
Proceedings of the Royal Society B

Electronic supplementary material for
spatial reciprocity in the evolution of cooperation

Qi Su1,2, Aming Li3,4,1, Long Wang1,∗, and H. Eugene Stanley2,†

1 Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, CN
2 Center for Polymer Studies, Department of Physics, Boston University, Boston, Massachusetts 02115,

USA
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Figure S1. An illustrative description of joint transitive graphs. GI and GR are joint transitive

graphs if for every pair of nodes i, j ∈ V , there is a permutation T of V such that T (i) = j and

meanwhile dT (m)T (n) = dmn, eT (m)T (n) = emn for every pair of m,n [1, 2, 3]. Here we check

the node transitivity of a pair of simple graphs. (a) Graphs before permutation. (b) Graphs after

permutation. For a pair of nodes 1 and 2, a permutation can be T (1) = 2, T (2) = 1, T (3) = 4,

and T (4) = 3. In the meanwhile, d13 = dT (1)T (3), e13 = eT (1)T (3), etc. Thus, graphs in (a) are

joint transitive. Roughly speaking, graphs are joint transitive if they look the same from any

node [3]. For example, in (a), when moving a player from 1 to 2, it can not tell whether or

not being moved in terms of global configuration information (both edge connections and edge

weights).
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Figure S2. Critical enhancement factor r∗ for ρC > ρD. The analytical critical enhancement

factor r∗ for fixation probability ρC > ρD is in good agreement with computer simulations.

Here we take unweighted GI and GR with kI = kR = k. The first row illustrates three types

of transitive graphs (a-c) and a type of non-transitive graph (d). The second and third rows

present results for symmetric GI and GR (GI = GR), and asymmetric GI and GR (GI 6= GR),

respectively. Both GI and GR used in row GI = GR are graphs illustrated in the first row. In

row GI 6= GR, GI corresponds to the graph shown in the first row and GR is a random regular

graph. For group-structured graphs, to ensure that sizes of all groups are equal, sizes of graphs

vary slightly for different k, namely, N = 402 for k = 4, 400 for k = 6, 399 for k = 8, and

405 for k = 10, respectively. For other graphs, the size is N = 400. ρC (ρD) is determined

by the fraction of runs where cooperators (defectors) reach fixation out of 105 runs under weak

selection, δ = 0.01. We simulate each type of graphs for different degrees ranging from k = 2

to k = 10. The vertical dashed lines mark the analytical value of r∗.
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(a) 2-order PGG Reduced 2−order PGG(b)

Figure S3. Reduction of 2-order PGG on graphs to the conventional public goods game on

graphs. Only the interaction graph is presented. (a) 2-order PGG on graphs. The focal player

(blue filled circle) participates in all games centred on itself, first-order and second-order neigh-

bours. Its interaction partners include all players within a 4-step walk from the focal player,

highlighted by green circles. Mathematically, any l-order (l > 1) PGG could be reduced to a

conventional PGG by amending the interaction graph (see §2). First, linking all nodes within a

l-step walk from the node occupied by the focal player to the node occupied by the focal player.

Note that multiple edges are not allowed. Second, recording the number of participants in an

original l-order PGG, given by k̃+1, and revising all edge weights in new generated interaction

graph to 1/k̃. (b) Reduced 2-order PGG on graphs. A 2-order PGG is reduced to a convention-

al PGG by connecting all second-order neighbours to the focal player and adjusting all edge

weights from 1/4 to 1/12 (k̃ = 12). The evolutionary dynamics remains unchanged after the

reduction.
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Figure S4. Enhancement of spatial reciprocity. The spatial reciprocity is enhanced as the adjust-

ment of social ties based on a simple algorithm. The details are: each player rewires interaction

edges to players with more interactions; each player rewires dispersal edges to players with

more interactions. Note that multiple edges are not allowed. The algorithm runs in 1000 ran-

domly generated and initially symmetric transitive graphs (kI = kR = k). Critical enhancement

factor r∗ and clustering coefficient C in different steps are respectively shown in the upper and

lower panels. Bright red and blue lines illustrate a representative evolving process. Parameters:

N = 100, k = 10 (a); N = 100, k = 20 (b); N = 200, k = 20 (c); N = 400, k = 20 (d);

N = 400, k = 50 (e); N = 400, k = 100 (f ).
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Figure S5. Sufficiently large participation frequency in self-centred games w promotes co-

operation. (a) Spatial structure without structural clusters. (b) Spatial structure with structural

clusters. All edge weights are 1/4. r∗ is shown as a function of w.
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Figure S6. Promotive and inhibitive effects of strong social ties. The spatial structure cor-

responding to (a) is the one shown in figure 4(a) in the main text. The spatial structure corre-

sponding to (b) is the one shown in figure 4(b) in the main text. r∗ as a function of d and e.

Here d = 0.3e + 0.175 in (a), d = 0.04e + 0.24 in (b), and w = 1/5. Strong social ties always

lower the barrier for the evolution of cooperation in structures with no structural clusters (a)

