Supplementary Information

Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers

B.N.J. Watson¹, R.A. Easingwood², B. Tong¹, M. Wolf³, G.P.C. Salmond⁴, R.H.J Staals^{1,5}, M. Bostina^{1,2}* and P.C. Fineran^{1,6}*

Philosophical Transactions of the Royal Society B 2019

Figure S1. Phage-targeting spacers reduce phage infectivity. (*a*) Schematic of the ϕ M1 genome showing the locations of (*b*) the RNA polymerase gene (RNP, phiM1_31) with the targeting spacers, and (*c*) a tail fibre protein gene (TFP, phiM1_44) with the targeting spacers. EOPs and representative plaque morphology images of the (*d*) anti- ϕ M1 RNP and (*e*) anti- ϕ M1 TFP strains, with white bars: WT (0 spacers), light grey: 1×, mid grey: 2×, dark grey: 3× and black: 4×anti- ϕ spacers. Data shown in the mean +SD (*n*=3). Spacers shared by different strains have been identified with vertical dashed lines (*c*) and the limit of detection in (*d*) and (*e*) is 1 × 10⁻¹⁰. The plaque image scale bars represent 5 mm. Full details of EOP and plaque size measurements are in table S3.

Figure S2. Phages that replicate on phage-resistant strains are phenotypic or genotypic escapes. (*a*), (*b*) & (*c*) Five plaques were retitred on WT (white) and the anti- ϕ strain (grey) from (*a*) M1 RNP 1, (*b*) M1 TFP 1 and (*c*) TE DNP 1. The dashed line represents the EOPs for the strains from figure 1. (*d*) & (*e*) 10 plaques were picked and retitred on WT (white) and the anti- ϕ strain (grey) from (*d*) TE TFP 2 and (*e*) TE TFP 6. The EOPs for the strains were below the limit of detection. (*f*), (*g*) & (*h*) 16 genotypic escape phages, that infected the anti- ϕ strains with an EOP of 1, from (*g*) TE TFP 2 and (*h*) TE TFP 6 were screened for deletions using PCR. (*f*) Schematic showing the ϕ TE TFP gene and the primers used to amplify the region targeted by the (*g*) TE TFP 2 spacer (PF1635 and PF2146) and the entire gene, plus 200 bp downstream for (*h*) TE TFP 6 (PF1635 and PF2144, table S2). Product sizes were compared to the Invitrogen 1 kb Plus DNA ladder.

Figure S3. More phages evade CRISPR-Cas targeting of a single spacer through point mutation than deletion or duplication. (a) The consequences of the point mutations on the coding sequence and (b) the frequency type of escape.

Figure S4. Cryo-EM analysis of wild type ϕ TE. (*a*) Area of a cryo electron micrograph showing ϕ TE phages. (*b*) Fourier shell correlation (FSC) curve showing a 7.1Å resolution for the full capsid. (*c*) Radially coloured surface representation of the capsid showing the T=13 triangulation number. A total of 780 copies of the major capsid protein form 12 pentamers and 120 hexamers that assemble into an icosahedral capsid, which has a maximum diameter of 980 Å. The five-fold axes are indicated by a pentagon, while the centre of the hexamers are indicated by hexagons. At the bottom, the insert shows the segmented densities corresponding to the decoration proteins (blue), hexamers (cyan), and trifolium-like density (red). The decoration protein appears to have a thin, elongated cavity at its interior. (*d*) Individual density of the major capsid protein (transparent) shows the specific HK97 fold (blue ribbon – protein data bank accession no: 2FT1). (*e*) Central slice through the map; concentric rings of DNA with a 25Å spacing are visible inside the capsid (black arrow) and pagoda-shaped decoration proteins (white arrow) are present at the exterior of the capsid and (*f*) are shown as a slice through the map. (*g*) Slice through the cryo-EM along the five-fold axis showing the induced curvature on the capsid coat and the interior genome shells.

