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1 Full details of the models6

We here describe the full details of the simulation model, and of both approximate models. The simulation7

model and its parameters are arbitrary, but intended to represent a scenario in which an accurate simulation8

model can be built and fitted to the real disease system in question. Themodel itself includes features abstracted9

from metapopulation or network epidemic models as routinely used for plant, animal and human diseases10

[1–5].11

1.1 Simulation model12

The simulation models transmission of infection between individuals across a network of nodes. Nodes are13

positioned randomly in three separate regions, with 20 nodes in regions A and C, and 15 nodes in region B.14

The nodes are positioned such that no two nodes are closer than a predetermined threshold, here 0.2 spatial15

units. The connectivity between nodes within a region is calculated using an exponential kernel with a scale16

parameter α of 0.2 units (σi j � βe−di j/α) where di j is the distance between nodes i and j. Between regions, three17

connections are made between the closest pairs of nodes in regions A and B, and B and C, with a coupling18

value of 0.1β for each. There are no connections between regions A and C.19

Each node contains a total of 30 hosts, with on average 10% of these being in the high risk group of20

individuals. The exact number in each risk class for each node is chosen using a binomial trial, giving21

heterogeneity in the risk structure across the network. Each individual host can be in one of three active22

states (figure S1): susceptible (S), infected (I) or vaccinated (V), or removed (R) by the disease. Throughout23

superscripts refer to the risk group (high: H, low: L), and subscripts identify the node. For example, SH
324

represents the total number of high risk susceptibles in node 3. In addition, we use N to refer to the total25

number of active hosts, such that NH
3 is the number of susceptible, infected and vaccinated high risk hosts in26

node 3.27

Trajectories are simulated using the Gillespie direct method [6]. The possible events are host birth and28

death, infection, vaccination, and removal and recovery of infected hosts. These events and the associated29

rates are given in Table S1. Parameters, as specified in Table S2, were chosen to give a large epidemic under30

no control intervention, spreading across all three regions. Typical simulation trajectories with no control are31

shown in Figure S2.32
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Event State Change Rate

Birth ∅ → Sr
i bN r

i

Death {Sr
i , I

r
i ,V

r
i } → ∅ dN r

i

Infection Sr
i → Ir

i Sr
i
∑

j,r′ σi jρrr′ Ir′
j

Vaccination Sr
i → V r

i f r
i ηmaxSr

i /N
r
i

Removal Ir
i → ∅ µIr

i

Recovery Ir
i → Sr

i νIr
i

Table S1: Possible events in the simulation model with associated rates.

Meaning Parameter Default Value

Birth Rate b 0.01 t−1

Death Rate d 0.01 t−1

Maximum Vaccination Rate ηmax 200 hosts t−1

Removal Rate µ 0.5 t−1

Recovery Rate ν 0.25 t−1

Risk Coupling
(
ρHH ρHL

ρLH ρLL

) ( 1.0 0.008
0.008 0.016

)
Spatial Coupling σ see text

Transmission Rate β 2.5 host−1 t−1

Table S2: Parameter values used for simulation model trajectories.
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Figure S1: Diagram of host states and transitions. For transition rates see Table S1

1.2 Risk based approximate model33

This model factors out all spatial information from the simulations, and approximates the resulting risk34

structure using a set of ordinary differential equations. The ODE system has one equation for each of the six35

host states: susceptible, infected and vaccinated in the high risk (SH , IH ,VH), and low risk groups (SL , IL ,VL).36

