Electronic Supplemental Material for "Common Caribbean corals exhibit highly variable responses to future acidification and warming"

4 Colleen Bove, Justin Ries, Sarah Davies, Isaac Westfield, James Umbanhowar, Karl Castillo 5

6 *Proceedings of the Royal Society B: Biological Sciences* (DOI: 10.1098/rspb.2018-2840)

8 <u>Supplemental Methods:</u>

9

7

10 (a) Coral collection

11 In June 2015, 6 colonies each of 4 reef-building coral species (*Siderastrea siderea*,

12 *Pseudodiploria strigosa, Porites astreoides,* and *Undaria tenuifolia*; figure S1) were collected

13 from an inshore reef (Port Honduras Marine Reserve; 16°11'23.5314"N, 88°34'21.9360"W) and

14 6 colonies of each of the 4 coral species were collected from an offshore reef (Sapodilla Cayes

15 Marine Reserve; 16°07'00.0114"N, 88°15'41.1834"W) along the Belize Mesoamerican Barrier

16 Reef System (MBRS) at a depth of 3 to 5 m. A total of 48 coral colonies were collected from

both reef environments (2 reef environments x 4 species x 6 colonies). The inshore reef is 9 km

18 from the mainland of Belize, while the offshore reef is approximately 37 km from the mainland.

19

20 (b) Experimental design and setup

Corals were transported to Northeastern University's natural flow-through seawater system 21 22 located at the Marine Science Centre, where corals were sectioned with a seawater-cooled tile-23 cutting saw. Each sectioned coral fragment (approximate surface area: 5 cm x 3 cm = 15 cm²; 24 approximate thickness: 2 cm) was mounted on to the outer surface of a 47 mm polystyrene petri dish (EMD Millipore; Billerica, Massachusetts, USA) using Loctite[®] cyanoacrylate adhesive 25 26 (Düsseldorf, Germany). All 384 coral fragments (i.e., 48 colonies x 8 fragments) were placed into 27 1 of 8 treatments (4 fragments per species per tank; 16 fragments per tanks; 384 fragments in total; 28 figure S2) filled with 5 um-filtered seawater obtained from Massachusetts Bay off the coast of 29 Boston, Massachusetts (see table S1 for *in situ* water chemistry data from Belize) [1, 2]. Corals 30 were maintained in natural seawater at a salinity (\pm SD) of 30.7 (\pm 0.8) and temperature (\pm SD) of 31 $28.2^{\circ}C$ (±0.5) for a recovery period of 23 days. After recovery, temperature and pCO₂ were 32 adjusted every other day over a 20-day interval until target experimental conditions were 33 approximately achieved for each treatment (temperature: 28 and 31°C; pCO₂: 280, 400, 700, 2800 34 µatm). Seawater temperatures in experimental tanks was incrementally increased by 0.4°C every 3 days and experimental pCO_2 was adjusted by $-12 \mu atm$ (pre-industrial), 0 μatm (current-day), 35 +30 µ atm (end-of-century), and +240 µ atm (extreme) during the 20-day adjustment interval before 36 37 starting the 30-day acclimation period. Four pCO_2 treatments corresponding to pre-industrial 38 $(311/288 \mu atm)$, current-day (pCO₂ control; 405/447 $\mu atm)$, end-of-century (701/673 $\mu atm)$, and 39 an extreme (3309/3285 μ atm) pCO₂ were maintained at two temperatures corresponding to the 40 corals' approximate present day mean annual temperature (28°C; determined by over 10 years of 41 *in situ* records) [3-5] and projected end-of-century annual mean temperature (31°C) [6].

42 Experimental 42 L acrylic tanks were illuminated by full spectrum LED lights (Euphotica; 43 120W, 20000K) on a 10:14 h light:dark cycle with photosynthetically active radiation (PAR) of 44 ca. 300 µmol photons m⁻² s⁻¹ to simulate natural light cycles occurring within the corals' native 45 habitat [7]. PAR was regularly measured within each tank using a LI-COR LI-1500 data logger 46 affixed with a LI-COR LI-192 2π underwater quantum sensor (LI-COR; Lincoln, Nebraska, USA; figure S3). Experimental tanks were covered with an acrylic lid and wrapped in cellophane plastic to facilitate equilibrium between the gas mixtures and the experimental seawaters and to minimize evaporative water loss. Circulation and turbulence in the experimental tanks were maintained with a Maxi-Jet[®] 400 L h⁻¹ powerhead (Marineland; Blacksburg, Virginia, USA), which have been used in previous common garden experiments on corals from Belize [7, 8]. Freshly filtered natural seawater was added via the flow-through system so that the water in each tank was replenished *ca*. 1.3 times per day.

54 Experimental pCO_2 gas mixtures were measured using Qubit S151 (range 0-2000 μ atm; accuracy $\pm 1 \mu$ atm) and S153 (range 0-10%; accuracy $\pm 0.3\%$) infrared pCO₂ analyzers (Oubit 55 Systems; Kingston, Ontario, Canada) calibrated with certified air-CO₂ gas standards. High-56 57 precision digital solenoid-valve mass flow controllers (Aalborg Instruments and Controls; Orangeburg, NY, USA) were used to bubble air alone (401; 447 µatm), or in combination with 58 59 CO₂-free air (311; 288 µatm) or CO₂ gas (701; 673; 3309; 3285 µatm) with compressed air to achieve gas mixtures of the desired pCO_2 , and bubbled into each tank and sump via flexible air 60 61 bubblers (table 2; figure S4). Because temperature affects the solubility of CO_2 in seawater, the 62 two temperature treatments averaged different carbonate parameters for each of the pCO_2 63 treatments, despite being sparged with the same gas mixture ratios (figure S4). These eight pCO_2 -64 temperature (±SE) combinations were replicated three-fold (24 tanks total) and yielded the following treatment conditions (±SD): 311 (±96), 405 (±91), 701 (±94), 3309 (±414) µatm pCO₂ 65 66 at 28°C (±0.4); and 288 (±65), 447 (±152), 673 (±104), 3285 (±484) µatm pCO₂ at 31.0°C (±0.4). 67 The temperature of both the 28 and 31°C treatments were maintained using 50W glass aquarium heaters within each tank and 75W glass aquarium heaters (EHEIM; Deizisau, Germany) in each 68 69 sump. Temperature, salinity, and pH were measured every other day and water samples were taken 70 using 250 mL ground-glass-stoppered borosilicate glass bottles around 13:00 Eastern Time every 10 days throughout the 93-day experimental period (9 September – 17 December 2015). Total 71 72 alkalinity was determined by closed-cell potentiometric Gran titration and DIC was determined by 73 coulometry (UIC 5400), with both methods calibrated with certified Dickson Laboratory standards 74 for seawater CO₂ measurements (Scripps Institution of Oceanography; San Diego, California, 75 USA). Measured temperature, salinity, TA, and DIC were used to calculate carbonate parameters 76 using CO₂SYS [9] with Roy et al. (1993) carbonic acid constants K₁ and K₂ [10], the Mucci (1983) 77 value for the stoichiometric aragonite solubility product [11], and an atmospheric pressure of 1.015 78 atm (electronic supplementary material; figure S4; tables S2, S3). Moderate deviations between 79 calculated and targeted parameters throughout the duration of the experiment resulted largely from 80 biological activity within the aquaria and from minor seasonal changes in source water chemistry. Temperature was measured using a high precision partial-immersion glass thermometer (precision 81 82 $\pm 0.3\%$; accuracy $\pm 0.4\%$). Salinity (\pm SD) was measured using a YSI 3200 (Yellow Springs, Ohio, USA) conductivity meter with a 10.0 cm⁻¹ cell and maintained at 31.7 (\pm 0.2), with slight natural 83 84 seasonal variation as expected in Massachusetts Bay waters. An AccuFet[™] Solid-State pH probe 85 (Fisher Scientific[™]; Waltham, Massachusetts, USA) calibrated with 7.00 and 10.01 NBS buffers maintained at experimental temperatures was used to measure pH in each tank (table S2; figure 86 S4). Coral fragments within each tank were fed every other day with a mixture of *ca*. 6 g frozen 87 88 adult Artemia sp. and 250 mL concentrated newly hatched live Artemia sp. (500 mL⁻¹) to satisfy 89 any heterotrophic feeding by each species [12, 13].