Strain	PCF#	#*	Pos†	CRISPR1 sequence‡	Pos	CRISPR2 sequence	Ref
TE DNP			•	• •		•	
1	PCF452	1	-1	AACTTATTGAAAAGTCTAAGATCGTATCCGTA			This study
2	PCF461	1	-2	CCTGCTTGCCGTTGAGACTTCCCATGCACTTG			This study
			-1	GAGCGCTTTTCCGCTGCATAACCCTGCTTCGG			-
3	PCF454	1	-1	TCACGCAGTTTAAGCGCCGCCTCTTCGTCAAA			This study
4	PCF455	1	-1	GCGACGATAGTCATGCCCCGCGCCCACCGGAA	-1	GTCCTCGATTACACGGTCGCAATACTTCCACA	This study
5	PCF456	2	-2	ATGATCAGGCCGTTAAGTTTATTGCTTCAAAA			This study
			-1	TTGTCAGGACGCTGTTTCTTAAACTGGTCCTT			,
6	PCF453	2	-2	GTATCCGTAGGCATTGTGACATGCCAAAGCCC	-1	AGATAATTGGCATATGTTTCTACCCAAAGAAA	This study
			-1	CTTGATCCGGCAAACAAACCACCGCTGGTAGC			2
7	PCF457	3	-2	TCTCCGGGCAACCACGGGGAAGGGGTCGATCG	-2	CCCAAGTGCATGGGAAGTCTCAACGGCAAGCA	This study
			-1	ATGATCAGGCCGTTAAGTTTATTGCTTCAAAA	-1	TAGGTTGAGGCCGTTGAGCACCGCCGCCGCAA	-
8	PCF460	3			-4	CTGTTTCGCCATGTGTCCTTCTACCCTTTCGA	This study
					-3	GATCGTATCGACGTGATGATGAGGGACATCGA	-
					-2	TTCTGCATTACGGGGCCGTCGGAGGGGAAGTT	
					-1	GATTTCAAAGGACCTCCGGCGAAGTCGTTCAA	
9	PCF458	4	-2	GTTCATCCTTGAACATAAACCTTTTATCGTCT	-2	ATGATCAGGCCGTTAAGTTTATTGCTTCAAAA	This study
			-1	AAAATGAAGCCCGTTGGTCCGCACGGACTGGA	-1	CCCAAGTGCATGGGAAGTCTCAACGGCAAGCA	-
TE TFP							
1	PCF194	1	-1	GGCCAGTCCCTTGCGGACCTTCCGGTCCGATT			This study
2	PCF190	1	-1	CTGTGCCGATTTTCAGGGCGTTGGCTGTGTCA			This study
3	PCF189	1	-2	TCAGAACTGGCAACATAAAGACCCTGCTCACT			This study
			-1	TGTTCCTTCTTCACTGTCCCTTATTCGCACCT			-
4	PCF192	1	-2	TCACATCAACCTGGGTCTTGGCCTTTCCAGTT			This study
			-1	AGCTGTCCCTGATGGTCGTCATCTACCTGCCT			-
5	PCF191	2	-2	TGGGTCGGCTTTGATTTCCAGAGTCTTCTTCG			This study
			-1	CAGATCCTTCTACGAGCACCTCTGGCGGGTCT			-
6	PCF188	3	-2	AGAAGGGTGACACCGGAGACACCGGTGCAGTG	-1	AAGAATGCCAACGCCGTAAACATCCTCGGTAA	(1)
			-1	GTTTGGCTGGATAACGGTCACACTGGTTCCCA			
M1 DNP							
1	PCF247	1	-2	CTCCTTAATGCTCAAGTACTTAACGGAGTTCA			This study
			-1	CCGTACATGAACTGAGGGGACAGGATGTCCCA			-
2	PCF254	1	-1	TACTTGCACAACGACCCACTACAGACGCTAGT			This study
3	PCF253	1	-1	TGCGTAGTGTGTATCAAACCGGTATCTATAAT			This study
4	PCF249	2	-2	ACCGCCGATAGGGTCACGCATTACTGCTGAGA	-1	TCGCCAGAGACTTGGGAGACGGGTATCGCAGT	This study
			-1	GGGATGTCGGCGGGGGGGCTTCACGTAGGCCTT			
5	PCF252	2	-3	CTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCT			This study
			-2	ACTTGCGGGTACAGCCGCCTCAATCCCTTTGC			-
			-1	ATCCAGAGCAGGCACTGTACTGGGGCACGCAC			
6	PCF256	2	-2	ACATTGAATAGTTGCACGGAGTACGTGTACTT	-1	ATCCTTGGGCATCTGTCCTGCCAAACCACGCA	This study
			-1	ACTTGCGGGTACAGCCGCCTCAATCCCTTTGC			
M1 TFP							
1	PCF289	1			-1	AGCCTTAGTTTACCTGCGGGCGATTGGGAACT	This study
2	PCF290	1	-2	ACAACGATATCTCAAACCTAGCTGCCCTGACA			This study
			-1	CTGACGCTCAGTGGAACGAAAACTCACGTTAA			