while might hinder cooperation in the presence of structural clusters (b).
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Figure S7. n̄R is positively correlated to the strength of spatial reciprocity. This extends our
finding in Eq (3.3) in the main text to practical social networks. Both the interaction graph (GI)
and the dispersal graph (GR) are homogeneous small-world networks in panels (a) and (d),
heterogeneous small-world networks in panels (b) and (e), and scale-free networks in panels
(c) and (f ). In panels (a-c), we use ‘edge swapping’ pattern to get pairs of interaction and
strategy dispersal networks with tuneable n̄R. We take h = 2400, h = 400, and h = 0 to
get three pairs of networks with different n̄R (a-c). In panels (d-f ), we use ‘node rearranging’
pattern to get pairs of interaction and strategy dispersal networks with tuneable n̄R. We take
N̂ = 400, N̂ = 200, and N̂ = 0 to get three pairs of networks with different n̄R (d-f ). Dots
represent the simulation data and the cross points of dots and horizontal lines are the critical
enhancement factor r∗. The vertical lines are analytical results given by Eq (3.2) in the main
text (θ is calculated based on averaged values of nI , nR, average degree kI in GI and kR in
GR). We take N = 400, kI = 4, kR = 4. ρC (ρD) is determined by the fraction of runs
where a cooperator (defector) reaches fixation out of 106 runs under weak selection, δ = 0.01.
Other parameter values: the times of swapping edges in generating a homogeneous network
are 40 (see Ref [4]) (a); the rewiring probability in generating a Watts-Strogatz heterogeneous
small-world network is 0.05 (see Ref [5]) (b).
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Figure S8. Structural clusters promote the evolution of cooperation. Here we take a pair of
symmetric networks for interaction and strategy dispersal. We build the homogeneous small-
world network based on the algorithm given in Ref [4]. Swapping edges for 400, 80 and 8 times
leads to a clustering coefficient of C = 0.03, C = 0.28 and C = 0.47, respectively. We build
the Watts-Strogatz heterogeneous small-world network based on the algorithm given in Ref [5].
The edge rewiring probability of 0.5, 0.1 and 0.01 leads to a clustering coefficient of C = 0.06,
C = 0.36 and C = 0.48, respectively. We build a scale-free network with tunable clustering
coefficients based on the algorithm given in Ref [6]. The triad formation probability of 0, 0.5
and 0.9 leads to a clustering coefficient of C = 0.03, C = 0.12 and C = 0.21, respectively. Dots
represent the simulation data and the cross points of dots and horizontal lines are the critical
enhancement factor r∗. The vertical lines are analytical results given by Eq (3.2) in the main
text (θ is calculated based on the average value of nI , nR, average degree kI in GI and kR in
GR). We take N = 400, kI = 4, kR = 4. ρC (ρD) is determined by the fraction of runs where a
cooperator (defector) reaches fixation out of 106 runs under weak selection, δ = 0.01.
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Figure S9. Generating a homogeneous small-world network with strong social ties. Here
we present how to incorporate strong social ties in a homogeneous small-world network with
node degree 4 and meanwhile make sure that each node has a strong social tie. Networks
with other degrees can be built analogously. (a) Generate a ring graph of size N with node
degree 4 (we require that N can be divided by 4). (b) Four consecutive nodes form a group
(1, 2, 3, 4; 5, 6, 7, 8; · · · ); in each group cross connections are marked as ‘thick’ edges (1 and 3,
2 and 4, 5 and 7, 6 and 8, · · · ) and other connections are marked as ‘thin’ edges. (c) Randomly
select two ‘thick’ edges or two ‘thin’ edges and swap the ends of the two edges if no duplicate
edges arise; repeat the edge swapping for h times and produce networkG; (d) Get two copies of
G, one for the interaction graph GI , where ‘thick’ edges are endowed with weight d and ‘thin’
edges with weight (1 − d)/3, one for the strategy dispersal graph GR where ‘thick’ edges are
endowed with weight e and ‘thin’ edges with weight (1 − e)/3. When both d and e are larger
than 1/4, joint ‘thick’ edges in GI and GR form strong social ties.
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Figure S10. Strong social ties might inhibit the evolution of cooperation. We generate a class
of homogeneous small-world networks with strong social ties based on the algorithm illustrated
in figure S9. We take h = 40 [see step (c) in figure S9]. The setting with d = 0.25 and e = 0.25
corresponds to the spatial structure without strong social ties. The setting with d = 0.27 and e =
0.75 corresponds to the spatial structure with strong social ties. Dots represent the simulation
data and the cross points of dots and horizontal lines are the critical enhancement factor r∗. The
vertical lines are analytical results given by Eq (3.2) in the main text (θ is calculated based on
the average value of nI , nR, average degree kI in GI and kR in GR). We take N = 400, kI = 4,
kR = 4. ρC (ρD) is determined by the fraction of runs where a cooperator (defector) reaches
fixation out of 106 runs under weak selection, δ = 0.01.
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§1. An exact condition for ρC > ρD on weighted and asymmet-
ric graphs
Here we take the method of identity by descent to derive the condition for cooperation to be
favoured over defection. This method has been used to investigate two-player games on graphs
(see Ref. [3] for more details). We describe the evolution process by an evolutionary Markov
chain. Each state S is written as a string (s1, · · · , sN), where si ∈ {0, 1} denotes the strategy
taken by the player currently occupying node i (called player i). si = 1 represents cooperation
and si = 0 means defection. Let bi denote probability that player i reproduces in a given state
and di denote the probability that player i is replaced. Cooperation is favoured over defection
if the fixation probability of cooperation ρC is larger than the fixation probability of defection
ρD. In the limit of low mutation (µ → 0) and in joint transitive graphs, the condition ρC > ρD
is equivalent to the condition [3] 〈

∂

∂δ
(b1 − d1)

〉
δ=0
s1=1

> 0, (S1)

where 〈·〉 δ=0
s1=1

denotes that the average over the stationary distribution of the neutral drift pro-

cess (δ is the intensity of selection), conditioned on player 1 taking cooperation (s1 = 1). Let
fi denote i’s accumulative payoffs from all interactions and Fi = 1− δ + δfi denote the trans-
formation of payoff to fitness.
We consider four update rules:
1. Birth-death(BD) [7]: A player such as i is selected with probability proportional to Fi to
reproduce. Its offspring occupies a neighbouring node j with probability proportional to eij .
2. Death-birth(DB) [7]: A player such as i is selected with uniform probability to die. A ran-
dom neighbour such as j is selected to reproduce with probability proportional to ejiFj and its
offspring occupies i.
3. Pairwise comparison(PC) [8]: A player i is selected with uniform probability to be poten-
tially replaced. A random neighbour j is selected with probability eji. Then j reproduces an
offspring to reproduce i with P (Fj − Fi) = (1 + e−(Fj−Fi))−1. Otherwise, no dispersal event
happens.
4. Imitation(IM) [7]: A player i is selected with uniform probability to be potentially replaced.
A random player j in i’s neighbourhood (including i) is selected with probability proportional
to Fj .
Taking above rules into equation (S1), we get
BD: 〈

∂

∂δ

(
F1∑
l∈V Fl

−
∑
i∈V

ei1Fi∑
l∈V Fl

)〉
δ=0
s1=1

> 0⇔ 〈f1〉 δ=0
s1=1
−

〈∑
i∈V

ei1fi

〉
δ=0
s1=1

> 0; (S2)

DB:〈
∂

∂δ

(
1

N

∑
i∈V

ei1F1∑
l∈V eilFl

− 1

N

)〉
δ=0
s1=1

> 0⇔ 〈f1〉 δ=0
s1=1
−

〈∑
i,l∈V

ei1eilfl

〉
δ=0
s1=1

> 0; (S3)
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PC: 〈
∂

∂δ

(
1

N

∑
i∈V

ei1
1 + e−(F1−Fi)

− 1

N

∑
i∈V

ei1
1 + e−(Fi−F1)

)〉
δ=0
s1=1

> 0

⇔〈f1〉 δ=0
s1=1
−

〈∑
i∈V

ei1fi

〉
δ=0
s1=1

> 0; (S4)

IM: 〈
∂

∂δ

 1

N

∑
i∈NR

1

F1∑
l∈NR

i
Fl + Fi

− 1

N

∑
l∈NR

1
Fl∑

l∈NR
1
Fl + F1

〉
δ=0
s1=1

> 0

⇔〈f1〉 δ=0
s1=1
− 2

kR(kR + 2)

〈∑
i∈NR

1

fi

〉
δ=0
s1=1

− 1

kR(kR + 2)

〈∑
i∈NR

1

∑
l∈NR

i

fl

〉
δ=0
s1=1

> 0. (S5)

