion of OTUs 

found in all populations (light grey) versus some populations (dark grey) per lifestyle trait is 

shown on each bar. The black line indicates the percentage of OTUs found in some but not all 

populations, and hence the background expectation for OTUs in each lifestyle class. 
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Figure S13. Relative abundance of microbial phyla averaged per population and across all 

Amboseli timepoint samples. Populations are listed from west to east. The Amboseli timepoint 

samples closely resemble the main dataset Amboseli samples.  
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