For risk group r, the full system of equations is given by:37

ÛSr
� bN r − dSr − Sr (

ρ̂rHIH
+ ρ̂rLIL) − f rηmaxSr

N r + νIr

ÛIr
� − dIr

+ Sr (
ρ̂rHIH

+ ρ̂rLIL) − µIr − νIr

ÛV r
� − dV r

+
f rηmaxSr

N r

(1)38

where ρ̂ is a 2 × 2 matrix giving the approximated risk structure, i.e. the rate at which each risk group infects39

each other risk group. All other parameters are the same as in the simulation model. The risk structure must40

be approximated since the exact spatial structure is not modelled, whereas all other parameters are specific41

to individual hosts and so can be lifted from the simulation model. The state values are mapped from the42

simulations simply by summing all hosts in that state across the whole network (e.g. Sr �
∑

i Sr
i ).43

1.3 Spatial approximate model44

This model includes regional spatial information as well as risk structure. This gives 18 possible states:45

susceptible, infected and vaccinated across risk groups (high and low), and regions (A, B and C). The states46

here are summed across nodes within a region (e.g. Sr
A �

∑
i∈A Sr

i ). For risk group r ∈ {H, L}, and region47
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Figure S2: Ten typical simulation model trajectories with no control. Green and red lines represent susceptible
and infected hosts respectively.

X ∈ {A, B, C}, the system of differential equations is given by:48

ÛSr
X � bN r

X − dSr
X − Sr

X

∑
X′∈{A,B,C}

σ̃XX′
(
ρ̃rHIH

X′ + ρ̃
rLIL

X′
)
−

f r
XηmaxSr

X

N r
X

+ νIr
X

ÛIr
X � − dIr

X + Sr
X

∑
X′∈{A,B,C}

σ̃XX′
(
ρ̃rHIH

X′ + ρ̃
rLIL

X′
)

− µIr
X − νIr

X

ÛV r
X � − dV r

X +
f r
XηmaxSr

X

N r
X

.

(2)49

The 3 × 3 matrix σ̃ approximates spatial coupling between regions, and ρ̃ is a 2 × 2 matrix giving the approxi-50

mated risk structure.51

1.4 Model fitting52

To fit the risk based model to the simulation model the 4 parameters in ρ̂ must be chosen. We fit these using53

maximum likelihood estimation, computing the likelihood as the product of contributions from 200 realisations54

of the simulation model with no interventions. Each individual event within a realisation occurring after a55

time δt contributes a factor δLi to the likelihood:56

δLi � rke−
∑

riδt
57

where the ri are the rates of all possible events, and rk is the rate of the event that actually occurs. The full58

likelihood is the product of all δLi across all realisations.59

The same fitting procedure is used to fit ρ̃ and σ̃ in the space based model. Here there are a total of 1360
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parameters, but we set ρ̃HH to one to ensure a unique solution (since the infection rate is proportional to the61

product of ρ̃ and σ̃). We also set the coupling between regions A and C (σ̃AC and σ̃CA) to zero, as well as from62

B into A and from C into B. This is because the epidemic spreads from A to B to C, and backward spread is63

negligible. This leaves a total of 8 parameters to fit.64

Fits to simulation data are shown for the risk based model in figure S3, and in figure S4 for the space based65

model. To verify the optimisation we generated profile likelihoods plots [7], shown in figures S5 and S6. The66

risk model captures the median risk dynamics well. The highly stochastic nature of spread between regions67

however, means the spatial model does not capture the timings of introductions accurately.68

The best-fitting spatial deterministic model leads to disease progress curves in regions B and C that rise69

more quickly than themean of the stochastic simulations, although the epidemic sizewithin each region closely70

matches the simulations. This is because it is impossible for a deterministic model where the rates are fitted71

via maximum likelihood to adequately capture the dynamics of an epidemic in which the following three72

conditions are satisfied:73

(i) there is initially no infection;74

(ii) there is a very small force of infection into the region;75

(iii) there are relatively fast within-region dynamics once disease has entered.76

These conditions are true inside regions B andC and sowe see reduced rate of spread in the stochastic case. This77

effect is due to stochastic fade outs after introduction events, as well as negative covariance between susceptible78

and infected hosts, leading to reduced infection rates in the simulations [8, pp. 227–229 and pp. 238–240].79