Above, NR
i is the set of i’s adjacent nodes in dispersal graph GR. 〈f1〉 δ=0

s1=1
denotes the average

payoff of player 1.
〈∑

i∈V ei1fi
〉
δ=0
s1=1

and
〈∑

i∈NR
1
fi

〉
δ=0
s1=1

/kR denote the expected payoff of

a player that is at the end of an one-step random walk from the node occupied by player 1.〈∑
i,l∈V ei1eilfl

〉
δ=0
s1=1

and
〈∑

i∈NR
1

∑
l∈NR

i
fl

〉
δ=0
s1=1

/k2
R denote the expected payoff of a player

that is at the end of a two-step random walk from the node occupied by player 1.
Before taking the identity-by-descent (IBD) methods to derive the assortment of strategies

at neutrality, we define a (n,m)-random walk to be a random walk with n steps using the weights
{dij} of GI , and m steps using the weights {eij} of GR. p(n,m) denotes the probability that such
a random walk terminates at its starting node. s(n,m) denotes the probability that a player at the
end of an (n,m)-random walk from the node occupied by player 1 takes cooperation. In the
low-mutation limit, we get [3]

s(n,m) − s(n,m+1) =
µ

2
(Np(n,m) − 1) +O(µ2), (S6)

where µ means the mutation rate. Let f (n,m) denote the expected payoff that a player at the end
of a (n,m)-random walk from player 1 gets. Equations (S2), (S3), (S4) and (S5) are respectively
equivalent to f (0,0) > f (0,1) (BD), f (0,0) > f (0,2) (DB), f (0,0) > f (0,1) (PC), and f (0,0) >
(2f (0,1) + kRf

(0,2))/(kR + 2) (IM). Combining our definition about public goods games on
weighted graphs (see Model section in the main text), we have

f (n,m) = rw[(1− w)s(n+1,m) + ws(n,m)]− ws(n,m)

+ r(1− w)[(1− w)s(n+2,m) + ws(n+1,m)]− (1− w)s(n,m)

= r(1− w)2s(n+2,m) + 2rw(1− w)s(n+1,m) + (rw2 − 1)s(n,m) (S7)

The first and second terms following the first equality are allocated benefits and corresponding
investment in the self-centred game. The third and fourth terms are allocated benefits and
corresponding investment in games centred on first-order neighbours. We call player j is an
lth-order neighbour of player i if and only if player j can reach node i by a l−step walk.
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Birth-death (BD)/Pairwise comparison (PC).
Substituting equation (S7) into f (0,0) > f (0,1), we get

f (0,0) − f (0,1) =r(1− w)2(s(2,0) − s(2,1)) + 2rw(1− w)(s(1,0) − s(1,1))

+ (rw2 − 1)(s(0,0) − s(0,1)) (S8)

Substituting equation (S6) into equation (S8), we have

r
{
N [(1− w)2p(2,0) + 2w(1− w)p(1,0) + w2p(0,0)]− 1

}
− (Np(0,0) − 1) > 0

⇐⇒r > Np(0,0) − 1

N [(1− w)2p(2,0) + 2w(1− w)p(1,0) + w2p(0,0)]− 1

⇐⇒r > N − 1

N [(1− w)2κ−1 + w2]− 1
≡ r∗, (S9)

where κ = (
∑

j d
2
ij)
−1 respresents the Simpson degree [9]. In the unweighted interaction graph,

κ equals to the node degree kI . We get the third term since there are no self-loops in both
interaction and dispersal graphs, i.e., p(0,1) = 0, p(1,0) = 0. Results for PC and BD update rules
are identical.

Death-birth (DB).
Substituting equation (S7) into f (0,0) > f (0,2), we get

f (0,0) − f (0,2) =r(1− w)2(s(2,0) − s(2,2)) + 2rw(1− w)(s(1,0) − s(1,2))

+ (rw2 − 1)(s(0,0) − s(0,2)) (S10)

Substituting equation (S6) into equation (S10), we have

r{N [(1− w)2(p(2,0) + p(2,1)) + 2w(1− w)(p(1,0) + p(1,1)) + w2(p(0,0) + p(0,1))]− 2}
− [N(p(0,0) + p(0,1))− 2] > 0

⇐⇒r > N(p(0,0) + p(0,1))− 2

N [(1− w)2(p(2,0) + p(2,1)) + 2w(1− w)(p(1,0) + p(1,1)) + w2(p(0,0) + p(0,1))]− 2

⇐⇒r > N − 2

N [(1− w)2κ−1 + w2 + 2w(1− w)p(1,1) + (1− w)2p(2,1)]− 2
≡ r∗. (S11)

Imitation (IM).
Substituting equation (S7) into f (0,0) > (2f (0,1) + kRf

(0,2))/(kR + 2), we get

f (0,0) − 2

kR + 2
f (0,1) − kR

kR + 2
f (0,2) =

2

kR + 2
(f (0,0) − f (0,1)) +

kR
kR + 2

(f (0,0) − f (0,2))

(S12)

Substituting equation (S6) into equation (S12), we have

r >
N(kR + 2)− 2(kR + 1)

N [(1− w)2k−1
I (kR + 2) + w2(kR + 2) + 2w(1− w)kRp(1,1) + kR(1− w)2p(2,1)]− 2(kR + 1)

≡ r∗.

(S13)
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In joint transitive graphs, p(1,1) =
∑

j dijeji and p(2,1) =
∑

j,l dijdjleli, which do not depend
on i ∈ V due to node-transitivity. For non-transitive graphs like random regular graphs, we
approximate p(1,1) and p(2,1) by

∑
i,j dijeji/N and

∑
i,j,l dijdjleli/N , respectively. Technically,

we have

p(1,1) =
tr(MIMR)

N
, p(2,1) =

tr(M2
IMR)

N
,

where MI (MR) denotes the adjacency matrix of GI (GR) and tr(M) presents the trace of
matrix M, i.e., the sum of diagonal entries in M.
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§2. A unifying formula to predict ρC > ρD in a class of spatial
structures
Here we investigate a class of spatial structures that both interaction and dispersal graphs are
unweighted while not necessarily symmetric. When interaction and dispersal graphs are un-
weighted and symmetric, we recover spatial structures used in most prior studies. Furthermore,
we provide two variations of public goods games in these spatial structures, i.e., random public
goods games and l-order public goods games (see Results section in the main text for details).
These two variations greatly extend the research scope of multiplayer games in structured pop-
ulations. They can also recover the conventional spatial public goods game as a special case
by taking L = kI + 1 in random public goods games or l = 1 in l-order public goods games.
Analytical results for public goods games on unweighted graphs can de derived from §1. N-
evertheless, if we do so, we probably miss many important findings and it is also difficult to
generalize such results to the two variations. In this section, we provide an alternative approach
to get an analytical condition and then show that it is applicable in various spatial structures and
variations.