90

91 (c) Buoyant weight quantification

92 Coral fragments were suspended in a 38 L aquarium 4 cm below the surface in seawater 93 (temperature, 28.2°C; salinity, 32.4) using an aluminum wire hanging from a Nimbus NBL 423e 94 Precision Balance (±0.0002 precision, ±0.002 accuracy; AE Adam[®]; Oxford, Connecticut, USA). 95 A standard of a known mass was weighed three times before weighing corals in each tank to 96 monitor any deviations in the balance over the course of the experiment. Each coral fragment was 97 weighed three times, averaged, and normalized to surface area. Surface area was quantified in 98 triplicate from photos of each nubbin taken at corresponding intervals using imaging software 99 (IMAGE J).

100 A subsample of fragments from each coral species was selected for constructing the linear 101 regression between buoyant weight and dry weight to validate the relationship between the two 102 measurements. Buoyant weight and dry weight of the fragments are highly correlated ($R^2 s. siderea$ 103 = 0.970, p < 0.001; $R^2 P. strigosa = 0.900$, p < 0.001; $R^2 P. astreoides = 0.980$, p < 0.001; $R^2 U. tenuifolia =$ 104 0.983, p < 0.001), therefore the change in growth in buoyant weight should be equivalent to the 105 corresponding dry weight change (figure S5).

S. siderea: Dry weight (mg) = 1.9 * BW + 3.47, $R^2 = 0.970$ P. strigosa: Dry weight (mg) = 1.78 * BW + 5.47, $R^2 = 0.900$ P. astreoides: Dry weight (mg) = 1.93 * BW + 4.51, $R^2 = 0.980$ U. tenuifolia: Dry weight (mg) = 1.66 * BW + 5.04, $R^2 = 0.983$

112 (d) Linear Extension

113 A calcein horizon was line emplaced into coral skeletons at the beginning of the experiment 114 to establish a marker from which linear extension throughout the experiment could be measured 115 [14]. Each experimental tank was dosed with 213.4 g of a 1% calcein solution for 5 days. During this period, the light cycle was increased to 14 h light in all tanks to ensure sufficient uptake of 116 117 fluorescent marker into skeletons. At the completion of the experiment, tissue was removed from 118 all coral fragments using a precision seawater sprayer (PointZero; Sunrise, Florida, USA). Sections 5mm thick were cut from the middle of each fragment using a DB-100 ReefKeeperTM diamond 119 120 band saw (Inland; Madison Heights, Michigan, USA). The full thin sections were imaged under a 121 stereo microscope outfitted with a blue fluorescent adapter with excitation 440–460nm 122 (NIGHTSEATM; Lexington, Massachusetts, USA). Linear extension was measured as the total area 123 of new growth above the calcein line (figure S7) measured using imaging software (IMAGE J) 124 divided by the measured length of the coral's growth axis. Extension was then divided by the 125 number of months in the experimental treatments resulting in linear extension per month (mm 126 month⁻¹).

127

107

108

109 110

111

128 (e) Estimation of gross calcification rates

Gross calcification rates were estimated by subtracting the corals' calculated gross dissolution rates from their net calcification rates at the aragonite saturation states of each treatment. Gross dissolution was calculated using gross dissolution regression equations derived in Ries et al. [15] for two coral species. The equation for *S. siderea* from Ries et al. was used for *S. siderea, P. strigosa,* and *P. astreoides* from the current experiment, and the *O. arbuscula* equation was used with *U. tenuifolia* fragments [15] (figure S8).

135

136 S. siderea: $y = 0.055 - 0.638 * e^{(-6.187 * \Omega_A + 2.039 * \Omega_A)}$ 137 O. arbuscula: $y = 0.073 - 0.638 * e^{(-5.632 * \Omega_A + 2.039 * \Omega_A)}$

139 (f) Survival quantification and analysis

140 Coral fragments were assessed for mortality every 30 days and considered dead when no 141 living tissue remained. Impacts of pCO_2 and temperature on survival rates were assessed using a 142 Kaplan-Meier estimate of survival (*survfit*, *survival*, 2.39-5) [16]. Cox proportional hazard models, 143 with colony nested within tank as a random effect, were performed using *coxme* (2.2-5) [17]. 144

145 (g) Further explanation of statistical analyses

146 Linear mixed effects models were fit to the calcification and linear extension data. Models 147 were run to include species, pCO_2 (factor), and temperature (factor), as fixed effects with colony 148 (genotype) and tank as random effects:

149

```
150 lmer(rate \sim species * (pCO_2 + temperature) + (1 + species | tank) + (1 +
```

151 $(pCO_2 + \text{temperature}) | colony)$

152

153 This model was selected using AIC and log likelihood tests to determine the best fit for the data. 154 A parametric bootstrap of the data was run 1500 times for each model, resulting in the modelled 155 mean and 95% confidence intervals. Colonies were pooled by natal reef environment in all 156 analyses because this was not a significant predictor of any measured parameter. All statistical 157 analyses were performed using R 3.3.2 for OS X [18].

- 158 159
- 160 <u>Supplemental Results:</u>161

162 (a) Coral survivorship

163 Siderastrea siderea maintained nearly 100% survival across treatments, resulting in no 164 significant effect of temperature (p = 0.23), pCO_2 (p = 0.60), or their interaction (p = 1.0) on 165 survival (figure S6a). Survival of P. strigosa, P. astreoides, and U. tenuifolia reared at 31°C was 166 significantly reduced compared to conspecifics reared at $28^{\circ}C$ (p < 0.01, p < 0.01, p < 0.01, 167 respectively; figure 3b-d). No U. tenuifolia fragments under extreme pCO₂ conditions at 31°C 168 survived the acclimation period, indicating that this species is extremely sensitive to these 169 conditions. Increasing pCO_2 had no effect on survival of P. astreoides or U. tenuifolia (p = 0.09170 and p = 0.22, respectively), while increasing pCO₂ significantly increased survivorship of P. 171 strigosa (p < 0.01), a trend driven by relatively low survival at present-day pCO₂. Finally, the 172 interaction between pCO_2 and temperature had no significant effect on survivorship of *P. strigosa*, 173 *P. astreoides*, or *U. tenuifolia* (p < 0.08, p < 0.25, p < 0.21, respectively; figure S6b-d; tables S10, 174 S11, S12).

175

176 (b) Effects of exposure duration on calcification rate

Differences in calcification rates for the four species were also examined across three 30day observation intervals (T0-T30, T31-60, and T61-T90) to assess the impact of duration of exposure to treatment conditions on coral calcification rates. Although responses are complex, some general patterns emerged. *Siderastrea siderea* exhibited a slight increase in calcification rates from the first (T0-T30) to second (T31-T60) intervals in most treatments, followed by a decline from the second to third (T61-T90) interval. In addition, calcification rates for coral reared at 28°C and 31° C under extreme *p*CO₂ are lower at each interval when compared with the lower *p*CO₂ treatments.

185 Calcification rates of *P. strigosa* were generally higher 28° C than at 31° C at every 30-day 186 interval, regardless of *p*CO₂ treatment. With the exception of the corals reared under current-day 187 *p*CO₂ at 28° C, calcification rates exhibited a declining trend at every 30-day interval throughout 188 the experiment.

Porites astreoides calcification rates demonstrated a declining trend across observational intervals within most tempearature- pCO_2 treatment combinations, resulting in net dissolution at the final interval. The exception was for corals reared under extreme pCO_2 that never demonstrated net calcification at any of the three intervals at both temperatures.

- 193 Calcification rates of *U. tenuifolia* exhibited a decreasing trend at every interval across all 194 pCO_2 and temperature treatment combinations. Missing data from the 31°C treatment in both the 195 current-day and extreme pCO_2 treatments represents the low survival in these treatments. In 196 addition, calcification rate trends within pCO_2 treatments were similar at both 28°C and 31°C 197 (figure S12).
- 198 199

200 Supplemental Discussion:

201 202 (a) Canala? not

202 (a) Corals' natal reef environment does not influence resilience to *p*CO₂ or thermal stress

203 Rates of calcification, linear extension, and survival were not significantly impacted by 204 natal reef environment (i.e., inshore vs. offshore) of the four coral species investigated here (figures 205 S10, S11, and tables S12, S13, S14). This result is consistent with previous laboratory experiments 206 on some of the same and other species of zooxanthellate corals, which found no difference in 207 responses to thermal and pCO_2 stress due to natal reef environment [7, 8], but inconsistent with 208 historical growth records of S. siderea obtained from century-scale coral cores that showed that 209 the extension rate of forereef colonies has declined much faster than that of backreef and nearshore 210 colonies [19]. However, it is possible that natal-reef-environment differences in resilience to 211 thermal stress may emerge with prolonged exposure to acidification and warming stress, as well 212 as with larger sample sizes.

