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Introduction: 
Here we present our supplementary methods and results for genetic locus filtering, scoring of 
taxa for ancestral ecological analyses, bioinformatics, phylogenomic methods, 
macroevolutionary models, and additional discussion of biogeographic history and 
macroevolutionary patterns. 
 
Supplementary Methods 
Sequence capture of UCEs 
 We performed target-capture with the Tetrapods-UCE-2.5kv1 probe set (available at 
ultraconserved.org), which target 2386 UCEs. All individuals were previously extracted and 
many were previously sequenced for another study (Musher and Cracraft, 2018). For the 
remaining individuals, we sent extracts to Rapid Genomics (Gainesville, FL) for DNA shearing, 
library preparation, and UCE enrichment following the protocol detailed in Faircloth et al., 
(2012). Sequencing was performed on an Illumina HiSeq 2500. 
 
Bioinformatic processing of UCEs 

After sequencing, we cleaned data by removing low quality reads and trimming low 
quality base-pairs. We assembled reads using velvet (Zerbino and Birney, 2008) and matched 
these assembled contigs to the probes using prewritten python scripts from Phyluce (Faircloth et 
al., 2012). For one outgroup taxon, Acanthisitta chloris, we extracted UCE loci from assembled 
genomic read data available online (Jarvis et al., 2014). We matched the assembled contigs to 
UCE probes and incorporated the identified UCE markers into the sequence capture dataset 
explained above. Finally, we aligned orthologous loci for our final taxon set using MAFFT 
(Katoh and Standley, 2013). We chose to include all loci for which 95% of the individuals had 
sequence (henceforth, 95% complete dataset) for our molecular analyses. 
 
Genetic locus filtering 

We wrote custom scripts in R to quantify 1) the total number of parsimony informative 
sites, 2) the proportion of parsimony informative sites, and 3) two measures of clock-likeness for 
each marker. The latter were obtained by, first, using the chronopl rate-smoothing algorithm 
implemented in the R package “Ape” (Paradis et al., 2004) to estimate the optimal smoothing 
parameter (λ) using cross validation (compared multiples of 10 between 10-6 and 102), and then 
by performing likelihood ratio tests (clocklike to non-clocklike molecular models) at each locus 
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(see below). λ is a measure of clock-likeness, with higher values at a locus representing gene 
trees that have relatively even terminal branch lengths (i.e., gene tree shape is close to 
ultrametric), and lower values representing gene trees with more uneven terminal branch lengths.  

Following Doyle et al. (2015) our intention was not to accept or reject a molecular clock 
at each locus, but rather to take loci that most closely fit with a clocklike model of molecular 
evolution (i.e., lower likelihood ratio). We used RAxML (Silvestro and Michalak, 2012) to build 
maximum likelihood (ML) gene trees at each locus using an automated shell script. We then 
imported these trees into R and calculated the likelihood of the gene tree, which represents a 
non-clocklike model estimate where branch lengths are calculated independently. We then 
calculated the likelihood of the gene tree given a clocklike model (i.e., an ultrametric model). To 
do this we used the Likelihood ratio, LR, which is given by two times the difference between 
log-likelihood of the clocklike model and log-likelihood of the non-clocklike model: 

𝐿𝑅 = 2 • (𝑙𝑛𝐿)*+),*-,. − 𝑙𝑛𝐿0+0)*+),*-,.) 
In order to identify the markers that were most informative for divergence dating, we built a 
multivariate model in R that modeled LR as a function of the total variable sites, proportion of 
variable sites, and log10(λ). As we are interested in divergence dating, clocklike markers are 
desirable, and those that deviate from clocklike tendencies were identified as outliers using 
Cook’s distances (D). D values that were greater than three times the mean D were considered 
outliers, and removed from downstream analyses. Stated alternatively, loci that have 
exceptionally high or low values of LR, proportion of parsimony informative sites, or λ 
overinfluence the model result in high values for D and are considered outliers. Because 
Bayesian estimation of divergence times can be intractable for large molecular datasets, after 
removing outliers, we chose the 15 most clocklike (lowest LR) loci to use in divergence dating 
analysis. Our filtering regime is similar to that of Smith et al., (2018) in that we sort our markers 
by clock-like tendency, however we did not filter based on gene tree topology, and instead 
identify outlier loci by measuring the Cook’s distance deviation from a linear model. 
 