We first introduce two concepts, (i) interaction partner and (ii) role model. Players who can
interact with player i in some games (regardless of the organizers) are i’s interaction partners.
That is, if player i and j are likely to participate in the same game, they are interaction partner of
each other. We designate Ωi

I to be the set of i’s interaction partners. For example, in well-mixed
settings Ωi

I includes all players except i. In the aforementioned structured populations, both the
first-order (nearest) and second-order (next nearest) neighbours in the interaction graph are i’s
interaction partners. Players whose offspring potentially occupy node i or who could disperse
strategies to player i are termed i’s role models. Let Ωi

R denote the set of i role models and
|Ωi

R| the number of role models. In the dispersal graph, |Ωi
R| corresponds to the node degree

kR. Note that Ωi
I and Ωi

R are not necessarily identical.

Conventional spatial public goods game
A public goods game with L participants and an enhancement factor r actually can be decom-
posed into L(L− 1)/2 two-player games with a payoff matrix

(Cooperate Defect
Cooperate r−1

L−1
r−L

L(L−1)

Defect r
L

0

)
.

Accordingly, from the perspective of two-player games, each player plays such a two-player
game with other L − 1 participants, respectively. Then we transform the conventional spatial
public goods games to spatial two-player games. Concretely, we decompose each public goods
game into L(L − 1)/2 two-player games and construct a new interaction graph to describe the
games. If player i and j play two-player games, we build an edge between them. Let nij denote
the interaction times that i plays two-player games with j. Actually, nij is also the number
of PGGs in which i and j participate concurrently before decomposition. Note that before
decomposition each player participates in L L-player public goods game in each generation.
After decomposition, each player thus plays L(L − 1) two-player games in each generation.
Thus i interacts with j at a frequency nij/[L(L − 1)]. We endow the interaction edge between
i and j with a weight d̃ij = nij/[L(L − 1)]. Implementing this operation for all node pairs, we
finally generates a new interaction graph for two-player games. Note that the strategy dispersal
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graph remains unchanged. Under two-player games, i’s payoff in the interaction with j is

f̃ ij = d̃ijL(L− 1)

[
r − 1

L− 1
sisj +

r − L
L(L− 1)

si(1− sj) +
r

L
(1− si)(1− sj)

]
. (S14)

si is i’s strategy and sj is j’s strategy, where si = 1 means cooperation and si = 0 defection.
The transformation from multiplayer public goods games to two-player games does not affect
the evolutionary dynamics. Especially, the newly generated interaction graph and dispersal
graph are still joint transitive and

∑
j∈V d̃ij = 1. We introduce a parameter called “assortment

coefficient”

θ =

∑
j∈Ωi

R
nij∑

j∈Ωi
I
nij

1

|Ωi
R|
. (S15)

∑
j∈Ωi

R
nij represents the sum of times that i interacts with each role model, denoted by nR.∑

j∈Ωi
I
nij represents the sum of times that i interacts with each interaction partner, denoted by

nI . Combining |Ωi
R| = kR and rewriting equation (S15) with nR, nI , we have equation (3.1) in

the main text.
Furthermore

∑
j∈Ωi

I
nij = L(L − 1) and thus nij/

∑
j∈Ωi

I
nij = d̃ij . In fact, θ maps the

probability that a random walk with one step in the newly generated interaction graph and
one step in the dispersal graph terminates in the starting node. Thus θ corresponds to p(1,1) in
reference [3]. Here we stress that p(1,1) corresponds to the quantity in the new interaction and
original dispersal graph. We further rewrite equation (S14) as

f̃ ij = d̃ij [L(r − 1)sisj + (r − L)si(1− sj) + r(L− 1)(1− si)(1− sj)] .

Thus the public goods games on graphs are equivalent to the two-player games on newly gen-
erated graphs and the payoff structure is

(Cooperate Defect
Cooperate L(r − 1) r − L
Defect r(L− 1) 0

)
.

Substituting θ and payoff values into equation (20) in Ref. [3], we have

r∗ =
(N − 2)L

N(L− 1)θ +N − 2L
. (S16)

Furthermore, we provide a formula to calculate θ. Let MI denote the adjacency matrix of the
original interaction graph, where the entry in the ith row and the jth column is 1/kI if there is an
edge between node i and j, and 0 if not. MR denotes the adjacency matrix of the dispersal graph,
where the value in the ith row and the jth column is 1/kR if there is a link between node i and j,
and 0 if not. We focus on player i to calculate how many times it interacts with its role models.
In fact, only when a role model j overlaps a player within a 2-step walk from i in the interaction
graph, nij > 0. If j is the nearest neighbour of i, i encounters j in both i-centred and j-centred
PGGs, corresponding to 2kIkRdijeji. If j and i have n neighbours in common, i encounters j in
PGGs centred on each common neighbour, corresponding to

∑
l∈V k

2
IkRdildljeji. Enumerating

all cases, we have ∑
j∈Ωi

R

nij =
∑
j∈V

2kIkRdijeji +
∑
j,l∈V

k2
IkRdildljeji

=
2kIkRtr(MIMR) + k2

IkRtr(M2
IMR)

N
(S17)
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where tr(M) is the sum of all diagonal elements in M. Substituting equation (S17) into equa-
tion (S15) and combining L = kI + 1, we have

θ =
2tr(MIMR) + kItr(M2

IMR)

N(kI + 1)
. (S18)

l-order public goods game on graphs.
Any l-order PGG on graphs can be reduced to the conventional PGG on graphs by revising the
interaction graph (see figure S3): connecting all nodes within a l-step walk to the node occupied
by the focal player; revising all edge weights from 1/kI to 1/k̃I , where k̃I is the node degree in
the newly generated interaction graph. After the reduction, we analyse the conventional PGG
in the spatial structure described by the new interaction and original dispersal graph.

Here we make a brief instruction to present that the reduction does not affect evolutionary
dynamics. For player i, in l-order PGG on graphs, it participates in games centred on itself and
all players within a l-step walk from i. In the reduced version, all these players within a l-step
walk are connected to i and thus i is also engaged in games centred on them in terms of the
conventional PGG on graphs. Analogously, all participants in a l-order PGG centred on player
i are also participants in the reduced PGG centred on player i. Thus, the reduction remains
players’ payoffs unchanged. Besides, the reduction is independent of the dispersal graph. To
use results obtained in the conventional PGG on graphs, i.e., equations (S15), (S16), (S17), and
(S18), we normalized all edge weights in newly generated interaction graph to 1/k̃I such that
the sum of edge weights associated with a node is 1.