Table S1. Strains with phage-targeting spacers

(Table 3.1 continued)							
Strain	PCF# Ó	#*	Pos†	CRISPR1 sequence‡	Pos	CRISPR2 sequence	Ref
3	PCF294	2	-2	GTTTAACCACGCCACTTAGTGCTGCACAGGGT	-1	TTCCAGTTCCCAATCGCCCGCAGGTAAACTAA	This study
			-1	GGTGTGGTCGCCATGATCGCGTAGTCGATAGT			-
4	PCF293	2	-1	GTTTAACCACGCCACTTAGTGCTGCACAGGGT	-1	TAGCGCACGTGCTAACCTCGGCGCAGCTATGA	This study
5	PCF292	2	-2	ACAACGATATCTCAAACCTAGCTGCCCTGACA			This study
			-1	CTAACCCGCTCGCGCGTACGTACCCATTAGC			2
6	PCF295	3	-3	GTTTAACCACGCCACTTAGTGCTGCACAGGGT	-2	TCCGCACCAACGCGCAGCCCGGACTCGGTAAT	This study
			-2	AAATCAAAACTGGTGAAACTCACCCAGGGATT	-1	GCACAGCTTAGTGCGGTACAGGCAAACCTACA	2
			-1	CGGAGCCAGCCCCGGTACCCCCATTAGTAACT			
7	PCF296	4	-4	GTTTAACCACGCCACTTAGTGCTGCACAGGGT	-2	ATGTCATGATAATAATGGTTTCTTAGACGTCA	This study
			-3	TTAGCGAGGTGCCGCCGGCTTCCATTCAGGTC	-1	CAGATGATTTACCTTGCGCAGGAGTTCACTGA	-
			-2	TAACCCAGTAATACCCCCTGTCAGGGCAGCTA			
			-1	GGTAACACCCCTGTGGTGGTGCTGACACCAAA			
TE TMP							
1	PCF258	1			-1	GGATGCCTTCTCCCACTCTTTGCCAACCTGAC	This study
2	PCF267	1	-1	TCTTGATGGTGATGTCACCTTCGACTTTCTGC			This study
3	PCF269	1	-1	TACCCCATAGGCTGCTCCCGCATTCAGCAGTT			This study
4	PCF273	1	-1	CTGAATGCCTTGTCCTGCACCGTCTCGTCCAA			This study
5	PCF266	1	-2	TGACGATGAGCGCATTGTTAGATTTCATACAC			This study
			-1	TCAGTCTCAAAAGTGACTCGGTTCGTGGTTCT			-
6	PCF275	1	-1	GCCCAGCAGATGCGCCTGGTGAATAAGCGTTT			This study
7	PCF271	2	-1	CATTGCAACACGGTTACTTTCCAATGCTTTCG	-1	GCATTCAGGACTTGAACCGCCAGTTCCGTGCT	This study
8	PCF264	2	-2	GTCGATAGTGGCTCCAAGTAGCGAAGCGAGCA	-2	GAGGAGCAGAGTTGATCCGGGTAACATTCATC	This study
			-1	CCGATGCCGCCGGAAGCGAGAAGAATCATAAT	-1	ACGAATTTGATTCGCTGGCCCGCCTCCTCAGA	2
9	PCF263	2	-1	AGCAGAGTTGATCCGGGTAACATTCATCGGGC	-2	GCACCTGCACCACCGCCAAGACCTGCGCCGTT	This study
					-1	CGATAGCGGAGTGTATACTGGCTTAACTATGC	-
10	PCF261	2	-1	GAGGAGCAGAGTTGATCCGGGTAACATTCATC	-1	ATACGCTGCTGGGCCATTACATCATCAATGCG	This study
11	PCF268	2	-2	GGAGGCCGCATTCATACCAATCGTGGCTTTAC	-1	TCATGATAATAATGGTTTCTTAGACGTCAGGT	This study
			-1	TTTGAGACTGACAAGGCGTCCTATGCCCGGGC			-
12	PCF274	3	-3	CCAGTCGAATACTTCTTTCAACAGGTCTCCTT			This study
			-2	TCAGGGACTTGGCAACGATCCTCGACAGTAAT			2
			-1	TCGACAAGAAGCTTGCAGTCCTTGAAGCGCCA			
13	PCF257	3	-3	TTCACCGAAACCACCTTGGAAGATTTGGTTCT			This study
			-2	CATGAAGCCGTATTCTTTCTGGAATGTCTCTT			-
			-1	GAATTGAAAGGTCAGTTGGCGGAAGGTATCCC			
14	PCF259	2	-3	AGCAGGTACAGCAGATGACATCTCCTCGTGCA			This study
			-2	TTTGAGACTGACAAGGCGTCCTATGCCCGGGC			-
			-1	ACTACGGATACGGCCTGCCATCGCACGGTTTT			
15	PCF272	3	-1	GTCGCAGCTACGAAGGCCGCCTTGGACGAGAC	-2	CCCGGATCAACTCTGCTCCTCTCTCCCCTCGT	This study
					-1	AATACCGACGCGCCGGAGGCGAATACCCCATA	
16	PCF262	3	-2	GCCTACGACAAATCAGCCCAGCAGATGCGCCT	-1	GAGGAGCAGAGTTGATCCGGGTAACATTCATC	This study
			-1	TACCCCATAGGCTGCTCCCGCATTCAGCAGTT			-

