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I. NOTATIONS

Throughout this article, the notation ∼ is used in its mathematical sense, ”is equivalent to”,

meaning that for two functions f and g :

f(t) ∼ g(t)⇔ f(t)

g(t)

t−→∞−−−→ 1. (1)

The ”normalized moments” of a distribution are defined as follows, if k ≥ 2:

µ̄k =
∣∣∣E [(X − µ)k

]∣∣∣1/k . (2)

For k = 1, we define the first normalized moment just by the mean of the distribution:

µ̄1 = E (X) . (3)

II. EQUATIONS OF THE BELLMAN-HARRIS MODEL

1. The mean number of cells M(t) is equivalent, for t→∞ , to an exponential function:

MN(t) ∼ n1e
αt, (4)

where the value of the growth rate α is given by the unique solution of the equation:∫ ∞
0

e−αtρ(t) dt =
1

2
, (5)

where ρ is the density function related to the division time τd. We can re-write this equation

as follows :

E(X) =
1

2
with X = e−ατd . (6)

n1 is a constant whose value is given by

n1 =
1

4α
∫∞
0
te−αtg(t) dt

. (7)

2. There is a similar equation for the variance of the number of cells Var(t) , for t→∞:

V ar(t) ∼ 4E(X2)− 1

1− 2E(X2)
MN(t)2. (8)

The standard deviation is therefore:

SD(t) ∼ n2e
αt with n2 = n1

√
4E(X2)− 1

1− 2E(X2)
, (9)

and the coefficient of variation of the number of cells in exponential phase:

CVN ∼

√
4E(X2)− 1

1− 2E(X2)
. (10)
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III. GAUSSIAN DIVISION TIME

In this part, we are going to study the case of a Gaussian division time for the individual

bacteria. This means that all bacteria ”choose” their division time following a Gaussian law of

mean τ0 and standard deviation σ. We saw that the random variable appearing in the model is

X = e−ατ0 . In this case, as τd follows a normal law, X follows a rescaled log-normal law and we

can easily find the moments of X:

E(X) = e−ατ0+
α2σ2

2 , (11)

E(X2) = e−2ατ0+2α2σ2

. (12)

If we plug equation(??) into equation (??), we get the theoretical value of α:

α =
τd −

√
τ 20 − 2 ln(2)σ2

σ2
. (13)

If the coefficient of variation of the division time cv = σ/τd is small (cv � 1), we get:

α ∼ ln(2)

τ0

(
1 +

ln(2)

2
cv2
)
, (14)

E(X2) ∼ 1 +
ln(2)2

4
cv2. (15)

We have for the coefficient of variation of the number of cells in exponential phase:

CVN ∼
√

2 ln(2)cv. (16)

Which is a linear relation of slope
√

2 ln(2) ≈ 1, as observed numerically by [? ].

We can also easily get the expression of the coefficients of the mean and the standard deviation

by plugging a gaussian law into the expression presented above, and we obtain:

n1 =
1

4αI
where I =

e−
τ20
2σ2

σ
√

2π
+

1

2

√
τ 20 − 2 ln(2)σ2, (17)

n2 = n1

√
4E(X2)− 1

1− 2E(X2)
with E(X2) = 0.25 exp

 2 ln(2)cvµ

1 +
√

1− 2 ln(2)cv2
µ

2 . (18)
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IV. NUMBER OF CELLS PER DROPLET LARGER THAN 1

If there are more than one bacteria in a single droplet, the asymptotic behavior of the moments

do not change, simply because of the independence of the bacteria in the Bellman-Harris model.

But the values of the prefactors do change. Consider a droplet containing initially k bacteria, with

k > 1. We call Ni(t) the size of the offspring of bacteria i at time t. The total number of bacteria

Nk(t) in the droplet at time t is then given by:

Nk(t) =
k∑
i=1

Ni(t). (19)

All the Nk(t) are independent and identically distributed, thus we have :

E (Nk(t)) =
k∑
i=1

E (Ni(t)) = kn1e
αt, (20)

V ar (Nk(t)) =
k∑
i=1

V ar (Ni(t)) = kn2
2e

2αt. (21)

Thus, for the asymptotic coefficient of variation, we get:

CVk(∞) =
1√
k

(
n2

n2

)
BH

. (22)

V. GENERATION-DEPENDENT DIVISION TIME

We can carry out the same analysis for the first three generations taken with different laws

for the division times. The principle is the same, except that this time we need to consider the 8

children of the original bacteria in order to apply them the classical Bellman-Harris model, and

we finally get :

E(N(t)) ∼ 8n1E(X1)E(X2)E(X3)e
αt, (23)

E(N(t)2) ∼ 8n2
1E(X2

1 )

(
E(X2

2 )

(
E (X2

3 )

1− 2E(X2)
+ 2 ∗ E(X3)

2

)
+ 4E(X2)

2E(X3)
2

)
e2αt. (24)

VI. COEFFICIENT OF VARIATIONS FOUND IN THE LITERATURE FOR SINGLE CELL DI-

VISION

Different authors have studied the spreading of division times for single cells for the n first

generations, and although their strains and growth conditions differ from ours, we can still compare
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our own experimental results with theirs to see if we obtain the same orders of magnitude.

