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Box S1. How animals process information 
Information processing describes the mechanisms that produce a behavioral output from a stimulus 
input. For most behavioral outputs, animals do not simply reflexively respond to external events, or 
stimuli; rather, they build meaning by extracting and transforming information from these stimuli. 
Information processing requires three brain systems: perception, cognition and emotion (Figure S1, 
[1, 2]). 

Perception is the foundational system of information processing and its function is to build an 
internal representation of the external world. This is achieved by first converting a stimulus into a 
neural code, and then by hierarchically extracting information from this code. The extracted 
information is increasingly complex (e.g., simple line segments in early visual stages and entire 
objects in higher stages) and global (e.g., neurons respond to stimuli spanning the whole visual field 
only in higher stages; [3]). Cognition is the brain system where highly integrated processes occur. It 
helps build a meaningful representation from perception by providing knowledge about the 
environment, which notably requires memory. Information processed by perception and then by 
cognition gives rise to a cognitive evaluation of a stimulus (along a continuum of negative to 
positive) that indicates the costs or benefits of the stimulus for the receiver. 

The third brain system, emotion, also gives rise to an evaluation, consciously experienced or 
not, along a continuum of negative to positive, reflecting the receiver's interaction with the 
environment [4]. For example, fear of predators is a negative emotional evaluation that reflects a 
highly costly interaction. Like its cognitive counterpart, the emotional evaluation influences 
preference, and the behavior [5]. The emotional and cognitive evaluations have nevertheless distinct 
neurochemical bases, and most importantly they differ in the timing of their effects, the emotional 
evaluation developing earlier during information processing than the cognitive evaluation [6].  

Emotions are determined by affects, which play an important role in informing the receiver 
about the rate of progress toward a goal, and reward it for successful progress [7]. The core rewarding 
affect is pleasure [8]. In addition to mediating the emotional evaluation, affects also have a meta-
informative function: they evaluate progress in information processing [7] and thereby help regulate 
the process of information gathering. Depending on how pleasurable information processing is, the 
receiver will continue the same processing strategy, change its strategy, or stop processing 
information [7]. 
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The cognitive and emotional evaluations, and a misattributed meta-informative evaluation 
(see Section 4) are judgments that influence preference at varying degrees depending on the 
behavioral task. For example, when facing a predator, the emotional evaluation can override other 
judgments to enforce a fast and adaptive response (“emotional behavior”; [4]). However, in most 
communication systems, including in animal courtship, the relative contribution of these different 
judgments is an unexplored research area. 

The tri-partite model of information processing is a highly simplified description of how 
animal brains process information. Yet it has two main advantages that make it useful for 
evolutionary biology. First, it excludes brain processes that are still hotly debated among cognitive 
scientists, such as the relative importance of feedback interactions between cognition and perception 
[9]. Second, the model likely applies to most if not all brained animals. Even tiny brains such as those 
of insects are capable of complex cognitive operations (reviewed in [10]) and emotions. Compared to 
cognition, non-human emotions have been historically more controversial, but interest in their study 
has increased in recent years, with the development of experimental frameworks for their analysis [4, 
11]. For example, using an experimental approach similar to those used in humans to study 
pessimism and optimism (an ‘half-full vs. half-empty glass’ approach), a recent study found that bees 
who experienced a punishing or a rewarding event were more likely to subsequently respond 
negatively or positively, respectively, to an ambiguous task [12]. As in humans, these animal 
emotions are modulated by affects [12], which also monitor the dynamics of information processing 
[13]. 

 

 
 
Figure S1. Information processing in animal brains. The information conveyed by a stimulus (e.g., a flower) 
is processed by perceptual and then cognitive neurons of the receiver (e.g., a bee), leading to a cognitive 
evaluation of the costs and benefits of the interaction outcome (e.g., quantity of nectar; blue arrow). Along the 
processing pathway, pleasure is triggered when processing is effective or efficient (e.g., conspicuous flower; 
orange arrows). This pleasure could contribute to a fast emotional evaluation of the costs and benefits of 
interacting with the signaler or of the direct energetic benefits of processing an efficient stimulus (red arrow). 
Alternatively or in addition, pleasure can result from evaluating progress in information processing and thereby 
help regulate the process of information gathering [7](violet arrows). Because the receiver is not aware that 
pleasure is triggered by efficient processing, by default s/he misattributes it to the stimulus, which may bias 
preference toward this stimulus (red arrow). 
 