Phylogenomic analyses 

In order to obtain a tree topology for divergence dating (see below), we concatenated all 
loci for the 95% complete dataset, and estimated the topology using RAxML (Silvestro and 
Michalak, 2012). We performed 20 Maximum Likelihood (ML) searches, under a GTRCAT 
model of substitution. The GTRCAT model approximates a GTR + Gamma model of sequence 
evolution (Stamatakis, 2006). We then performed bootstrapping using the autoMRE option, 
which halts bootstrapping after replicates converge. In our previous study on Pachyramphus, 
concatenated and species tree methods gave nearly identical topologies but species tree 
approaches experienced difficulty in placing individuals with relatively poor-quality sequence 
(Musher and Cracraft, 2018; see also Hosner et al., 2015). Because we included several 
individuals sequenced from museum study skins, which are likely to have poorer quality 
sequence than fresh tissue and can bias species tree results (e.g., Hosner et al., 2015; Musher and 
Cracraft, 2018), we chose not to use species tree approaches on this dataset, as the relationships 
in this group seem robust to methodological choices. 
 
Reanalysis of the Claramunt and Cracraft (2015) dataset 

The dataset from Claramunt and Cracraft (2015) used slow evolving nuclear genes 
(RAG1 and RAG2) and a fossil-calibrated dataset for family representatives across all 
Neornithes. We sampled RAG1 and RAG2 sequences available on GenBank (Tello et al., 2009) 
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for four additional taxa not included in the original study: Schiffornis turdina, X. albinucha, P. 
polychopterus, and P. aglaiae. We then incorporated these sequences into the original RAG 
dataset, keeping all priors and parameters identical, including fossil calibrations, and used 
BEAST v2.4.3 (Bouchaert et al., 2014) to generate a time tree. We ran the Markov Chain Monte 
Carlo (MCMC) with thinning of 1,000 for 1.9 x 108 generations. We assessed convergence using 
Tracer v1.6.0 (Rambaut et al., 2014), and then summarized the posterior distribution as a 
maximum clade credibility tree after a burnin of 25 percent.  
 
MCMCTree Priors 

We used the results from the Claramunt and Cracraft (2015) reanalysis to apply 
calibrations to our dataset of filtered UCE markers. We specifically obtained 95% credible 
intervals (CI) of node ages for crown Passeriformes, stem Tyranni, crown Tyrannides-
Furnariides, crown Tyrannides, and crown Tityridae (taxonomic names sensu [35]). The locus 
substitution rate is defined by a gamma prior for mean substitution rates, Γ(α,β), where rate mean 
is equal to α/β and rate variance is equal to α/β2. We applied a prior distribution of Γ(2,200000), 
which defines a mean rate of 10-5 substitutions MY-1 assuming a one-year generation time. For 
the birth-death model, we applied uniform priors for birth and death rates of one, and sampling 
of 0.90. We then ran the MCMC for 1.5 x 106 generations following a burnin of 5 x 105 
generations. We assessed convergence using Tracer v1.6.0 (Rambaut et al., 2014).  
 
Ancestral ecological modeling and biogeographic inference 

We quantified the amount of in situ speciation, lineage emigration, and lineage 
immigration for each biogeographic area in our Dispersal Extinction Cladogenesis (DEC) model 
– Amazonia, Atlantic Forest, Andes, arid diagonal, lowlands west of the Andes, and Central 
America. To do this, we defined total in situ speciation for each area as the total number of 
parent nodes whose maximum likelihood (ML) state contained at least one matching area in the 
maximum likelihood state of both of its daughter nodes. For example, if a node’s maximum 
likelihood state was Amazonia, and both of its daughter nodes also contained Amazonia in their 
ML states, we considered this a single in situ speciation event for Amazonia. We defined total 
lineages emigrating from a given area as the total number of novel ML area states at daughter 
nodes stemming from all parent nodes whose ML state was the area of interest. For example, if 
Amazonia is the state of the parent node and one of its daughters contained an area other than 
Amazonia, we counted this as a single emigration event for Amazonia. And finally, we defined 
total immigration for each area as the number of daughter nodes whose parent node did not 
contain at least one of the same areas. For example, if a given daughter node contained 
Amazonia, but its parent node did not, we considered this a single immigration event for 
Amazonia. 

For habitat affinity, we coded each species based on the its habitat codes found in Parker 
et al. (1996), and additional information where available (Fitzpatrick et al., 2004). Species found 
in F1 (Tropical lowland evergreen forest) or F4 (Montane evergreen forest) were coded as 
having an affinity for forest interior, while those found in other habitats, including F1E (edge) or 
F4E, were coded as having an affinity for semi-open habitat (this includes semi-open forests 
such as flooded, seasonally dry, white sands, and gallery). Taxa that use both types of habitat 
were coded as polymorphic. We constructed a model in RevBayes (Hohna et al., 2016) that 
allowed for equal probabilities of state addition and loss in habitat preference by employing a 
DEC model (Ree and Smith, 2008) that is implemented within the RevBayes language. We 
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chose a DEC model, designed for biogeographic analysis, rather than a discrete character 
evolution model because habitat is spatially distributed, and transitions occur in the same ways 
that dispersal into novel regions occurs – as a time-dependent process. Still, fitting a DEC 
biogeographic model, is akin to fitting a MK model of discrete character evolution. We put an 
exponential prior with mean of one state change per 20my per lineage. We ran the MCMC for 
10,000 generations and summarized posterior probabilities of each ancestral state after a burnin 
of 25 percent. Scripts are available at https://github.com/lukemusher/Tityrinae_biogeography.  
 