213

Reef environment	T (°C)	pCO ₂ (µatm)	pН	TA (µM)	DIC (µM)	Ω	Salinity
Inshore	26.7	346.7	8.05	2495.9	2112	4.56	32.8
Inshore	26.7	326	8.04	2485.9	2090	4.68	32.7
Offshore	27.5	302.5	8.06	2572.8	2124	5.2	34.8
Offshore	27.5	298.1	8.06	2579.3	2126	5.25	34.8
Offshore	27.5	287.5	8.06	2583.8	2120	5.37	34.8

214 Supplemental tables and figures:

215

216

217 **Table S1.** Measured *in situ* carbonate parameters taken in December 2016 from an inshore and

218 offshore location in southern Belize near coral sampling sites demonstrating similarity to

219 experimental seawater (see table 1).

				MEASURE	MEASURED PARAMETERS	K3			
$p{ m CO}_{2{ m (gas-e)}}$	(µatm-v)	311	405	701	3309	288	447	673	3285
Sal	(nsd)	31.72	31.77	31.69	31.77	31.74	31.72	31.69	31.74
	SD	0.21	0.22	0.22	0.23	0.25	0.25	0.24	0.21
	Range	31.26 - 32.06	31.26 - 32.13	31.23 - 32.03	31.26 - 32.06	31.19 - 32.12	31.03 - 32.16	31.16 - 32.12	31.23 - 32.06
	u	120	120	120	120	120	120	120	120
Temp	(D ⁰)	27.9	28.0	28.1	28.1	31.0	31.1	30.9	31.0
	SD	0.4	0.4	0.5	0.2	0.4	0.5	0.3	0.5
	Range	27.2 - 29.6	27.0 - 29.0	27.1 - 30.2	27.7 - 28.7	30.0 - 32.2	30.4 - 32.5	30.1 - 31.7	30.0 - 33.0
	u	120	120	120	120	120	120	120	120
pH _M - NBS		8.30	8.20	8.01	7.31	8.34	8.21	8.00	7.29
	SD	0.11	0.09	0.34	0.07	0.12	0.11	0.12	0.10
	Range	8.03 - 8.46	7.93 - 8.33	7.62 - 11.62	7.13 - 7.45	7.97 - 8.55	7.94 - 8.51	7.61 - 8.20	7.12 - 7.53
	u	120	120	120	120	120	120	120	120
TA	(Mη)	2052	2081	2092	2131	2101	2077	2082	2123
	SD	43	17	37	25	32	32	35	22
	Range	1947 - 2104	2053 - 2121	2012 - 2128	2076 - 2160	2048 - 2152	2010 - 2125	2021 - 2134	2071 - 2148
	u	29	30	30	30	29	30	30	30
DIC	(Mη)	1708	1788	1901	2156	1710	1773	1865	2135
	SD	78	52	46	34	57	80	42	28
	Range	1551 - 1829	1702 - 1859	1830 - 1981	2082 - 2217	1611 - 1795	1625 - 1905	1757 - 1917	2084 - 2194
	u	29	30	30	30	29	30	30	30

5. 5 H carbon (DIC). 'SD' represents standard deviation and 'n' is the sample size.

				CALCULAT	CALCULATED PAKAMETERS	CX.			
$p{ m CO}_{2~{ m (gas-e)}}$	(µatm-v)	311	405	701	3309	288	447	673	3285
	SD	96	91	94	414	65	152	104	484
	Range	165 - 520	252 - 553	555 - 981	2442 - 4299	214 - 416	236 - 792	462 - 879	2681 - 4438
	n	29	30	30	30	29	30	30	30
pHc - NBS		8.27	8.18	7.97	7.37	8.29	8.15	7.99	7.38
	SD	0.10	0.08	0.05	0.05	0.07	0.11	0.06	0.06
	Range	8.07 - 8.45	8.06 - 8.33	7.85 - 8.05	7.25 - 7.48	8.16 - 8.38	7.93 - 8.34	7.89 - 8.11	7.25 - 7.46
	n	29	30	30	30	29	30	30	30
[C03 ²⁻]	(Mη)	241	209	145	42	274	217	162	47
	SD	39	28	12	S	31	40	18	9
	Range	173 - 312	170 - 260	115 - 164	32 - 54	217 - 315	144 - 288	129 - 195	34 - 57
	n	29	30	30	30	29	30	30	30
[HCO ₃ -]	(Mη)	1459	1568	1737	2029	1429	1545	1687	2009
	SD	109	77	51	29	82	114	51	23
	Range	1235 - 1643	1435 - 1666	1652 - 1841	1967 - 2076	1301 - 1553	1332 - 1742	1551 - 1748	1965 - 2052
	n	29	30	30	30	29	30	30	30
[CO ₂] (SW)	(Mη)	8	10	18	85	7	11	16	79
	SD	2	7	7	11	2	4	6	12
	Range	4 - 13	7 - 14	14 - 25	63 - 111	5 - 10	6 - 19	11 - 21	64 - 109
	u	29	30	30	30	29	30	30	30
Ω_{A}		4.0	3.4	2.4	0.7	4.6	3.6	2.7	0.8
	SD	0.6	0.5	0.2	0.1	0.5	0.7	0.3	0.1
	Range	2.8 - 5.1	2.8 - 4.3	1.9 - 2.7	0.5 - 0.9	3.6 - 5.2	2.4 - 4.8	2.2 - 3.3	0.6 - 0.9
	n	29	30	30	30	29	30	30	30

Model	AIC	df
Temperature * Reef	547.1589	30
Reef	544.7238	28
Temperature	543.9792	28
Reef * pCO_2 * Temperature	518.2214	42
Species * Reef	516.6978	34
pCO ₂ * Reef	515.3819	34
pCO_2	513.098	30
Temperature * pCO_2	513.0306	34
Species	511.1664	30
Species * Temperature * Reef	504.489	41
Species * p CO ₂ * Reef	499.5312	58
Species $* pCO_2 * Reef + Temperature$	498.1238	59
Species * Temperature	492.3108	34
Species * pCO_2 + Temperature + Reef	489.3416	44
Species $* pCO_2$	488.9852	42
Species * <i>p</i> CO ₂ * Temperature * Reef	488.7633	83
Species * pCO_2 + Temperature	487.5364	43
pCO ₂ * Temperature * Reef + Species	485.5782	45
Species * Reef + p CO ₂ + Temperature	482.4133	38
Species + p CO ₂ * Temperature + Reef	482.0936	38
Species + p CO ₂ + Temperature * Reef	480.308	36
pCO ₂ * Temperature + Species	480.2898	37
Species + p CO ₂ + Temperature + Reef	479.0823	35
pCO ₂ * Reef + Species + Temperature	478.468	38
Species * <i>p</i> CO ₂ * Temperature + Reef	478.147	57
Species + pCO_2 + Temperature	477.2865	34
Species * <i>p</i> CO ₂ * Temperature	476.2514	56
Species * Temperature * Reef + pCO_2	473.9069	44
Species * (<i>p</i> CO ₂ + Temperature)	469.7398	46
Species * Temperature + Reef + p CO ₂	465.0223	38
Species * Temperature + pCO_2	463.0429	37

Table S4. Model table displaying AIC and degrees of freedom (df) for all model interaction combinations. The model combination in bold is the final model used in this analysis.

