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Box S1. Testing processing bias 
Testing processing bias will require disentangling the different types of judgments influencing 
preference (i.e., processing, emotional, and cognitive evaluations). This can be challenging with 
natural communication signals where pre-existing bias and emotional or cognitive evaluations may 
coevolve and ultimately align to jointly reinforce preference (see main text). Yet, carefully designed 
behavioral experiments could reveal the effect of processing bias on preference. For example, a first 
approach could measure how preference changes when manipulating the efficacy and efficiency of 
information processing while keeping emotional or cognitive evaluations constant, or manipulating 
these judgments from positive to negative. Finding that preference for a stimulus remains unchanged 
or increases while increasing its efficacy (e.g., color contrasts), while simultaneously increasing its 
negative emotional value, would reveal an influence of processing bias in preference (see also [1]). A 
related approach could analyze the difficulty of reversing a preference (e.g., the number of trials 
necessary to achieve reversion) by manipulating emotional and cognitive evaluations at different 
levels of efficacy and efficiency; reversal should be more difficult for highly effective or efficient 
stimuli. 

Manipulating emotional and cognitive evaluations requires associative learning, for example with 
classical conditioning, e.g., training an animal with a shock or other aversive stimulus to increase 
negative emotional evaluation. Manipulating processing efficacy is usually achieved in psychology 
using subliminal priming (e.g., [2]). Subliminal priming reveals processing bias because the duration 
of exposure is too short to allow other judgments to take place. An alternative to manipulating 
efficacy is to exploit naturally occurring signal variation. This approach is even better suited for 
efficiency. Efficiency is difficult to manipulate in a controlled setup, but variation can be quantified 
in natural signals (see Box S2). 
 
Box S2. Estimating processing efficiency in visual communication 
Efficiency characterizes information processing at low metabolic cost. Empirically estimating 
efficiency thus requires measuring the energetic cost of processing and comparing it between 
alternative processing strategies [3], or to the same strategy applied to structurally different but 
functionally similar stimuli (e.g., the sexual signals of different males in a population). In lab studies 
with primates and rodents, the standard approach is to analyze functional connectivity using brain 
imaging, which estimates whether the distance travelled by information throughout different brain 
areas is minimized [4]. The study of brain functional connectivity is limited to model species, 
however, and thus most studies in evolutionary biology would rely on more indirect methods. 
 Efficiency can be estimated indirectly with statistics that describe spatial redundancy in 
stimuli. The most well-studied and commonly used statistics are spatial auto-correlation and scale 
invariance, which can be estimated using Principal Component Analysis (PCA; [5]) for the former, 



 2 

and the 1/f spectral slope [6, 7] or fractal dimension D [8, 9] for the latter. These statistics indicate the 
efficiency of information processing because animal perceptual systems have evolved to reduce 
spatial redundancies occurring in natural environments. Thus the most efficiently processed stimuli 
have spatial statistics matching most closely those of natural environments. 
 Processing efficiency also can be estimated using models of perception and cognition. 
Neurons selective to locally oriented line segments (as found, for example, in the primary visual 
cortex of mammals or in the tecto-isthmic area in fishes) can be computationally modeled using 
simple Gabor filters [10], or by training a set of basis functions (each one modeling one neuron) to 
encode images of visual stimuli as sparsely as possible [11]. Then, efficiency is modeled by 
estimating the sparseness of the neuronal responses to a stimulus image [12-15]. Here, sparseness is 
measured as the proportion of neurons activated (i.e., with a non-zero response), or the kurtosis of the 
response distribution [14]. One limitation to this approach, however, is that efficiency is estimated at 
one level of neural processing only.   
 Convolutional Neural Networks (ConvNets) –the tool of choice for deep learning and 
artificial intelligence– are a promising approach for estimating efficiency throughout the processing 
pathway. Although the primary goal of ConvNets is not to reproduce the mechanisms behind animal 
perception and cognition, the different layers of a ConvNet have been found to accurately model 
multiple levels of neuronal processing [16]. ConvNets could thus be used to compare efficiency 
across early perceptual and higher cognitive processing by calculating the sparseness of neuronal 
activation at each layer of the network. Finally, computer scientists have recently used information 
theory to study the efficacy of information transmission across ConvNets [17]. By simultaneously 
estimating the efficacy and efficiency of processing a given stimulus, future research should be able 
to address how these two components interact to influence preference and the evolution of signal 
designs. 
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