Let MI and MR denote the adjacency matrix of the interaction graph and the dispersal graph
in l-order PGG, respectively. Let M̃I denote the adjacency matrix of the interaction graph in
reduced l-order PGG. We introduce a matrix operator [•], which makes [M]ij = 1 if Mij 6= 0

and [M]ij = 0 if Mij = 0, where Mij(M̃ij) is the entry of M (M̃) in row i and column j. Then
we get

k̃I =
eT
[∑l

i=0 Mi
I

]
e

N
− 1,

where M0 is a N -by-N identity matrix I and e is an identity column vector with N elements.
M̃I is given by

M̃I =
N
([∑l

i=0 Mi
I

]
− I
)

eT
[∑l

i=0 Mi
I

]
e−N

. (S19)

Combining equation (S18), in l-order PGG, we have

θ =
2tr(M̃IMR) + k̃Itr(M̃

2

IMR)

N(k̃I + 1)
.

Random public goods game on graphs.
Random PGG on graphs helps to confirm the generality of the unifying formula, ranging from
two-player games to the collective interaction in well-mixed settings. Under the random PGG,
for each player, the number of the focal player and its neighbours exceeds the PGG size, kI+1 >
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L. Thus in each PGG, the participants include the focal player and L − 1 randomly selected
neighbours. Note that the sum of interaction times that all players interact with the focal player
is still L(L − 1). Here we stress the interaction times under random public goods games are
different from those in conventional spatial public goods games. For example, if player i and j
are connected to each other, in i-centred games, j is selected to be a participant with probability(
kI−1
L−2

)
/
(
kI
L−1

)
rather than 1 in the conventional spatial public goods games. Equivalently, player

j interacts with i for
(
kI−1
L−2

)
/
(
kI
L−1

)
times in i-centred game. If player i and j have a common

neighbour, the probability that both i and j are selected to be the participants is
(
kI−2
L−3

)
/
(
kI
L−1

)
.

Thus, in a PGG centred on the common neighbour, i and j interact for
(
kI−2
L−3

)
/
(
kI
L−1

)
times.

Overall, we have

∑
j∈Ωi

R

nij =
∑
j∈V

2kIkRdijeji

(
kI−1
L−2

)(
kI
L−1

) +
∑
j,l∈V

k2
IkRdildljeji

(
kI−2
L−3

)(
kI
L−1

)
=

2(L− 1)kRtr(MIMR) + kIkRtr(M2
IMR) (L−1)(L−2)

(kI−1)

N

and

θ =
2(kI − 1)tr(MIMR) + kI(L− 2)tr(M2

IMR)

NL(kI − 1)
.
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§3. Emergence of spatial reciprocity
We use subscripts “spa” and “wel” to indicate the quantity obtained in spatial structures and
well-mixed settings, respectively. According to equation (S16), a spatial structure favours co-
operation only when the assortment coefficient in the spatial structure (θspa) is larger than the
assortment coefficient in the well-mixed setting (θwel), where θwel = 1/(N − 1). According to
equation (S15), θspa > θwel means

nR
nI

1

kR
>

1

N − 1
. (S20)

We stress that nR, nI , and kR depend on the local spatial arrangement and are independent of the
population size N . As long as nR > 0, inequation (S20) holds for sufficiently large population
size N . The minimum population size is N∗ = 2 + L(L− 1)kR/nR. nR > 0 means that there
are role models overlapping interaction partners. Under the conventional spatial public goods
games, when a role model overlaps an interaction partner, it interacts with the focal player
at least once. Therefore we have nR ≥ 1. In particular, when this role model overlaps a next
nearest neighbour (in the interaction graph) who has only one common neighbour with the focal
player, the interaction time of this role model with the focal player is 1. Then we have

N∗ = 2 + kI(kI + 1)kR.

Analogously, we can derive the the minimum population size under random public goods
games and l-order public goods games. Under the random public goods games, in each gen-
eration, the expected interaction times of an interaction parter with the focal player are at least(
kI−2
L−3

)
/
(
kI
L−1

)
. If there are role models overlapping interaction partners, nR ≥

(
kI−2
L−3

)
/
(
kI
L−1

)
.

We have the minimum population size

N∗ = 2 +
kI(kI − 1)kRL

L− 2
.

Especially, for L = 2, we have N∗ = 2 + kIkR. Under l-order public goods games, when
overlapping an interaction partner, the role model interacts with the focal player at least once.
We have the minimum population size

N∗ = 2 + L(L− 1)kR.

If no role models overlap interaction partners, we have nR = 0 and θspa = 0. This leads to
the most testing environment for the evolution of cooperation. That is,

nR = 0 =⇒ r∗spa > r∗wel.
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§4. Enhancement of spatial reciprocity
Equation (S16) suggests that for two spatial structures (structure 1 and structure 2) that only
differ in connections (have the same population size and node degrees),

r∗1 < r∗2 ⇐⇒ nR1 > nR2 . (S21)

where r∗1 (r∗2) denotes the critical enhancement factor for cooperation winning defection and
nR1 (nR2) denotes the sum of times that a player interacts with each of its role model in spatial
structure 1 (2). In particular, if fixing the interaction graph GI , we can get such a corollary: for
any focal player and two other different players j1 and j2,

r∗j1∈ΩR,j2 /∈ΩR
< r∗j1 /∈ΩR,j2∈ΩR

⇐⇒ nj1 > nj2 , (S22)

where j1 ∈ ΩR, j2 /∈ ΩR means that the focal player takes j1 but not j2 to be the role model.
Intuitively, for any player i, if i interacts with j1 for more times than with j2, i choosing j1 as
the role model brings more benefits to cooperation than choosing j2. Thus, relying on local
interaction information, players can enhance spatial reciprocity by adjusting their own role
models.

Similarly, if fixing role models (fixing GR), players can also adjust interaction partners to
enhance spatial reciprocity. Compared with adjusting role models, adjusting interaction partners
is more complicated. Due to the complexity of group interactions, adjusting an interaction
partner may change interaction times of the focal player with many other players, which is hard
to be accurately captured by a simple rule. However, we still give some insightful views based
on equation (S22). First we put forward a proposition like below:
Proposition In a pair of symmetric interaction and dispersal graphs, for j ∈ Ωi

I and j′ /∈ Ωi
I ,

niR < niR′ ⇐⇒ nij < nij′ , (S23)

where niR (niR′) represents the sum of interaction times that i interacts with each of its role
models before (after) i rewires the interaction edge from j to j′, and nij (nij′) is the interaction
times of i with j (j′) before rewiring the interaction edge. In other words, if i interacts with
j′ more times than with j, i breaking the interaction edge with j and then rewiring it to j′ will
increase i’s total interaction times with its role models.
Proof Let MI (MI′) denote the adjacency matrix of GI before (after) the rewiring process. niR
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is given by

niR
2kI

=
∑
m∈Ωi

R

[
kI
2

(MI)
2
im + (MI)im

]

=

[
kI
2

(MI)
2
ij + (MI)ij

]
+
∑

m∈Ωi
R|j

[
kI
2

(MI)
2
im + (MI)im

]