Species	Treat	ment	Ν	Mean Calcification (mg cm ² day ⁻¹)	Lower 95% CI	Upper 95% CI
		311 µatm	10	1.080	0.929	1.331
	28°C	405 µatm	12	1.290	1.147	1.439
ä	20 C	701 µatm	11	1.068	0.965	1.197
lere		3309 µatm	12	0.284	0.181	0.381
S. siderea		288 µatm	8	1.038	0.876	1.248
S	31°C	447 µatm	11	1.247	1.107	1.432
	51 C	673 µatm	11	1.026	0.885	1.201
		3285 µatm	12	0.242	0.081	0.360
		311 µatm	15	1.212	1.071	1.327
	28°C	405 µatm	5	0.505	0.271	0.798
sa	20 C	701 µatm	14	0.670	0.529	0.799
P. strigosa		3309 µatm	16	0.202	0.073	0.361
str		288 µatm	9	0.226	0.043	0.344
Р.	31°C	447 µatm	6	-0.481	-0.880	-0.232
		673 µatm	7	-0.316	-0.505	-0.188
		3285 µatm	8	-0.784	-0.921	-0.649
		311 µatm	11	0.099	-0.079	0.206
	28°C	405 µatm	12	0.011	-0.191	0.158
des	20 C	701 µatm	10	-0.152	-0.326	0.009
P. astreoides		3309 µatm	12	-0.676	-0.817	-0.542
astr		288 µatm	6	0.247	0.066	0.376
P. 6	31°C	447 µatm	8	0.160	-0.031	0.318
	51 C	673 µatm	9	-0.003	-0.188	0.091
		3285 µatm	4	-0.527	-0.753	-0.319
		311 µatm	11	0.134	-0.102	0.399
	28°C	405 µatm	7	0.252	0.036	0.492
olia	20 C	701 µatm	4	0.097	-0.095	0.426
uifo		3309 µatm	5	-0.203	-0.501	0.091
U. tenuifolia		288 µatm	4	0.167	-0.245	0.585
U.	2100	447 µatm	0	NA	NA	NA
	31°C	673 µatm	1	0.129	-0.324	0.740
		3285 µatm	0	NA	NA	NA

²²⁷

Table S5. Bootstrapped modelled mean calcification rate for each species in all pCO_2 and temperature treatments reported in mg cm² day⁻¹. Sample sizes (N) and 95% confidence intervals (CI) are reporter for each modelled mean calcification rate (figure 1).

Fixed effect	Value	SE	<i>t</i> -value
(Intercept)	1.11	0.22	4.93
Species (PSTR)	0.11	0.31	0.36
Species (PAST)	-1.01	0.30	-3.32
Species (UTEN)	-0.98	0.33	-2.99
pCO_2 - current	0.15	0.23	0.66
$p\mathrm{CO}_2$ - end-of-century	-0.03	0.20	-0.16
<i>p</i> CO ₂ - extreme	-0.82	0.19	-4.18
Temperature (31°C)	-0.04	0.15	-0.25
Species (PSTR) * <i>p</i> CO ₂ - current	-0.83	0.34	-2.49
Species (PAST) * pCO ₂ - current	-0.25	0.31	-0.80
Species (UTEN) * pCO ₂ - current	-0.04	0.36	-0.12
Species (PSTR) * pCO ₂ - end-of-century	-0.48	0.26	-1.82
Species (PAST) * pCO ₂ - end-of-century	-0.27	0.26	-1.04
Species (UTEN) * pCO ₂ - end-of-century	-0.07	0.31	-0.23
Species (PSTR) * pCO ₂ -extreme	-0.20	0.26	-0.76
Species (PAST) $* pCO_2 - extreme$	0.04	0.26	0.17
Species (UTEN) * pCO ₂ - extreme	0.45	0.31	1.43
Species (PSTR) * Temperature (31°C)	-0.97	0.21	-4.61
Species (PAST) * Temperature (31°C)	0.19	0.20	0.95
Species (UTEN) * Temperature (31°C)	0.04	0.28	0.16
Colony (intercept)	0.37		
pCO_2 - current	0.53		
$p\mathrm{CO}_2$ - end-of-century	0.33		
<i>p</i> CO ₂ - extreme	0.34		
Temperature (31°C)	0.31		
Tank (Intercept)	0.04		
Species (PSTR)	0.25		
Species (PAST)	0.21		
Species (UTEN)	0.19		
Residual	0.38		

Table S6. Summary output of the linear mixed effects model used to determine the relationship between calcification rates, pCO_2 , and temperature for all four coral species. Temperature and pCO_2 were treated as factors.

Treatment	Mean Random Effect Correlation	Lower 95% CI	Upper 95% CI
Current <i>p</i> CO ₂	-0.653	-0.828	-0.001
End-of-century pCO ₂	-0.868	-0.988	-0.517
Extreme pCO_2	-0.796	-0.967	-0.449
31°C Temperature	-0.917	-0.988	-0.467

Table S7. Mean random effect correlations of colony on calcification rates for each treatment240compared to the base treatment of pre-industrial pCO_2 at 28°C with 95% confidence intervals.241Non-overlapping zero intervals denotes significant effects of colony on calcification rates per242treatment.

Species	Treatn	nent	Ν	Mean LE (mm day ⁻¹)	Lower 95% CI	Upper 95% CI
		311 µatm	11	8.09E-03	6.94E-03	9.25E-03
	28°C	405 µatm	9	8.55E03	7.56E-03	9.55E-03
a	28 C	701 µatm	11	8.56E-03	7.54E-03	9.55E-03
S. siderea	_	3309 µatm	12	7.01E-03	6.08E-03	7.94E-03
sia		288 µatm	10	6.46E-03	5.28E-03	7.68E-03
S.	31°C	447 µatm	8	6.75E-03	5.63E-03	7.84E-03
	51 C	673 µatm	11	7.51E-03	6.54E-03	8.50E-03
		3285 µatm	12	6.76E-03	5.82E-03	7.69E-03
		311 µatm	9	5.02E-03	3.93E-03	6.15E-03
	28°C	405 µatm	9	4.78E-03	3.70E-03	5.87E-03
des		701 µatm	9	5.24E-03	4.11E-03	6.35E-03
astreoides		3309 µatm	12	3.34E-03	2.41E-03	4.25E-03
astr		288 µatm	7	6.81E-03	5.38E-03	8.25E-03
P. d	31°C	447 µatm	5	4.16E-03	2.91E-03	5.41E-03
	51 C	673 µatm	6	3.13E-03	1.84E-03	4.48E-03
		3285 µatm	1	2.92E-03	-3.54E-04	6.07E-03

Table S8. Bootstrapped modelled mean linear extension for each species in all pCO_2 and temperature treatments reported in mm day⁻¹. Sample sizes (N) and 95% confidence intervals (CI) are reporter for each mean extension rate (figure 2).

Fixed effect	Estimate	SE	<i>t</i> -value
Intercept	8.03E-03	9.72E-04	8.256
Species (PAST)	-2.95E-03	1.15E-03	-2.555
pCO ₂ - current	5.34E-04	1.17E-03	0.458
$p{ m CO}_2$ - end-of-century	4.86E-04	1.17E-03	0.416
pCO ₂ - extreme	-1.03E-03	1.16E-03	-0.887
Temperature (31°C)	-1.78E-03	1.22E-03	-1.459
Species (PAST) * pCO ₂ - current	-8.64E-04	1.45E-03	-0.597
Species (PAST) * pCO ₂ - end-of-century	-2.93E-04	1.44E-03	-0.203
Species (PAST) $* pCO_{2-extreme}$	-7.18E-04	1.41E-03	-0.511
Species (PAST) * Temperature (31°C)	3.48E-03	1.58E-03	2.211
pCO_2 - current * Temperature (31°C)	-6.30E-05	1.69E-03	-0.037
pCO_{2-EOC} * Temperature (31°C)	7.92E-04	1.67E-03	0.474
pCO ₂ - extreme * Temperature (31°C)	1.53E-03	1.65E-03	0.925
Species (PAST) * p CO ₂ - $current$ * Temperature (31°C)	-2.27E-03	2.17E-03	-1.046
Species (PAST) * pCO_{2-EOC} * Temperature (31°C)	-4.71E-03	2.16E-03	-2.182
Species (PAST) * $pCO_{2-extreme}$ * Temperature (31°C)	-3.84E-03	2.70E-03	-1.423
Tank	1.32E-06		
Colony	1.68E-06		
Residual	2.75E-06		

Table S9. Summary output of the linear mixed effects model used to determine the relationship between linear extension, pCO_2 and temperature for *S. siderea* and *P. astreoides* (PAST).