*number of phage-targeting spacers †spacer position in array ‡Anti-¢ spacers with a GG PAM, anti-¢ spacer with a GA PAM, anti-plasmid spacers with a GG PAM.

Name	Description/ sequence (5'-3')	Reference/ description
Plasmids		
pPF712	Priming protospacer, Tc ^R and mCherry	(1)
pPF718	pPF712 with	(1)
pPF971	pPF712 with	This study
pPF981	pPF712 with ote tape measure protein gene (phiTE_228)	This study
pPF1251	pPF712 with	This study
pPF1252	pPF712 with	This study
Oligonucle	otides	
PF174	CGTTAGAGTGATCGGGCTAC	F for CRISPR1 (binds in leader)
PF175	CAATGGCTCAGGGGATTC	R for CRISPR1 (binds spacer 2)
PF176	GGTAACTACCGTAAAATAGGAACG	F for CRISPR2 (binds in leader)
PF177	GCCTTTAAGCGCATGTCG	R for CRISPR2 (binds spacer 2)
PF178	CTTTAATAATCTGGTTGTTAGTGTG	F for CRISPR3 (binds in leader)
PF179	CCTCAGAAAGCCGACTTC	R for CRISPR3 (binds spacer 2)
PF1635	TTTGGTACCATAAGGTCGTTGAAGTTCTGG	F for amplifying
PF1636	TTTCTCGAGCTACAGTAGCAACAGTACCTTTC	R for amplifying
PF1637	TTTGGTACCACAAGAGTTTATATCAGCAACTGG	F for amplifying
PF1638	TTTCCCGGGATGAAGAATTCAGACTCTCTCACC	R for amplifying
PF2021	TTTGGTACCACTAATGGCTGCATCTGG	F for amplifying \$\$\phiTE TMP (KpnI)\$
PF2022	TTTCTCGAGATTGATTAGTTAGGCCCACC	R for amplifying
PF2144	CATGAACCATACAATAGCCC	R 200 bp ds of
PF2146	TCACGGTTCCAACAAAATGC	R 150 bp ds of
PF2371	TTTCTCGAGATGGATGCACCTTGTAAGTTACC	F for amplifying \$\$\\$TE DNP (Xhol)\$
PF2372	TTTGGTACCGTATATGATAGCGAGGCCAGC	R for amplifying
PF2373	TTTCTCGAGTACCATTCCTGAGTATCCTACCG	F for amplifying
PF2374	TTTCCCGGGAGTCATCAAGCATAACCTCTGC	R for amplifying ϕ M1 TFP (Smal)