Figure S7 demonstrates that this effect is seen in the simplest case of a metapopulation model with no risk80

structure. The rates are directly lifted from simulation to approximation to show the effect is purely due to81

the difference between deterministic and stochastic analogues. We also tested that our fitting procedures give82

these same values (data not shown).83

The spatial approximate model could be extended and improved to account for these effects, for example84

by making use of moment closure techniques [9] or nonlinear force of infection terms [10] as used by Clarke85

et al. [11] and Stroud et al. [12], but we here focus on simplicity. Despite the limitations of the deterministic86

models, our proposed control frameworks allow the resulting controls to be used practically and successfully,87

particularly when approximating models are repeatedly reset. Since the benefits of the control frameworks88

should not depend on the exact fitting process used, we also fitted both approximate models by minimising89

the sum of squared errors from the simulation disease progress curves. For the risk based model the following90

sum of squared errors was minimised:91

SSE �

∑
i , j

(
∆IH

i (t j)
)2

+
(
∆IL

i (t j)
)2 (3)92

where ∆Ir
i (t j) is the difference in the number of infected host in risk group r between the approximate model93

and simulation realisation i at time t j . The sum is over all simulation realisations and across 51 times over94

the simulation time. The equivalent SSE function was used for the spatial approximate model, but summing95

differences for each region as well. Using this alternative fitting process did not change the ordering of control96

strategies as seen in Figure 3 in the main text (data not shown).97
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Figure S3: Fits to simulation data for the risk based model. Dashed lines show the risk model, and faded lines
show 20 of the simulation runs. Green and red lines represent susceptible and infected hosts respectively.
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Figure S4: Fits to simulation data for the space based model. Dashed lines show the space model, and faded
lines show 20 of the simulation runs. Green and red lines represent susceptible and infected hosts respectively.
We note that the approximate dynamics are faster than those in the simulations. This effect is explained in the
text.
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Figure S5: Profile likelihood analysis for the risk based approximate model. The offset (1.137 × 106) must
be added to all values on the y axis. The profile for every parameter crosses the 95% confidence interval
threshold, ensuring identifiability of each parameter. In all cases maximum likelihood estimates coincide with
the maximum along the profile.
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Figure S6: Profile likelihood analysis for the space based approximate model. The offset (9.583 × 105) must
be added to all values on the y axis. The profile for every parameter crosses the 95% confidence interval
threshold, ensuring identifiability of each parameter. In all cases maximum likelihood estimates coincide with
the maximum along the profile.
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Figure S7: Illustration of increased rate of spread in deterministic models when coupling is small. In this figure
we use a 3 patch metapopulation model, with well-mixed dynamics within regions and coupling between
regions A and B, and B and C. There is no risk structure. (a) shows the difference in peak infection time for
deterministic and stochastic versions of themodelwith identical rates. Positive values indicate the deterministic
model peaks earlier. Dots give the mean of 1000 stochastic simulations, with error bars showing the 95th
percentile. (b) shows median stochastic dynamics and deciles in red, and deterministic disease progress curve
in black, for a high coupling value (10−4). The same is shown in (c) for a low coupling value (10−5)
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2 Control strategy testing98

2.1 Control optimisation and lifting99

Control optimisation is carried out using the numerical optimisation software BOCOP v2.0.5 [13] for both the100

risk and space based models. BOCOP takes the dynamics and objective function and optimises the control101

using a direct transcription approach. This approach discretises both state and control and optimises the values102

of both as a nonlinear programming problem [14]. We chose this optimisation method due to its simplicity and103

robust convergence properties, but the control frameworks we discuss in the main paper are not limited to this104

method. Other numerical methods could be used, as well as indirect approaches such as the forward-backward105

sweep method [15]. For further discussion of numerical approaches to optimal control problems see [14].106