252 Temperature and pCO_2 were treated as factors.

Species	Treat	ment	TO	T30	T60	T90
		311 µatm	10	10	10	10
	28°C	405 µatm	12	12	12	12
ğ	20 C	701 µatm	11	11	11	11
lere		3309 µatm	12	12	12	12
S. siderea		288 µatm	8	8	8	8
S.	31°C	447 µatm	11	11	11	11
	51 C	673 µatm	12	11	11	11
		3285 µatm	12	12	12	12
		311 µatm	16	16	15	15
	2000	405 µatm	8	6	5	5
sa	28°C	701 µatm	14	14	14	14
P. strigosa		3309 µatm	16	16	16	16
. sti		288 µatm	14	11	9	9
P	31°C	447 µatm	13	11	6	6
	51 C	673 µatm	15	13	7	7
		3285 µatm	13	11	8	8
	28°C	311 µatm	11	11	11	11
		405 µatm	12	12	12	12
des		701 µatm	12	11	10	10
P. astreoides		3309 µatm	12	12	12	12
astr		288 µatm	11	8	6	6
Р. с	31°C	447 µatm	9	8	8	8
	31°C	673 µatm	12	12	9	9
		3285 µatm	10	6	4	4
		311 µatm	12	11	11	11
	28°C	405 µatm	7	7	7	7
olia	28°C	701 µatm	8	5	4	4
U. tenuifolia		3309 µatm	8	6	5	5
ten		288 µatm	8	8	4	4
U.	31°C	447 µatm	1	0	0	0
	51 C	673 µatm	4	2	1	1
		3285 µatm	0	0	0	0

257 258 **Table S10.** Sample size surviving for each species at each time point per treatment used for constructing survival curves (figure S6).

2	Ľ	O
2	5	7

Species	Fixed Effect	Hazard rate	Hazard ratio	Hazard ratio SE	Z.	Р
sa	pCO ₂	-5.39E-06	1.00	0.00	0	1.00
S. siderea	Temperature (31°C)	22.09	3.92E+09	0.00	Inf	0.00
S.	pCO ₂ * Temperature (31°C)	-5.87E-04	1.00	0.00	–Inf	0.00
sa	pCO ₂	-3.72E-03	1.00	0.00	-1.02	0.31
P. strigosa	Temperature (31°C)	0.58	1.79	1.51	0.39	0.70
Р.	$pCO_2 * Temperature (31^{\circ}C)$	3.54E-03	1.00	0.00	0.97	0.33
des	pCO ₂	3.12E-04	1.00	0.00	1.20	0.23
P. astreoides	Temperature (31°C)	0.47	1.60	1.17	0.40	0.69
Р. а	$pCO_2 * Temperature (31^{\circ}C)$	3.28E-03	1.00	0.00	1.52	0.13
olia	pCO ₂	3.41E-04	1.00	2.66E-04	1.28	0.20
U. tenuifolia	Temperature (31°C)	0.52	1.68	1.17	0.44	0.66
U. t	pCO ₂ * Temperature (31°C)	3.26E-03	1.00	2.17E-03	1.51	0.13

261 **Table S11.** Cox mixed effects proportional hazards analysis for survival of all four species. The

262 'hazard rate' represents the modelled risk of death, so that positive values represent increased risk.

263 The 'hazard ratio' indicates the hazard in the treatment compared to the control.

Species	Fixed Effect	loglik	χ^2	DF	Р
rea	NULL	-4.48			
	pCO_2	-4.34	0.27	1	0.6
S. siderea	Temperature (31°C)	-3.61	1.47	1	0.23
S. S	Reef environment	-2.94	1.35	1	0.225
	$pCO_2 * Temperature (31^{\circ}C)$	-3.61	0	1	1
	NULL	-131.95			
osa	pCO_2	-121.63	20.64	1	5.53E-06 ***
P. strigosa	Temperature (31°C)	-113.32	16.61	1	4.60E-05 ***
<i>Р</i> . <i>s</i>	Reef environment	-113.29	0.07	1	0.79
	pCO_2 * Temperature (31°C)	-111.80	3.06	1	0.08
S	NULL	-74.67			
pide	pCO_2	-73.25	2.84	1	0.09
P. astreoides	Temperature (31°C)	-66.06	14.38	1	1.49E-04 ***
	Reef environment	-64.55	3.02	1	0.08
Р	$pCO_2 * Temperature (31^{\circ}C)$	-65.41	1.3	1	0.25
U. tenuifolia	NULL	-59.12			
	pCO_2	-58.36	1.5	1	0.22
	Temperature (31°C)	-54.28	8.18	1	4.24E-03 **
1. te	Reef environment	-54.16	0.24	1	0.63
C C	$pCO_2 * Temperature (31^{\circ}C)$	-53.49	1.56	1	0.21

267 268
Table S12. Statistical outcomes for coral survival analyses of all four species, using Cox mixed effects proportional hazards models.

Species	Reef Environment	Treatment		Ν	Mean Calcification (mg cm ² day ⁻¹)	CI
			311 µatm	6	1.263	0.181
		28°C	405 µatm	6	1.207	0.171
	Offshore		701 µatm	5	1.068	0.153
			3309 µatm	6	0.092	0.249
		31°C	288 µatm	3	1.083	0.191
	0		447 µatm	4	1.051	0.182
a			673 µatm	4	0.970	0.159
ere			3285 µatm	0	0.405	0.250
S. siderea			311 µatm	5	1.329	0.182
S.		••••	405 µatm	6	1.273	0.174
		28°C	701 μatm	5	1.134	0.162
	ore		3309 µatm	6	0.158	0.252
	Inshore	31°C	288 µatm	3	1.149	0.194
			447 μatm	4	1.117	0.183
			673 μatm	5	1.036	0.169
			3285 µatm	4	0.471	0.257
	Offshore	28°C	311 µatm	10	0.942	0.178
			405 μatm	3	0.901	0.172
			701 μatm	8	0.798	0.162
			3309 µatm	10	0.077	0.218
		31°C	288 µatm	5	-0.308	0.238
			447 μatm	3	-0.332	0.230
a			673 μatm	4	-0.392	0.208
strigosa			3285 µatm	5	-0.810	0.326
stri			311 µatm	5	1.008	0.194
Ρ.		28°C	405 µatm	2	0.966	0.186
			701 μatm	6	0.863	0.170
	ore		3309 µatm	6	0.142	0.220
	Inshore	31°C	288 µatm	4	-0.242	0.240
			447 μatm	3	-0.266	0.231
			673 μatm	3	-0.326	0.212
			3285 µatm	3	-0.744	0.325

2	7	n
Z	7	L

Species	Reef Environment	Trea	tment	N	Mean Calcification (mg cm ² day ⁻¹)	CI
			311 µatm	6	-0.031	0.174
		28°	405 µatm	6	-0.063	0.168
	е	С	701 µatm	6	-0.141	0.151
	Offshore		3309 µatm	6	-0.692	0.261
	Jffs]		288 µatm	4	0.180	0.212
	0	31°	447 µatm	5	0.138	0.203
des		С	673 µatm	б	0.033	0.179
eoi			3285 µatm	0	NA	NA
P. astreoides			311 µatm	4	0.035	0.181
P. 6		28°	405 µatm	6	0.003	0.174
		С	701 µatm	5	-0.075	0.158
	lord		3309 µatm	6	-0.626	0.258
	Inshore		288 µatm	4	0.246	0.213
		31°	447 µatm	6	0.204	0.202
		С	673 µatm	5	0.099	0.176
			3285 µatm	6	-0.634	0.422
	Offshore		311 µatm	3	0.135	0.219
		28° C	405 µatm	2	0.115	0.214
			701 µatm	1	0.065	0.198
			3309 µatm	1	-0.287	0.404
		31° C	288 µatm	0	NA	NA
			447 µatm	0	NA	NA
lia			673 µatm	0	NA	NA
uifo			3285 µatm	0	NA	NA
tenuifolia			311 µatm	8	0.201	0.206
U. 1	Inshore	28°	405 µatm	5	0.181	0.194
		С	701 µatm	3	0.131	0.170
			3309 µatm	4	-0.222	0.377
			288 µatm	4	0.180	0.434
		31°	447 µatm	0	NA	NA
		C	673 µatm	1	-0.012	0.881
			3285 µatm	0	NA	NA

Table S13. Bootstrapped modelled mean calcification rate for each species by reef environment in all pCO_2 and temperature treatments reported in mg cm² day⁻¹. Sample sizes (N) and 95% confidence intervals (CI) are reporter for each mean calcification rate (figure S10).