Table S2. Plasmids and oligonucleotides used in this study	
--	--

Strain	No. spacers	EOP ± sd	Plaque size range (mm)*	Esc type †
WT	0	1.0×10 ⁰ ± 2.3×10 ⁻¹	2.5-5	
TE DNP				
1	1	3.6×10 ⁻¹ ± 3.9×10 ⁻²	0.5-2.5	P/G
2	1	9.2×10 ⁻² ± 8.7×10 ⁻³	0.5-2.5	P/G
3	1	9.3×10 ⁻² ± 3.3×10 ⁻²	<0.5-1	P/G
4	1	1.6×10 ⁻² ± 3.8×10 ⁻⁴	0.5-1.5	P/G
5	2	2.2×10 ⁻² ± 4.7×10 ⁻³	<0.5-1.5	Р
6	2	$4.0 \times 10^{-3} \pm 9.0 \times 10^{-4}$	<0.5-1	P
7	3	7.9×10 ⁻³ ± 2.0×10 ⁻³	<0.5-1	Р
8	3	1.5×10 ⁻⁴ ± 6.9×10 ⁻⁵	All <0.5	<u> </u>
9	4	3.0×10⁵± 1.5×10⁵	All <0.5	Р
TE TFP		10, 10, 1, 0, 1, 10, 2	0.5.0	
	1	$1.9 \times 10^{-1} \pm 3.4 \times 10^{-2}$	0.5-3	<u>P/G</u>
2	1	$9.2 \times 10^{-3} \pm 2.4 \times 10^{-3}$	<0.5-3.5	<u> </u>
3	1	$1.4 \times 10^{-2} \pm 3.0 \times 10^{-3}$	All <0.5	P/G
4	1	$9.1 \times 10^{\circ} \pm 1.7 \times 10^{\circ}$	0.5-4	<u> </u>
<u> </u>	2	$2.1 \times 10^{\circ} \pm 0.0 \times 10^{\circ}$	All <0.5	<u>Р</u>
0	3	1.1×10°± 3.6×10°	0.5-3.5	G
	0	$1.0 \times 100 \pm 2.4 \times 10^{-1}$	254	
	0	1.0^10*±2.4^10*	2.5-4	
	1	$3.8 \times 10^{-1} + 1.3 \times 10^{-1}$	2_1	D
2	1	$\frac{5.0\times10}{6.1\times10^{-2}+9.8\times10^{-3}}$	0 5-2 5	P
3	1	$1.5 \times 10^{-2} + 2.7 \times 10^{-3}$	0.5-2.5	 P
4	2	$1.3 \times 10^{-2} + 4.8 \times 10^{-3}$	<0.5.2	 P
5	2	$1.4 \times 10^{-2} + 3.5 \times 10^{-3}$	<0.02	 P
6	3	8 3×10 ⁻⁴ + 1 9×10 ⁻⁴	<0.5-2	 P
	•		0.0 2	· ·
M1 TFP				