Generation Experiment Kousoumanis [? ] Pin [? ] 32deg Pin [? ] 25deg

1 34 43 47 31

2 42 49 33 31

3 39 48 38 36

4 31 31

TABLE I: Coefficient of variation(%) for the division times of single cells, for different

generations, found in literature.

Taheri et al. [? ] measured coefficient of variations ranging from 14% to 22% in full exponential

phase, for E. coli.

VII. RELATION BETWEEN FLUORESCENCE INTENSITY AND NUMBER OF CELLS

We consider that the fluorescence intensity of the droplet is proportional to the number of cells

in the droplet, because it is the sum of the fluorescent signals of all cells contained in the droplet,

that we consider to be the same for now (the question of its heterogeneity will be discussed later).

Fluodrop(t) = afluoN(t) + Fluonoise. (25)

The noise being independent of the number of cells in the droplet, we find the following rela-

tions:

EN(t) =
EFluodrop(t)− EFluonoise

afluo
, (26)

V arN(t) =
V arFluodrop(t)− V arFluonoise

a2fluo
. (27)

The coefficient of variation of the number of cells can therefore be estimated by measuring

the fluorescence signal of the droplets and the background noise. The background noise is

estimated by measuring the fluorescence signal of empty droplets (i.e. droplets that do not contain

any bacteria). Note that the coefficient of variation, which is the ratio of the standard deviation

over the mean of the number of cells, does not depend on the coefficient of proportionality afluo.

For higher moments of the distribution of cells, estimations can also be carried out, with µn the
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nth central moment of a distribution. For the third central moment, we simply have, thanks to the

independence of the division times of bacteria, and just like for the first and second moments:

µ3(N) =
µ3(Fluo)− µ3(Noise)

a3fluo
. (28)

Then as a general rule, if X and Y are two independent variables, we have, for n ≥ 4:

µn(X + Y ) = µn(X) + µn(Y ) +
n−2∑
k=2

(
n

k

)
E
(
(X − E(X))k

)
E
(
(X − E(X))n−k

)
. (29)

In our particular case, we have:

µ4(N) =
µ4(Fluo)− µ4(Noise)− 6 (V ar(Fluo)− V ar(Noise))V ar(Noise)

a4fluo
. (30)

Heterogeneity of the fluorescence signal of the cells

Another source of stochasticity in the experiment can come from the heterogeneity of the fluo-

rescence signal, which is not homogeneous among the cells but varies from one bacteria to another,

even if the cells are isogenic[? ]. In this case, the relation between the fluorescence intensity and

the number of cells can be written as:

Fluo(t) =

N(t)∑
i=1

aif (t) where Fluo(t) = Fluodrop(t)− Fluonoise, (31)

where aif (t) represents the fluorescence signal of cell i at time t. To simplify the computations,

we will consider that the fluorescence signals of the cells are independent. These is of course

a simplifying hypothesis, as the fluorescence signal of two sister cells is probably correlated for

instance, but as we average on a lot of cells, this effect is negligible compared to the heterogeneity

in itself. We will note σ2
f the variance of aif and af their mean. The coefficient of variation of the

fluorescence signal of the cells is then cvf = σf/af .

Then we have, because we take the sum of independent and identically distributed variables:

E (Fluo(t)) = afE(N(t)), (32)

Var (Fluo(t)) = E(N(t))σ2
f + a2fVar(N(t)), (33)

which yields for the coefficient of variation:

CV 2
fluo = CV 2

N +
cv2f

E(N(t))
. (34)
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We can see here that the heterogeneity of the fluorescent signal of the cells adds a correc-

tive term to the coefficient of variation of the fluorescence signal. However, this term evolves

as 1/E(N(t)). Since E(N(t)) increases exponentially with rate α, the corrective term vanishes

rapidly, and we can affirm that in exponential phase, the measured coefficient of variation is not

affected by the heterogeneity of the fluorescence signal of the cells.