 
Box S2. Testing processing bias 
Testing processing bias will require disentangling the different types of judgments influencing 
preference (i.e., processing, emotional, and cognitive evaluations). This can be challenging with 
natural communication signals where pre-existing bias and emotional or cognitive evaluations may 
coevolve and ultimately align to jointly reinforce preference (see main text). Yet, carefully designed 
behavioral experiments could reveal the effect of processing bias on preference. For example, a first 
approach could measure how preference changes when manipulating the efficacy and efficiency of 
information processing while keeping emotional or cognitive evaluations constant, or manipulating 
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these judgments from positive to negative. Finding that preference for a stimulus remains unchanged 
or increases while increasing its efficacy (e.g., color contrasts), while simultaneously increasing its 
negative emotional value, would reveal an influence of processing bias in preference (see also [14]). 
A related approach could analyze the difficulty of reversing a preference (e.g., the number of trials 
necessary to achieve reversion) by manipulating emotional and cognitive evaluations at different 
levels of efficacy and efficiency; reversal should be more difficult for highly effective or efficient 
stimuli. 

Manipulating emotional and cognitive evaluations requires associative learning, for example with 
classical conditioning, e.g., training an animal with a shock or other aversive stimulus to increase 
negative emotional evaluation. Manipulating processing efficacy is usually achieved in psychology 
using subliminal priming (e.g., [15]). Subliminal priming reveals processing bias because the duration 
of exposure is too short to allow other judgments to take place. An alternative to manipulating 
efficacy is to exploit naturally occurring signal variation. This approach is even better suited for 
efficiency. Efficiency is difficult to manipulate in a controlled setup, but variation can be quantified 
in natural signals (see Box S3). 
 
 
Box S3. Estimating processing efficiency in visual communication 
Efficiency characterizes information processing at low metabolic cost. Empirically estimating 
efficiency thus requires measuring the energetic cost of processing and comparing it between 
alternative processing strategies [16], or to the same strategy applied to structurally different but 
functionally similar stimuli (e.g., the sexual signals of different males in a population). In lab studies 
with primates and rodents, the standard approach is to analyze functional connectivity using brain 
imaging, which estimates whether the distance travelled by information throughout different brain 
areas is minimized [17]. The study of brain functional connectivity is limited to model species, 
however, and thus most studies in evolutionary biology would rely on more indirect methods. 
 Efficiency can be estimated indirectly with statistics that describe spatial redundancy in 
stimuli. The most well-studied and commonly used statistics are spatial auto-correlation and scale 
invariance, which can be estimated using Principal Component Analysis (PCA; [18]) for the former, 
and the 1/f spectral slope [19, 20] or fractal dimension D [21, 22] for the latter. These statistics 
indicate the efficiency of information processing because animal perceptual systems have evolved to 
reduce spatial redundancies occurring in natural environments. Thus the most efficiently processed 
stimuli have spatial statistics matching most closely those of natural environments. 
 Processing efficiency also can be estimated using models of perception and cognition. 
Neurons selective to locally oriented line segments (as found, for example, in the primary visual 
cortex of mammals or in the tecto-isthmic area in fishes) can be computationally modeled using 
simple Gabor filters [23], or by training a set of basis functions (each one modeling one neuron) to 
encode images of visual stimuli as sparsely as possible [24]. Then, efficiency is modeled by 
estimating the sparseness of the neuronal responses to a stimulus image [25-28]. Here, sparseness is 
measured as the proportion of neurons activated (i.e., with a non-zero response), or the kurtosis of the 
response distribution [27]. One limitation to this approach, however, is that efficiency is estimated at 
one level of neural processing only.   
 Convolutional Neural Networks (ConvNets) –the tool of choice for deep learning and 
artificial intelligence– are a promising approach for estimating efficiency throughout the processing 
pathway. Although the primary goal of ConvNets is not to reproduce the mechanisms behind animal 
perception and cognition, the different layers of a ConvNet have been found to accurately model 
multiple levels of neuronal processing [29]. ConvNets could thus be used to compare efficiency 
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across early perceptual and higher cognitive processing by calculating the sparseness of neuronal 
activation at each layer of the network. Finally, computer scientists have recently used information 
theory to study the efficacy of information transmission across ConvNets [30]. By simultaneously 
estimating the efficacy and efficiency of processing a given stimulus, future research should be able 
to address how these two components interact to influence preference and the evolution of signal 
designs. 
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