=

[
kI
2

(MI)
2
ij + (MI)ij

]
+
∑

m∈Ωi
R|j

[
kI
2

(MI)ij (MI)jm +
kI
2

(MI)ij′ (MI)j′m

+
kI
2

∑
z 6=j,j′

(MI)iz (MI)zm + (MI)im

]
=

[
kI
2

(MI)
2
ij + (MI)ij

]
+
∑

m∈Ωi
R|j

[
kI
2

(MI)ij (MI)jm

+
kI
2

∑
z 6=j,j′

(MI)iz (MI)zm + (MI)im

]
. (S24)

niR′ is given by

niR′

2kI
=
∑
m∈Ωi

R

[
kI
2

(MI′)
2
im + (MI′)im

]

=

[
kI
2

(MI′)
2
ij + (MI′)ij

]
+
∑

m∈Ωi
R|j

[
kI
2

(MI′)
2
im + (MI′)im

]

=
kI
2

(MI′)
2
ij +

∑
m∈Ωi

R|j

[
kI
2

(MI′)ij (MI′)jm +
kI
2

(MI′)ij′ (MI′)j′m

+
kI
2

∑
z 6=j,j′

(MI′)iz (MI′)zm + (MI′)im

]
=
kI
2

(MI)
2
ij +

kI
2

1

k
(MI)j′j +

∑
m∈Ωi

R|j

[
kI
2

1

k
(MI)j′m

+
kI
2

∑
z 6=j,j′

(MI)iz (MI)zm + (MI)im

]
. (S25)
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Combining Eqs. (S24) and (S25), we have

niR
2kI
− niR′

2kI

= (MI)ij +
∑

m∈Ωi
R|j

kI
2

(MI)ij (MI)jm −
kI
2

1

k
(MI)j′j −

∑
m∈Ωi

R|j

kI
2

1

k
(MI)j′m

= (MI)ij +
∑
m∈Ωi

R

kI
2

(MI)im (MI)mj −
kI
2

(MI)ij (MI)jj′ −
∑

m∈Ωi
R|j

kI
2

(MI)im (MI)mj′

=

[
kI
2

(MI)
2
ij + (MI)ij

]
−
[
kI
2

(MI)
2
ij′ + (MI)ij′

]
=

1

2kI
(nij − nij′)

Thus, niR − niR′ = nij − nij′ . �
However, we have to point that equation (S23) is valid on the assumption that only i adjusts

its interaction edge. If other players implement the same procedure, the set of i’s interaction
partners probably changes dramatically, which makes it hard to provide an exact analytic result.
Intriguingly, we can still take advantages of equations (S22) and (S23) to develop an algorithm
to enhance spatial reciprocity. In this algorithm, just relying on local interaction information
(interaction partners, interaction times, and role models), players adjust their interaction edges
or dispersal edges. The algorithm starts from a pair of symmetric interaction and dispersal
graphs. The detailed steps are

(1) Randomly choose a player i and record the interaction times of i with each interaction
partner.

(2) For player j1 (connected to i in the interaction graph) and j2 (not connected to i in the
interaction graph), if i interacts more times with j2 than with j1, i breaks its interaction
edge with j1 and builds an edge to j2. Otherwise the algorithm terminates.

(3) Player i rewires the dispersal edge from j1 to j2, and the algorithm returns to step (1).

To keep node-transitivity, all players implement the same rewiring operation simultaneously.
This algorithm has been proved to effectively enhance spatial reciprocity in most cases (see
figure S4).
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§5. Structural clusters
Real-world spatial structures are usually highly clustered [5]. Here we refer to dense triangle
loops and a high global clustering coefficient C, defined to be [5]

C =
3× number of triangle loops

number of connected triplets of nodes
.

For a node i with degree kI , its local clustering coefficient is defined as

Ci =
number of triangle loops with i

number of connected triplets of i
, (S26)

where the denominator is given by kI(kI − 1)/2. In joint transitive graphs, the local clustering
coefficient equals to the global clustering coefficient, i.e., C = Ci. In symmetric interaction
and dispersal graphs (kI = kR = k), p(2,1) is equivalent to the probability that a three-step
random walk inGI terminates in the starting point. Since there are no self-loops, such a random
walk must go through a triangle loop, and the corresponding probability is 1/k3. Thus, the
total number of triangle loops associated with a node is p(2,1)/(2/k3), where factor 2 in the
denominator results from different directions of the first step in such a three-step random walk,
i.e., i→ j1 → j2 → i and i→ j2 → j1 → i. Altogether, the clustering coefficient is given by

Ci =
p(2,1)k3/2

k(k − 1)/2
=
p(2,1)k2

k − 1
. (S27)

We replace Ci with C. Substituting equation (S27) into equations (S9), (S11), and (S13), we can
get

r∗ =


(N−1)(k+1)
N−(k+1)

BD/PC
(k+1)2(N−2)

N [k+3+(k−1)C]−2(k+1)2
DB

N(k+1)2(k+2)−2(k+1)3

N [k2+5k+2+k(k−1)C]−2(k+1)3
IM

(S28)

In addition, in the symmetric and unweighted interaction and dispersal graphs, from equa-
tion (S18), we have

C =
(k + 1)kθ − 1

k − 1
. (S29)

Next, we present results for four typical graphs illustrated in figure S2 under the death-birth
update rule (results under other updates can be obtained in an analogous way).
Group-structured graph (M is the number of group)
For M = 3

p(2,1) =
k2 − 5k + 8

k3
, C =

k2 − 5k + 8

k(k − 1)
,

r∗ =
k(k + 1)2(N − 2)

2(k2 − k + 4)N − 2k(k + 1)2

N�1−−−→ r∗ =
k(k + 1)2

2(k2 − k + 4)
.

For M > 3

p(2,1) =
(k − 2)(k − 3)

k3
, C =

(k − 2)(k − 3)

k(k − 1)
,

r∗ =
k(k + 1)2(N − 2)

2(k2 − k + 3)N − 2k(k + 1)2

N�1−−−→ r∗ =
k(k + 1)2

2(k2 − k + 3)
.
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Cycle

p(2,1) =
3(k − 2)

4k2
, C =

3(k − 2)

4(k − 1)
,

r∗ =
4(k + 1)2(N − 2)

(7k + 6)N − 8(k + 1)2

N�1−−−→ r∗ =
4(k + 1)2

(7k + 6)
. (S30)

Lattice

p(2,1) = 0, C = 0, r∗ =
8(N − 2)

3N − 16

N�1−−−→ r∗ =
8

3
(k = 3).

p(2,1) = 0, C = 0, r∗ =
25(N − 2)

7N − 50

N�1−−−→ r∗ =
25

7
(k = 4).

p(2,1) =
1

18
, C =

2

5
, r∗ =

49(N − 2)

11N − 98

N�1−−−→ r∗ =
49

11
(k = 6).

p(2,1) =
3

64
, C =

3

7
, r∗ =

81(N − 2)

14N − 162

N�1−−−→ r∗ =
81

14
(k = 8).