As discussed in details in [? ], the number of bacteria per droplet initially follows a Poisson

distribution, which parameter can be estimated by counting the number of empty droplets:

λ = − ln

(
Number of empty droplets
Total number of droplets

)
. (35)
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VIII. SUPPLEMENTARY FIGURES
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FigSI_compAlpha_test.png

FIG. 1: Principle of the test to compare the three different models at the population scale. First a

grid of simulations is built for experimentally possible values of σl and σt, for all three models.

Then each point on the grid is compared to all other points of the grid: the final distributions of

number of cells, rescaled by their means, are compared through a two sample

Kolmogorov-Smirnov test. As an example, the distribution of the number of cells obtained by an

adder model at the position indicated by the red dot is compared to the distributions obtained by

the sizer and timer models at the position indicated by the green dot. In this particular example,

the results of the adder model at the red position are indistinguishable from that of the timer

model at the green position, but distinguishable from that of the sizer (p < 0.05). The same

method is applied to all points and all models of the grid of simulations. We find that, for each

point (σl, σt) and each model, there is always at least one set of parameters (σl, σt) of one of the

other models leading to similar results with p < 0.05.
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SI_FigSimTh.png

FIG. 2: Comparison between the theoretical predictions (straight lines) of the Bellman-Harris

model and Monte-Carlo simulations (stars). The law for the division time of individual bacteria is

a Gaussian with mean τ0 = 23 min and standard deviation σ = 0.25τ0. In (A) and (B) the initial

number of cells follows a Poisson distribution of parameter λ = 0.5. Two thousand independent

simulations were performed. (A) Mean (red) and standard deviation (blue) of the number of cells

as a function of time, and number of cells (green) as a function of time for each simulation. (B)

Evolution of the coefficient of variation of the number of cells. (C) n1(λ) and n2(λ) as a function

of the Poisson parameter λ (2000 simulations for each λ). (D) Effect of an evolving distribution

of division times. The first bacterial generation divides with a mean time τ1 = 2τ0, and a standard

deviation σ1. Subsequent division times follow a normal law of mean τ0 and standard deviation

σ0. n1 and n2 depend on σ1/τ1. The initial number of cells follows a Poisson distribution with a

parameter λ = 0.5. Result of 2000 independent simulations for each σ1.
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SI_logMS_s1_poiss.png

FIG. 3: Mean (red) and standard deviation (blue), for Monte-Carlo simulations (stars) and theory

(straight lines). (A) Mean, standard deviation and growth curves for the simulations summarized

in Supp. Fig. ??(C). The law for the division time of individual bacteria is a Gaussian with mean

τ0 = 23 min and standard deviation σ = 0.25τ0, the parameter of the Poisson distribution for the

initial number of cells is varied. (B) Mean, standard deviation and growth curves for the

simulations summarized in Supp. Fig. ??(D). The first bacterial generation divides with a mean

time τ1 = 2τ0, and a standard deviation σ1. Subsequent division times follow a normal law of

mean τ0 and standard deviation σ0. 2000 independent simulations were used for each value of λ

(A) or σ1 (B).
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fig2.png

FIG. 4: (A) Time-lapse image of E. coli cells dividing under a 90X objective. The images

correspond to t=0, 21, 42, 63, 84, and 105 min respectively. (B) Density of the division times

obtained from the time-lapse images, for E. coli, and for the first four generations. (C) Density of

the division times obtained from the time-lapse images, for B. subtilis, and for the first four

generations. (D) Fitted values of the mean division times and their standard deviations, for both

strains.
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figSIGamNorm.png

FIG. 5: Comparison of fits for the experimental distribution of division times shown in Supp.

Fig. ??, for the first 4 generations. Blue: fit to a Gaussian distribution. Red: fit to a Gamma

distribution.
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SImoments345.png

FIG. 6: Comparison between experiments and simulations for the evolution of the 3rd (A), 4th

(B) and 5th (C) central moments of the distribution of the number of cells. Data shown are for E.

coli.
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SIBacRes.png

FIG. 7: Comparison between the model (yellow), numerical (orange) and experimental (blue)

results, for B. subtilis. (A) Mean number of cells as a function of time MN(t), (B) Standard

deviation of the number of cells as a function of time SDN(t), (C) Coefficient of variation of the

number of cells as a function of time CVN (D) Shape of the distribution of N(t)/ exp(αt),

numerical and experimental, kernel fit.
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TableResults.png

FIG. 8: Experimental and theoretical (using the single-cell data as inputs) results for both

bacterial strains.
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