1	1	4.0×10 ⁻¹ ± 1.9×10 ⁻⁴	2-3	Р
2	1	2.1×10 ⁻¹ ± 2.7×10 ⁻²	1-2.5	Р
3	2	1.4×10 ⁻¹ ± 1.2×10 ⁻¹	1-2.5	Р
4	2	4.0×10 ⁻² ± 2.6×10 ⁻²	0.5-1.5	Р
5	2	3.1×10 ⁻² ± 2.9×10 ⁻²	0.5-1.5	Р
6	3	2.5×10 ⁻¹ ± 1.3×10 ⁻¹	1-2.5	Р
7	3	8.4×10 ⁻³ ± 1.8×10 ⁻³	0.5-1.5	Р
WT	0	$1.0 \times 10^{0} \pm 2.3 \times 10^{-1}$	2.5-5	
TE TMP				
1	1	5.1×10 ⁻² ± 1.2×10 ⁻²	0.5-2.5	P/G
2	1	$6.9 \times 10^{-2} \pm 9.2 \times 10^{-3}$	0.5-1.5	P/G
3	1	7.5×10 ⁻² ± 9.6×10 ⁻³	0.5-1.5	P/G
4	1	$1.5 \times 10^{-2} \pm 5.0 \times 10^{-3}$	0.5-1	P/G
5	1	$3.5 \times 10^{-3} \pm 2.3 \times 10^{-3}$	<u>All <0.5</u>	<u>P/G</u>
6	1	5.9×10 ⁻⁴ ± 1.4×10 ⁻⁴	<0.5-3	<u>P/G</u>
<u> </u>	2	$1.1 \times 10^{-3} \pm 4.8 \times 10^{-4}$	All <0.5	<u> </u>
<u> </u>	2	$2.2 \times 10^{\circ} \pm 3.4 \times 10^{-4}$		<u> </u>
9 10	2	$2.3^{10^{\circ} \pm 3.0^{10^{\circ}}}$		<u> </u>
10	2	$0.7 \times 10^{-1} \pm 0.2 \times 10^{\circ}$ 1 1 × 10-4 ± 0 7 × 10-5		
10	2	$\frac{1.1 \times 10^{-3} \pm 2.7 \times 10^{-4}}{1.5 \times 10^{-3} \pm 4.0 \times 10^{-4}}$		<u>г</u>
12	<u>ວ</u> ຊ	1.0^10 ± 1.2^10 1.8×10-4 + 5.0×10-5		<u>г</u>
1/	2	6 1×10 ⁻⁵ + 1 7×10 ⁻⁵		P
15	<u> </u>	2 1×10 ⁻⁵ + 0 0×10 ⁻⁰		<u> </u>
16	3	2.1×10 ⁻⁵ ± 0.0×10 ⁻⁰	All <0.5	 P

Table S3.	Efficiency	of plating,	plaque siz	zes and	escape type
					1 21

*across three replicates; † P=phages that did not heritably escape CRISPR-Cas, G=genotypic escape phages