Species	Reef Environment	Treatment		Ν	Mean LE (mm day-1)	CI
			311 µatm	6	8.11E-03	7.53E-04
		28°C	405 µatm	6	8.04E-03	7.37E-04
	е		701 µatm	6	7.86E-03	6.67E-04
	hor		3309 µatm	6	6.63E-03	1.01E-03
	Offshore	2100	288 µatm	4	6.50E-03	7.93E-04
	0		447 µatm	4	6.50E-03	7.66E-04
a		31°C	673 µatm	6	6.49E-03	6.99E-04
S. siderea			3285 µatm	6	6.43E-03	1.05E-03
sia			311 µatm	3	6.89E-03	7.83E-04
S.		2000	405 µatm	5	8.91E-03	7.56E-04
		28°C	701 µatm	5	8.73E-03	6.96E-04
	10L6		3309 µatm	6	7.50E-03	9.82E-04
	Inshore	31°C	288 µatm	4	7.37E-03	7.55E-04
			447 µatm	6	7.37E-03	7.21E-04
			673 µatm	5	7.36E-03	6.45E-04
			3285 µatm	6	7.30E-03	1.05E-0.
	Offshore	28°C	311 µatm	5	5.65E-03	7.94E-04
			405 µatm	3	4.57E-03	7.57E-04
			701 µatm	5	4.36E-03	6.76E-04
			3309 µatm	6	2.95E-03	1.05E-0.
		31°C	288 µatm	2	4.42E-03	9.75E-04
			447 µatm	3	4.24E-03	8.73E-04
les			673 µatm	3	3.82E-03	8.95E-04
soid			3285 µatm	0	NA	NA
astreoides	Inshore	28°C	311 µatm	4	5.52E-03	7.52E-04
P.a			405 µatm	6	5.44E-03	7.05E-04
			701 µatm	4	5.24E-03	6.46E-04
			3309 µatm	6	3.82E-03	1.02E-0
		31°C	288 µatm	3	5.29E-03	9.64E-04
			447 μatm	4	5.11E-03	8.91E-04
			673 μatm	3	4.69E-03	7.80E-04
			3285 µatm	1	1.69E-03	3.19E-0.

Table S14. Bootstrapped modelled mean linear extension for each species by reef environment in all pCO_2 and temperature treatments reported in mm day⁻¹. Sample sizes (N) and 95% confidence intervals (CI) are reporter for each mean extension rate (figure S11).

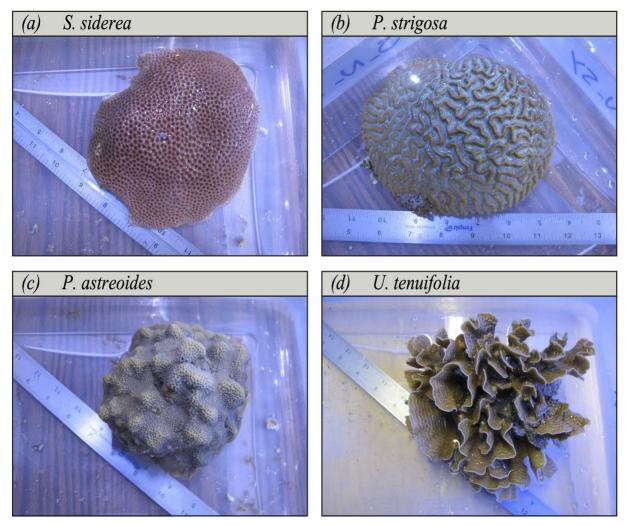
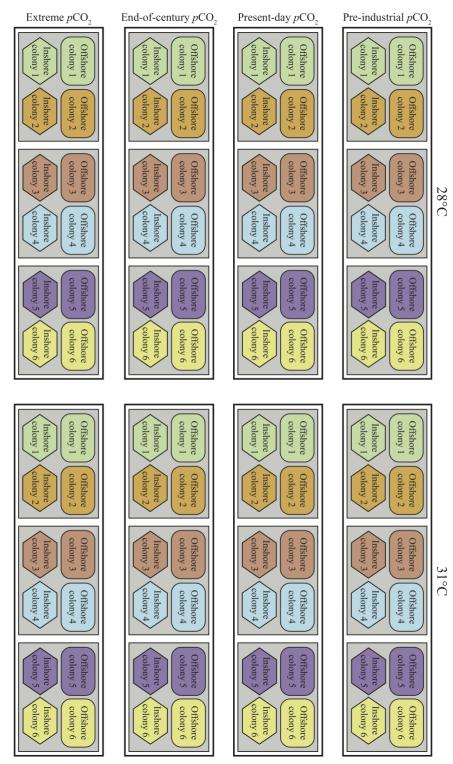



Figure S1. Representative collected colonies of (a) S. siderea, (b) P. strigosa, (c) P. astreoides, and (d) U. tenuifolia from the Belize Barrier Reef System prior to sectioning. 285 286

Figure S2. Diagram showing allocation of coral fragments for a single species throughout

288 experimental tank array. Colour represent a different colony and shape represents reef

environment. Four colonies (two from each reef environment) are within each tank (grey box)

- and three tanks make up a treatment (white box). This is repeated for each pCO_2 treatment at
- both temperatures. This same arrangement was created with all four species.

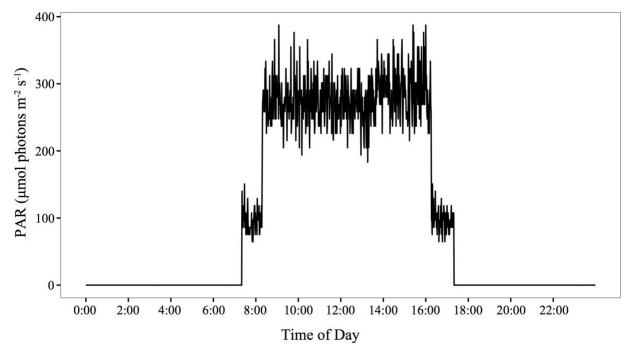
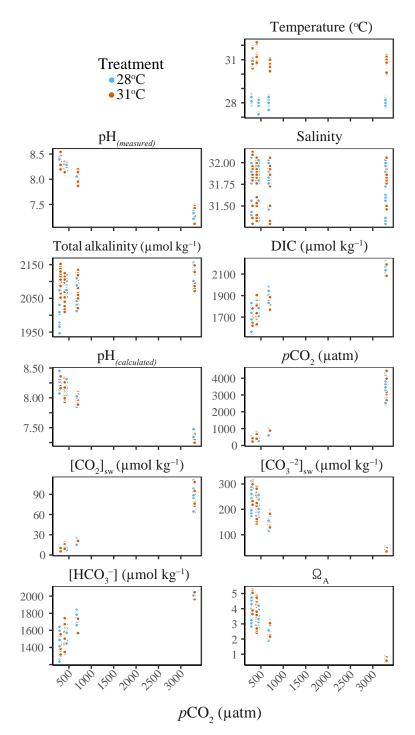
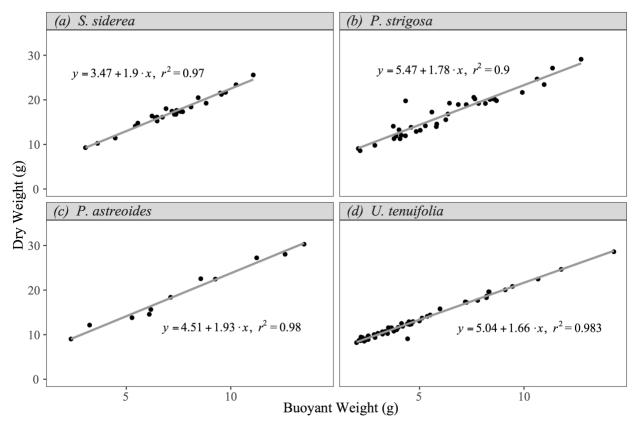
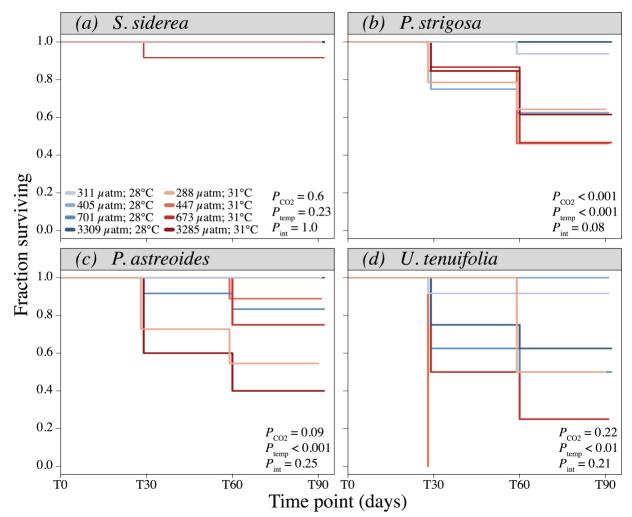