When lifting controls to the simulation model resources are allocated such that all individuals within107

the targeted group have an equal probability of being vaccinated. With the risk based model, resources are108

allocated across all nodes and susceptible individuals in the targeted risk group are selected randomly. In the109

space based model resources are spread over nodes in the targeted region. Again, the probability of selecting110

any single susceptible host is constant. This amounts to weighting the resource allocated to a particular node111

by its total population.112

2.2 Strategy Details113

The ‘user-defined’ strategies vaccinate either the high risk group, or both risk groupswith a constant proportion114

of resources allocated to the high risk hosts. This proportion is chosen by scanning over its value, running115

1000 realisations of the simulation model in each case to assess its performance (figure S8). The proportion116

that gives the lowest mean objective value is found to be 63% to the high risk group, and this value is used117

in the main text. As can be seen in figure S8 the optimum occurs in a very broad minimum, so whilst we118

can be confident that splitting resources is preferable to the ‘High’ strategy the precise value of the optimal119

split is uncertain. Since the precise value has little effect on the epidemic cost (hence the broad minimum), we120

simply use 63% as a representative value. The ‘user-defined’ strategies are constant in time and do not target121

hosts based on location. When lifted to the simulation model resources are spread across nodes such that any122

individual susceptible host in a risk group has an equal probability of being vaccinated, as with lifting of risk123

based controls.124

As explained in the main text, the open-loop strategies optimise the relevant approximate model giving125

an estimated optimal control strategy as a function of time. This function is used throughout the simulation126

run, allocating resources as specified by the OCT results. In the MPC strategies, at the update times the127

approximate model is reinitialised at the current state of the simulation. For example, at update time t1 the128

number of susceptibles in region A in the approximate model is set by SH
A (t1) �

∑
i∈A SH

i (t1), and similar for129

other risk groups and regions, and at each update time. The control is optimised going forward from this130

initial condition and this control is then lifted back to the simulation until the next update time (Algorithm 1).131

The control is updated every 0.5 time units.132
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Figure S8: Scan of objective values for 1000 simulations, varying the proportion of control that is allocated to
the high risk group. Remaining control is allocated to the low risk group. The optimal allocation to the high
risk group is found to be 63%. Deciles in the objectives are shown by the gradient in colour.

Algorithm 1 MPC and open-loop algorithms. Open-loop simulates for the full time (i.e. step 2–6), whereas
MPC re-optimises the control at the update times (step 2–7 with repeated loops back to step 4).

1. Fit simulation model to real data

2. Set initial conditions for simulation model

3. Fit approximate model to simulation data

4. Initialise approximate model at current simulator state

5. Optimise control on approximate model

6. Lift control to simulation model and simulate forward

7. If MPC then at next update time go to step 4

The open-loop risk model optimal control treats high risk individuals early in the epidemic (figure S9a).133

The strategy then switches to vaccinating both high and low risk hosts, with the majority of control resources134

allocated to the low risk group. There is then a further switch to vaccinating just the low risk group. The135

spatial optimal control shows a very similar allocation to risk groups across time (figure S9b), but shifts these136

allocations across regions as the epidemic spreads through the network (figure S9c).137

Togenerate the objective distributions in Figure 3 of themain text, the simulationmodel is run 250 timeswith138

each control scheme. The cumulative distributions of all simulation runs under each of the strategies are shown139

in Figure S10 to support the figure in the main text. Figure S11 shows why there is little difference between the140

risk based open-loop and MPC strategies. The switch time from vaccinating high to low risk individuals that141

gives the lowest epidemic cost occurs in a broadminimum. This means that the small adjustments made by the142
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MPC strategy do not have a large effect upon the objective values. In the spatial case however, the introduction143

times into regions B and C are very variable (figure S2), and so the potential to change which region is being144

vaccinated can have a large effect on the objective. This means spatial MPC is a significant improvement over145

open-loop.146
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Figure S9: Comparison of open-loop optimal control strategies. (a) shows the optimal allocation of control
resources to high and low risk groups in the risk based approximate model. (b) shows the equivalent for the
space based approximate model. This allocation is broken down further in (c), showing the distribution across
regions and risk groups for the space based model.
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Figure S11: Scan over switch time showing distribution of objective values for 1000 simulations at each time.
The switch time specifies when the control stops vaccinating only high risk hosts, and starts vaccinating only
low risk hosts. Deciles in the objectives are shown by the gradient in colour.
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3 Parameter Robustness147