Esc	Host	#*	Mech†	Pos.§	Base	Codon	Del/insert	Homology/	EOP
	(IE)				changell	change	size (bp)	dup. seq	±SD
	TFP 2		del				147	CACG	1.0 ±0.4
	TEP 2	<u> </u>	del				292	AGCCAACG	0.9 ±0.2
3	TEP 2	4	pm	3	A-G	D-G			0.8 ±0.2
	TFP 2	4	pm	7	A-G				1.0 ±0.2
5	TMP 6	2	del				120	GGCTAAAGCC	0.8 ±0.5
6	TMP 1		pm	2	T-G				1.1 ±0.1
	TMP 2	2	pm	-1	C-G (CG)	P-R			1.1 ±0.3
8	TMP 1		pm	-1	C-T (AG)	R-C			1.2 ±0.1
9	TMP 1	2	pm	2	T-C				0.8 ±0.1
10	TMP 3		pm	1	A-G	R-S			0.9 ±0.6
11	TMP 6	2	pm	5	C-A	Q-R			0.8 ±0.1
12	TFP 2		pm	5	A-G	T-A			0.9 ±0.2
13	TMP 2		pm	2	C-G	Q-E			0.8 ±0.1
14	TFP 6		del				1,089	TGAAGGGCGA	1.3 ±0.2
15	TFP 6		del				990	GGTGACACCGG	0.8 ±0.6
16	TMP 6		pm	1	T-C	L-S			0.7 ±0.3
17	TMP 4	2	dup ‡				15	AGACGTGCAGG ACA	1.0 ±0.2
18	TMP 4	2	dup				15	AGACGTGCAGG ACA	0.9 ±0.1
19	TMP 1	2	pm	25,26, 32	A-T, G-T, C-G	K-I			1.1 ±0.7
20	TFP 3		pm	-2	C-T (GA)	S-F			1.0 ±0.2
21	TMP 3		pm	2	A-G				0.8 ±0.4
22	TMP 4	3	pm	-2	C-A (GT)				1.1 ±0.1
23	TFP 6	3	del				1 968	GACA	13+06
24	TFP 6		del				1,986	GGTCC	1.0 +0.1
25	TFP 4		pm	-2	C-G (GC)	P-A	.,		0.9 +0.2
26	TFP 4	2	 pm	4	<u> </u>				0.9 +0.1
27	TFP 4		 pm	3	C-T	T-I			08+05
28	TFP 2		del		•		57	AGCC	10+02
29	TFP 2		nm	-2	C-A (GT)	P-T	0.		11+02
30	TFP 2		del	-	071(01)	• •	144	CCTGTG	0.9 +0.8
31	TFP 2		nm	-1	C-G (CG)	P-R			10+02
32	TEP 3		del		00(00)	1 10	246	GTGTC/	12+02
02			401				210	GTATC	
33	TFP 3		pm	1	A-C	S-R			1.1 ±0.2
34	TFP 3		pm	1	A-G	S-G			1.3 ±0.2
35	TFP 1&	2	del				1,719	AAGGGTGACAC	0.7 ±0.5
	TFP 6								0.8 ±0.2
36	TFP 1		del				462	CCAATCGG/CC GCAGGG	1.4 ±0.4
37	TFP 1		del				729	GGTGACAC	1.2 ±0.3
38	TFP 1		del				783	AAGGGTGACAC	0.7 ±0.4
								TGGCCCAACTG GT	
39	TMP 4		pm ‡	-2	C-T (GA)				1.0 ±0.3
40	TMP 4		del ‡				45	CCGCC	0.8 ±0.2
41	TMP 5		pm	-1	C-T (AG)				1.0 ±0.0
42	TFP 6		del				2,004	TACTGGTCCAA CAGG	1.1 ±0.0
43	TFP 6		del				1.968	CCGCAGGGTG	1.1 ±0.0
44	TFP 6		del				1,968	AGGTCCAG	1.0 ±0.1

Table S4. Genotypic escape phages

*Number of times isolated; **†** Mechanism of escape: pm=point mutation, del=deletion, dup=duplication; **‡**Esc 5 (120 bp del) background; **§** position of point mutation: -1, -2=PAM, 1,2,3...=protospacer; II top/coding strand, () new PAM sequence.

Supplementary Reference

1. Pawluk A, Staals RHJ, Taylor C, Watson BNJ, Saha S, Fineran PC, Maxwell KL, Davidson AR. 2016 Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. *Nature Microbiology*; 1(8):16085.