Figure S3. Ten hour light cycle for all 24 experimental treatment tanks reported in PAR (photosynthetically active radiation; µmol photons m⁻² s⁻¹).



296

Figure S4. Calculated and measured parameters for all 24 experimental tanks over the 93-day experimental interval: (*a*) measured total alkalinity; (*b*) calculated pCO_2 of the mixed gases in equilibrium with the experimental seawaters; (*c*) calculated carbonate ion concentration; (*d*) measured dissolved inorganic carbon; (*e*) calculated bicarbonate ion concentration; (*f*) calculated dissolved carbon dioxide; (*g*) measured temperature; (*h*) calculated pH; (*i*) measured pH; (*j*) measured salinity; and (*k*) calculated aragonite saturation state.

Buoyant Weight (g)
Figure S5. Linear relationship between buoyant weight (mg) and dry weight (mg) for (a) S.
siderea, (b) P. strigosa, (c) P. astreoides, and (d) U. tenuifolia.

Figure S6. Fraction of fragments surviving from the start of the experiment for *S. siderea* (*a*), *P. strigosa* (*b*), *P. astreoides* (*c*), and *U. tenuifolia* (*d*). Blue represents 28°C treatments and red represents 31°C treatments. Colour intensity corresponds to pCO_2 level, with the lowest intensity representing pre-industrial pCO_2 and the highest intensity representing an extreme pCO_2 condition. 312

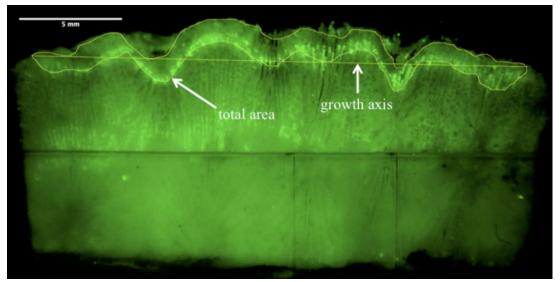
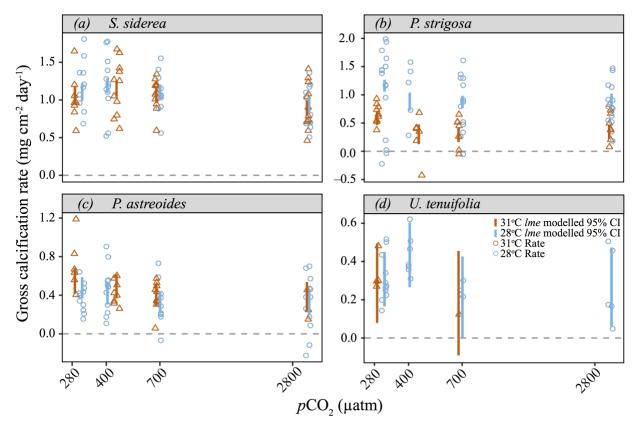
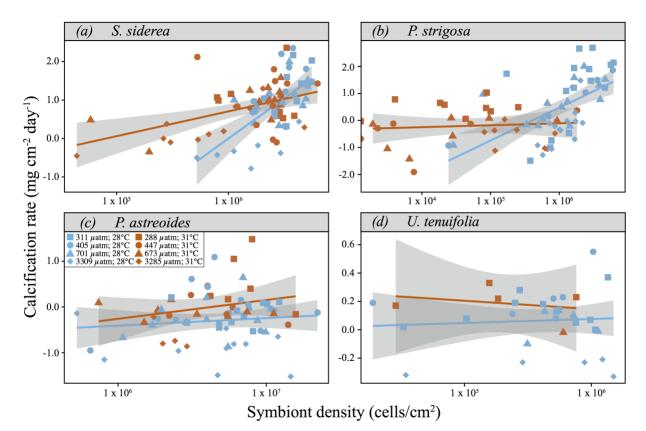
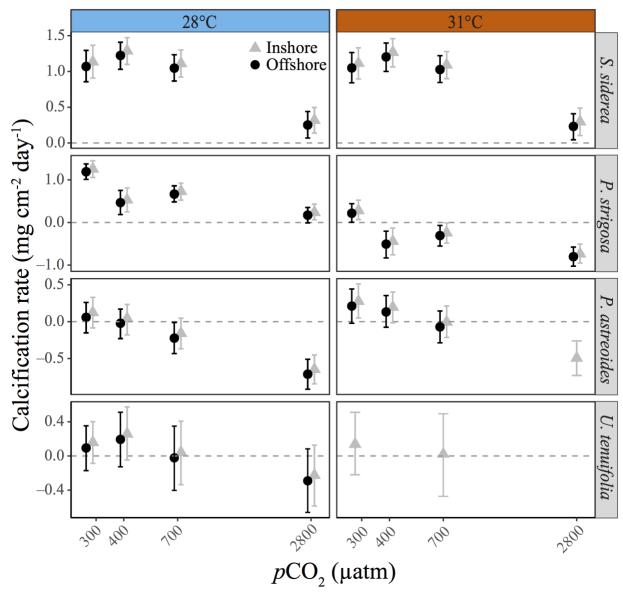


Figure S7. Example of linear extension measurement for S. siderea sample demonstrating total area and growth axis length determination using image software (IMAGE J). 317


Figure S8. Modelled 95% confidence intervals of gross calcification rate for the 90-day 319 experimental period in mg cm⁻² day⁻¹ for (a) S. siderea, (b) P. strigosa, (c) P. astreoides, and (d) 320 U. tenuifolia. Blue bars represent 28°C treatment 95% confidence intervals and orange bars 321 322 represent 31°C treatment 95% confidence intervals, with pCO₂ along the x-axis (µatm). Blue 323 hollow circles represent the raw gross calcification rates for individual fragments in the 28°C

- 324 treatment, and orange hollow circles are raw gross calcification rates for individual fragments in
- 325 the 31°C treatment.
- 326

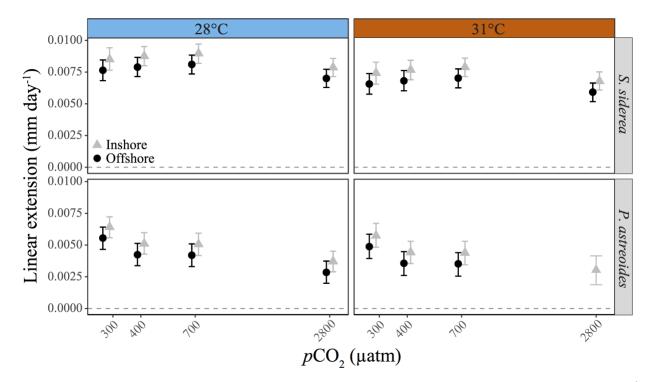


Figure S9. Relationship between calcification rate and symbiont density (cell counts/cm²) for (*a*)

 $S. siderea, (b) P. strigosa, (c) P. astreoides, and (d) U. tenuifolia. Shape represents <math>pCO_2$ treatments and colour represents temperature treatments. The line denotes a simple linear regression with standard error in the grey.