As explained in the main text, the MPC framework is expected to provide improved control regardless of148

the exact form taken by the model or objective function. This does, however, rely on using an appropriately149

accurate approximate model. We tested a range of arbitrary but reasonable parameter sets, and in all cases150

the spatial MPC framework performs best in our illustrative model. To illustrate this in a concrete setting we151

explore systematic adjustments to the risk structure used in the simulation model, but leave more complete152

exploration of parameter space for future work.153

The risk structure is defined by the matrix ρ which in the standard simulation model is given by:154

ρ �

(
ρHH ρHL

ρLH ρLL

)
�

(
1.0 0.008

0.008 0.016
)

(4)155

Wemake the system more homogeneous or more heterogeneous by respectively doubling or halving ρHL, ρLH
156

and ρLL. That is, the two alternative matrices used are:157

ρhom �

(
1.0 0.016

0.016 0.032
)

ρhet �
(

1.0 0.004
0.004 0.008

) (5)158

Using these values we then scale the transmission rate parameter, β, such that the mean epidemic cost under159

no control is within 1% of that using the standard risk structure. The values were found to be 1.49 and 4.30 for160

the more homogeneous and heterogeneous cases respectively, compared with 2.5 for the default risk structure.161

The value of ρHH is left equal to one without loss of generality since the whole matrix is scaled by β. The means162

we only vary the relative transmission rates.163

For each new ρ matrix, we rerun the full analysis described above and in the main text, assessing the same164

six control scenarioswith refitted approximatemodels. Twomain effects can be investigated using this analysis.165

Firstly, the ordering in performance of the six control scenarios can be compared with the ordering using the166

default risk structure, ρ. Secondly the performance of each strategy can be compared with the same strategy167

using ρ. We now look at each of these in turn.168

For ρhom, the more homogeneous case, we find that the order of the control scenarios is unchanged169

(figure S12). As before we find that spatial MPC leads to the best performance, as found for the default ρ.170

The more heterogeneous case results in a different ordering of control strategy performance (figure S13). The171

ordering of the ‘user-defined’ and risk based strategies is as before, but when using ρhet the spatial open-loop172

scenario leads to worse performance than the risk based strategies. This is because for this parameter set, and173

approximate model, the resulting strategies cannot respond to the variability in regional introduction times174

and control is then targeted at the wrong regions. Importantly though, the spatial MPC strategy reduces175

average epidemic costs below those of all other strategies. Here the feedback strategy can greatly improve176

disease management, despite the limitations of the standard open-loop approach. This is similar to the effect177

seen by Forster and Gilligan [16], where inaccuracies in the switch times lead to ineffective control, but here178

the feedback loop has mitigated this issue.179

We now consider the second effect, namely relative performance of each strategy under the different risk180

structures (figure S14). For ρhom, the ‘user-defined’ and risk based strategies have higher epidemic costs than181
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Figure S12: Results of control optimisation scenarios with alternative, more homogeneous risk structure ρhom.

were found with the default risk structure, ρ. This is because with a more homogeneous system, risk is less182

important and so the risk based strategies are less powerful. Using ρhet the risk based strategies perform183

relatively better because of the increased importance of risk structure in the simulations. There is little change184

in epidemic cost for the spatial open-loop strategy using all three risk structures.185
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Figure S13: Results of control optimisation scenarios with alternative, more heterogeneous risk structure ρhet.
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