Random k-regular graph For the random k-regular graph (random regular graph with average
degree k), the number of triangle loops is asymptotically Poisson random variable with mean
[10]

λ =
(k − 1)3

6
.

For sufficiently largeN , the clustering coefficient and critical enhancement factor can be derived
as

p(2,1) =
(k − 1)3

3Nk3
, C =

(k − 1)2

3Nk
,

r∗ =
(k + 1)2(N − 2)

N(k + 3) + (k−1)3

3k
− 2(k + 1)2

N�1−−−→ r∗ =
(k + 1)2

(k + 3)
(S31)

The last term recovers the result obtained in a previous work [11].
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§6. Heterogeneous social ties
Self participation frequency w. For a given spatial structure with a sufficiently large size
(N � 1), r∗ is a function of w, noted r∗(w).

Under BD/PC update rule, based on equation (S9), we get the extreme point of r∗(w),
w = 1/(κ+ 1), which is located in the range [0, 1]. Thus r∗(w) is a non-monotonic function of
w. The representative points for r∗(w) are given by

r∗(w) =


κ w = 0
κ+ 1 w = 1

κ+1

1 w = 1

Under DB update rule, based on equation (S11), we get the extreme point of r∗(w),

w =
κ−1 + p(2,1) − p(1,1)

1 + κ−1 + p(2,1) − 2p(1,1)
. (S32)

Its denominator is positive since

1 + κ−1 + p(2,1) − 2p(1,1)

≥1 +
∑
j∈NI

i

d2
ij − 2

∑
j∈NI

i

dijeij

≥1 +
∑
j∈NI

i

d2
ij − 2max{dij}j∈NI

i

≥(1−max{dij}j∈NI
i
)2

≥0.

The equality holds only when each node has only one edge in both interaction graph and disper-
sal graph and meanwhile they coincide. Evidently, such graphs are not connected and the fixa-
tion probability for the mutant strategy is zero. If the spatial structure makes p(1,1) < κ−1+p(2,1),
r∗(w) is a non-monotonic function of w. The representative points for r∗(w) are given by

r∗(w) =


κ

1+κp(2,1)
w = 0

κ−1+p(2,1)−2p(1,1)+1
κ−1+p(2,1)−(p(1,1))2

w = κ−1+p(2,1)−p(1,1)
1+κ−1+p(2,1)−2p(1,1)

1 w = 1

However, if p(1,1) ≥ κ−1 + p(2,1), r∗(w) decreases monotonously as the increasing w from 0 to
1 and reaches to 1 for w = 1.

Under IM update rule, based on equation (S13), the extreme point of r∗(w) is

w =
k−1
I + p̃(2,1) − p̃(1,1)

1 + k−1
I + p̃(2,1) − 2p̃(1,1)

, (S33)

where p̃(1,1) = kRp
(1,1)/(kR+2) and p̃(2,1) = kRp

(2,1)/(kR+2). As demonstrated above, the de-
nominator is positive. Similarly, the numerator is positive since p̃(1,1) < p(1,1) =

∑
j∈NR

I
1/(kIkR) <

1/(kI). Thus, r∗(w) is a non-monotonic function of w. The representative points for r∗(w) are
given by

r∗(w) =


kR

1+kRp̃(2,1)
w = 0

k−1
I +p̃(2,1)−2p̃(1,1)+1

k−1
I +p̃(2,1)−(p̃(1,1))2

w =
k−1
I +p̃(2,1)−p̃(1,1)

1+k−1
I +p̃(2,1)−2p̃(1,1)

1 w = 1
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Strong social ties. The social tie between individual i and j is a strong social tie if in the inter-
action graph dij is larger than the average weight of all edges (dij > 1/kI) and in the dispersal
graph eij is larger than the average weight of all edges (eij > 1/kR). We consider a baseline
model where the interaction and dispersal graphs are identical and meanwhile all edges have
the same weight (kI = kR = k). Introducing a strong tie between individual i and j means to
increase dij and eij . In the baseline model, if introducing strong social ties reduces the threshold
r∗ for the success of cooperation, such strong social ties promote cooperation. But if the intro-
duction of strong social ties gives rise to a larger r∗, such strong social ties inhibit cooperation.
Here we investigate the death-birth rule.

First we study the spatial structure without structural clusters. Equation (S11) tells that r∗

is negatively correlated to κ−1, p(1,1), and p(2,1). Since there is no structural clusters, we have
p(2,1) = 0. We introduce strong ties in the baseline model by increasing the weights of a fraction
of edges. Note that in both interaction and strategy dispersal graph, each node is linked to other
k nodes by k edges. Let {1/k+ξ1, 1/k+ξ2, · · · , 1/k+ξn} denote weights of the k edges in the
interaction graph after introducing strong social ties and {1/k + σ1, 1/k + σ2, · · · , 1/k + σn}
denote weights of the k edges in the dispersal graph. Since the normalization of the sum of all
edge weights, we have

∑k
i=1(1/k+ ξi) = 1 and

∑k
i=1(1/k+ σi) = 1, which gives

∑k
i=1 ξi = 0

and
∑k

i=1 σi = 0. A strong social tie (taking the ith edge for example) means ξi > 0 and σi > 0.
For other ties, ξi ≤ 0 and σi ≤ 0. Then we have κ−1 =

∑k
i=1(1/k+ξi)

2 = 1/k+
∑k

i=1 ξ
2
i > 1/k

and p(1,1) =
∑k

i=1(1/k+ ξi)(1/k+ σi) = 1/k+
∑k

i=1 ξiσi > 1/k. Thus, regardless of weights
of the strong social ties, compared with the baseline model, introducing strong social ties always
increases κ−1 and p(1,1). Thus, in spatial structures without structural clusters, strong social ties
facilitate cooperation.

In spatial structures with structural clusters, we can use Eq (S11) to calculate the critical
threshold r∗ and then analyze how strong social ties affect the evolution of cooperation. The
structural clusters make the conclusions complicated. For simplicity, we assume that each play-
er has a strong social tie. Let d denote the weight of a strong interaction edge and (1−d)/(k−1)
the weight of other interaction edges. Let e denote the weight of a strong dispersal edge and then
(1−e)/(k−1) the weight of other dispersal edges. Note that if two players are linked by an inter-
action edge with d > 1/k and a dispersal edge with e > 1/k, they own a strong social tie. Here
we fixw = 1/(k+1). Equation (S11) tells that (1−w)2κ−1+w2+2w(1−w)p(1,1)+(1−w)2p(2,1)

decides the value of r∗. Dividing it by (1− w)2 and substituting w = 1/(k + 1), we have

Φ(d, e) = κ−1 +
2p(1,1)

k
+ p(2,1)

where κ−1 = (kd2−2d+1)/(k−1) and p(1,1) = (kde−d−e+1)/(k−1). Φ(d, e) is negatively
correlated with the critical threshold r∗.