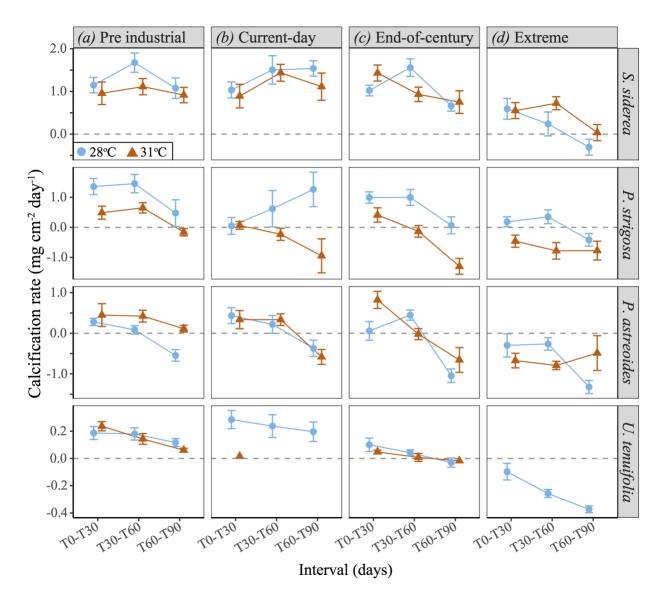


Figure S10. Modelled mean calcification rate for the 90-day experimental period in mg cm⁻² day⁻¹ separated by reef environment for (*a*) *S. siderea*, (*b*) *P. strigosa*, (*c*) *P. astreoides*, and (*d*) *U. tenuifolia.* Grey triangles denote inshore corals and black circles denote offshore corals. Left panel demonstrates mean calcification rate at 28°C and the right panel shows calcification at 31°C, with pCO_2 along the x-axis (µatm) on a log scale. Error bars denote 95% confidence intervals of each estimated mean.

341 342 Figure S11. Modelled mean linear extension rate for the 90-day experimental period in mm cm⁻² day⁻¹ separated by reef environment for (a) S. siderea and (b) P. astreoides. Grey triangles denote 343 344 inshore corals and black circles denote offshore corals. Left panel demonstrates mean calcification 345 rate at 28°C and the right panel shows calcification at 31°C, with pCO_2 along the x-axis (µatm) on 346 a log scale. Error bars denote 95% confidence intervals of each estimated mean.

348 349

Figure S12. Mean calcification rate (mg cm⁻² day⁻¹) at each 30-day experimental interval for all four species at (a) pre-industrial, (b) current-day, (c) end-of-century, and (d) extreme pCO_2 350 351 treatments. Blue circles represent 28°C treatments and orange triangles represent 31°C treatments, 352 with time interval along the x-axis. Error bars denote standard error of each mean.

353 **<u>References:</u>**

354

Hyde K.J.W., O'Reilly J.E., Oviatt C.A. 2007 Validation of SeaWiFS chlorophyll a in
 Massachusetts Bay. *Continental Shelf Research* 27(12), 1677-1691.

357 (doi:10.1016/j.csr.2007.02.002).

358 2. Soto I., Andrefouet S., Hu C., Muller-Karger F.E., Wall C.C., Sheng J., Hatcher B.G. 2009 359 Physical connectivity in the Mesoamerican Barrier Reef System inferred from 9 years of 360 access color observations. *Caral Paafe* **28**(2), 415–425. (doi:10.1007/s00228.000.0465.0)

ocean color observations. *Coral Reefs* 28(2), 415-425. (doi:10.1007/s00338-009-0465-0).
Castillo K.D., Lima F.P. 2010 Comparison of in situ and satellite-derived (MODIS-

- 362 Aqua/Terra) methods for assessing temperatures on coral reefs. *Limnology and* 363 Oceanography-Methods 8, 107-117.
- 4. Castillo K.D., Ries J.B., Weiss J.M., Lima F.P. 2012 Decline of forereef corals in
 response to recent warming linked to history of thermal exposure. *Nature Climate Change*2(10), 756-760. (doi:10.1038/nclimate1577).
- 367 5. Baumann J.H., Townsend J.E., Courtney T.A., Aichelman H.E., Davies S.W., Lima F.P., 368 Castillo K.D. 2016 Temperature Regimes Impact Coral Assemblages along Environmental
- 369 Gradients on Lagoonal Reefs in Belize. *Plos One* **11**(9).
- 370 (doi:10.1371/journal.pone.0162098).

371 6. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Böschung J., Natels A., Via Y.,

Bex V., Midgley P.M. 2013 Climate Change 2013: The Physical Science Basis. Contribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate

Change. (ed. IPCC), p. 1535, 5 ed. Cambridge, United Kingdom and New York, New York,USA, Cambridge University Press.

- Castillo K.D., Ries J.B., Bruno J.F., Westfield I.T. 2014 The reef-building coral
 Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. *Proc Biol Sci* 281(1797). (doi:10.1098/rspb.2014.1856).
- 8. Horvath K.M., Castillo K.D., Armstrong P., Westfield I.T., Courtney T., Ries J.B. 2016
 Next-century ocean acidification and warming both reduce calcification rate, but only
 acidification alters skeletal morphology of roof building corel Sidercatros sideres. Sci Der 6

acidification alters skeletal morphology of reef-building coral Siderastrea siderea. *Sci Rep* 6,
29613. (doi:10.1038/srep29613).

3839.Pierrot D., Lewis E., Wallace D. 2006 MS Excel Program Developed for

384 CO2 System Calculations. (ORNL/CDIAC-105a, Carbon Dioxide Information Analysis 285 Conter Oak Bidge National Laboratory, U.S. Department of Freezew, Oak Bidge, Terreson

Center, Oak Ridge National Laboratory. U.S Department of Energy, Oak Ridge, Tennessee.

Roy R.N., Roy L.N., Vogel K.M., Portermoore C., Pearson T., Good C.E., Millero F.J.,
Campbell D.M. 1993 The dissociation-constants of carbonic-acid in seawater at salinities 5

- to 45 and temperatures 0-degrees-C to 45-degrees-C. *Marine Chemistry* **44**(2-4), 249-267.
- 389 (doi:10.1016/0304-4203(93)90207-5).
- 390 11. Mucci A. 1983 The solubility of calcite and aragonite in seawater at various
 391 salinities, temperatures, and one atmosphere total pressure. *American Journal of Science*392 283(7), 780-799.
- 39312.Lewis J.B., Price W.S. 1975 Feeding mechanisms and feeding strategies of Atlantic

394 reef corals. *Journal of Zoology* **176**(AUG), 527-544. (doi:10.1111/j.1469-

395 7998.1975.tb03219.x).

39613.Winston J.E. 1983 THE ATLANTIC BARRIER-REEF ECOSYSTEM AT CARRIE BOW

- 397 CAY, BELIZE .1. STRUCTURE AND COMMUNITIES RUTZLER,K, MACINTYRE,IG. *Ecology*
- **64**(3), 612-612. (doi:10.2307/1939984).

- 39914.Venti A., Andersson A., Langdon C. 2014 Multiple driving factors explain spatial and
- 400 temporal variability in coral calcification rates on the Bermuda platform. *Coral Reefs* 33(4),
 401 979-997. (doi:10.1007/s00338-014-1191-9).
- 402 15. Ries J.B., Ghazaleh M.N., Connolly B., Westfield I., Castillo K.D. 2016 Impacts of
- 403 seawater saturation state (Omega(A)=0.4-4.6) and temperature (10, 25 degrees C) on the
- 404 dissolution kinetics of whole-shell biogenic carbonates. *Geochimica Et Cosmochimica Acta*
- 405 **192**, 318-337. (doi:10.1016/j.gca.2016.07.001).
- 406 16. Therneau T.M. 2015 A Package for Survival Analysis in S.
- 407 17. Therneau T.M. 2015 coxme: Mixed Effects Cox Models.
- 408 18. R Core Development Team. 2016 R: A language and environment for statistical
- 409 computing. (3.3.2 ed. Vienna, Austria, R Foundation for Statistical Computing.
- 410 19. Castillo K.D., Ries J.B., Weiss J.M. 2011 Declining Coral Skeletal Extension for
- 411 Forereef Colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System,
- 412 Southern Belize. *Plos One* **6**(2). (doi:10.1371/journal.pone.0014615).