The spatial structure we studied is illustrated in the figure 4b in the main text and k = 4. We
have

p(2,1) =
(d− 1)(d+ e+ 2de− 4)

27
,

and

Φ(d, e) =
2d2e

27
+

37d2

27
+

17de

27
− 55d

54
− 11e

54
+

35

54
.
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Then, we get

∂φ

∂d
= d

[
4e

27
+

74

27

]
+

[
17e

27
− 55

54

]
,

∂φ

∂e
=

2d2

27
+

17d

27
− 11

54
.

Since ∂φ/∂d is negative for d ∈ [1/4, (55 − 34e)/(148 + 8e)) and ∂φ/∂e negative for e ∈
[1/4, (

√
333 − 17)/4), the increasing d and e in a certain range lead to a smaller φ(d, e) and a

larger r∗. Thus in spatial structures with structural clusters, strong social edges might impede
the evolution of cooperation.

About the study of strong social ties, our model is different from the prior work [3] in two
ways:
(i) we consider the multiplayer game (prior work takes two-player game);
(ii) the strong tie in our work is a pair of interaction edge and dispersal edge and their weights
are not necessarily identical (the strong tie in prior work is an edge using for both interaction
and dispersal).
We stress that both multiplayer interactions and the separation of interaction edge and dispersal
edge make the investigation complicated. Our work in this paper aims to provide a few theo-
retical insights into how these factors affect the collective cooperation. Meanwhile, it may be
instrumental in designing mechanisms to leverage cooperation in multiagent systems.

27



§7. Practical social networks
In this paper, based on the jointly transitive graphs [3, 1, 2], we derive an exact condition to
predict when natural selection favors cooperation over defection. A deep analysis into this
condition provides a few new sights into many classical questions. Although jointly transitive
graphs have covered a large class of classical spatial structures and have been widely used in
theoretical studies [3, 1, 2]), to present the generality of our findings, we further investigate
three practical social networks, i.e., homogeneous small-world network [4], Watts-Strogatz het-
erogeneous small-world network [5], and scale-free network [6, 12].

First, we show that the strength of spatial reciprocity is positively correlated to the
sum of times that a player interacts with each role model [see Eq (3.3) in the manuscript].
Each player organizes a public goods game in which all neighbours and the organizer partici-
pate. Given that in heterogeneous networks nR for each player (the sum of times that a player
interacts with each role model) can be different, here we use the average value of nR over al-
l players, denoted by n̄R. In joint transitive graphs, we have nR = n̄R. We consider three
cases. That is, both interaction (GI) and strategy dispersal (GR) graphs are (i) homogeneous
small-world networks, (ii) heterogeneous small-world networks, and (iii) scale-free networks.
We consider two patterns to generate a spatial structure (described by a pair of networks) with
tunable n̄R. Before introducing the two patterns, we present how to generate a single network.
We build a single homogeneous small-world network based on the algorithm given in Ref. [4],
the Watts-Strogatz heterogeneous small-world network based on Ref. [5], and the scale-free
network based on growth and preferential attachment [12]. To present the first pattern (called
‘edge swapping’ pattern), we take the spatial structure described by a pair of homogeneous
small-world networks for example:
(1) generate a single homogeneous small-world network for interaction and denote it by GI [4];
(2) generate a copy of GI and denote it by GR;
(3) randomly select two edges of GR and swap the ends of the two edges if no duplicate edges
arise;
(4) repeat step (3) for h times.
We can adjust h to get pairs of homogeneous small-world networks with different n̄Rs.
To present the second pattern (called ‘node rearranging’ pattern), we still take the spatial struc-
ture described by a pair of homogeneous small-world networks for example:
(1) generate a single homogeneous small-world network for interaction and denote it by GI [4];
(2) label all nodes from 1 to N ;
(3) generate a sequence S1 = {1, 2, · · · , N}, randomly select N̂ labels in S1 and rearrange
the selected labels in their positions in a random way (positions of unselected labels remain
unchanged), by which a new sequence S2 is generated;
(4) generate GR—if in GI there exists an edge between node i and j, in GR we build an edge
between nodes whose labels appear in the ith and jth positions of S2.
We can adjust N̂ to get pairs of homogeneous small-world networks with different values of
n̄R. Both ‘edge swapping’ and ‘node rearranging’ patterns ensure that both the interaction and
strategy dispersal networks have the same node degree distribution. Besides, the ‘node rear-
ranging’ pattern ensures that a few other structure properties such as clustering coefficients in
the interaction and strategy dispersal networks are identical. Figure S7 shows that the larger n̄R
is, the smaller the critical enhancement factor r is, and the stronger the spatial reciprocity is.
Thus, n̄R is positively correlated to the strength of spatial reciprocity. Besides, in networks with
small heterogeneity in node degrees, such as in homogeneous and heterogeneous small-world

28



networks, the analytical results (vertical lines) well predict when cooperation is favoured over
defection (the cross points of dots and horizontal lines).

Next, we show in social networks, structural clusters act as an effective promotor of
the evolution of cooperation (lines 220-221 in the main text). We consider three social net-
works (see figure S8 for more details). Figure S8 shows that the more structural clusters there
are (the larger the clustering coefficient is), the smaller the critical enhancement factor is. Thus,
structural clusters promote the evolution of cooperation.

Finally, we present in some cases strong social ties might inhibit cooperation (Section
4.2 in the main text). In the main text, we extend the public goods games in a pair of weighted
and meanwhile joint transitive graphs (see Model section in the main text). We define the social
tie between individual i and j to be a strong social tie if (i) in the interaction graph the weight
of the edge connecting i and j is larger than the average weight of all edges; (ii) in the strategy
dispersal graph the weight of edge connecting i and j is larger than the average weight of all
edges. We find that introducing strong social ties does not always provide more advantages for
cooperation. We provide a representative example, i.e., figure 4 in the main text. Here we fur-
ther investigate the homogeneous small-world networks. We incorporate strong social ties into
small-world networks using the algorithm illustrated in figure S9. Figure S10 shows that in such
small-world networks, strong social ties lead to a higher critical enhancement factor. We have
pointed out that the difference between the critical enhancement factors before and after intro-
ducing strong ties is small, predicted by the theoretical result shown in figure 4c in the main text.

Overall, our findings based on jointly transitive graphs hold in a few practical social net-
works. Although we can further extend the public goods games to any population structure,
currently, it is greatly difficult to find an analytical result or explicit conclusions. We expect an
enduring effort into this challenging work.
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[12] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Sci-
ence, 286(5439):509–512, October 1999.

30