Macroevolutionary rates 

To estimate diversification rates through time and among lineages, and to identify 
potential speciation or extinction rate shifts, we used both Bayesian Analysis of 
Macroevolutionary Mixtures (BAMM; Rabosky et al., 2014) and TESS (Hohna et al., 2015). 
TESS uses a reversible-jump MCMC (rjMCMC) algorithm to estimate the timing of rate shifts in 
speciation and extinction under an episodic birth-death process. We assumed 85% complete 
taxon sampling for the subfamily, expected number of rate changes of three (boundaries between 
epochs since Miocene), and zero mass extinctions. We estimated empirical hyperpriors for 
speciation and extinction. We ran the TESS analysis for 106 generations and assessed 
convergence in parameter estimates using Tracer v1.6.0 (Rambaut et al., 2014). BAMM also 
uses an rjMCMC to quantify diversification rate heterogeneity along a phylogeny, and we ran 
this analysis for 5 x 107 generations with thinning of 105 and a burn-in of ten percent. We 
optimized priors using the “setBAMMpriors” function implemented in the R package 
BAMMtools (Rabosky et al., 2014).  
 To test for diversity-dependent diversification, we also applied a model-fitting approach 
implemented in the R package, DDD (Etienne et al., 2012). We fit six models, four of which 
explicitly incorporate a parameter for carrying capacity (K): (1) birth-death constant rates 
without carrying capacity, (2) linear dependence of speciation rate on K without extinction, (3) 
linear dependence of speciation rate on K with extinction, (4) exponential dependence of 
speciation rate on K with extinction, (5) linear dependence of extinction rate on K, and (6) 
exponential dependence of extinction rate on K. 

We then used the results of the TESS analysis to quantify the effect of palaeotemperature 
on net-diversification rate (speciation rate – extinction rate). We first divided the posterior net-
diversification rates from TESS into 50 evenly-spaced intervals between the basal split and tips, 
and quantified mean posterior net-diversification rate for each interval in TESS. Then, using 
palaeotemperature data available in RPANDA (Morlon et al., 2016; Condamine et al., 2013), we 
quantified the relationship between temperature and net-diversification. To obtain temperature 
values for each interval, we took the mean of all temperature measurements within each time 
interval. We then evaluated their correlation using linear regression and compared three 
generalized linear models where net-diversification is either dependent on time, temperature, or 
interactive effects of both time and temperature. 

Finally, as a more sophisticated test of environmentally-driven diversification we applied 
one additional model selection implemented in RPANDA (Morlon et al., 2016; Condamine et al., 
2013), which explicitly models speciation and extinction rates and optimizes parameters. We fit 
ten models to our divergence time results from MCMCTree. We specifically fit (1) pure birth 
constant rate, (2) birth-death constant rates, (3) speciation varies exponentially with time and no 
extinction, (4) speciation varies exponentially with time and constant extinction, (5) extinction 
varies exponentially with time and constant speciation, (6) speciation and extinction vary 
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exponentially with time, (7) speciation varies exponentially with temperature and no extinction, 
(8) speciation varies exponentially with temperature and constant extinction, (9) extinction varies 
exponentially with temperature and constant speciation, and (10) speciation and extinction vary 
exponentially with temperature. To evaluate the effect of using stem or crown ages, we also 
employed this model selection twice, once conditioning each model on stem ages and once on 
crown ages. 

For all model selection sets we compared likelihoods of each model and chose the model 
with the lowest corrected Akaike Information Criterion (AICc). Because in some cases multiple 
models differ only slightly in AICc, the relative fit of each model was assessed using AICc 
weights (AICω), which allow a more intuitive interpretation of the fit of each model relative to 
other models. AICω represents the conditional probability for each model. All scripts are 
available at https://github.com/lukemusher/Tityrinae_biogeography. 
 
Supplementary Results 
Data filtering 
 Our 95% complete UCE dataset contained 1,160 loci with a total of 825,445 bps. Using 
this concatenated alignment, RAxML recovered a topology identical to our previous study 
(Musher and Cracraft, 2018), except for the position of Pachyramphus minor, which was 
recovered with weak support (ML bootstrap = 55). We constrained the position of P. minor for 
divergence dating based on the more robust relationship recovered in our previous study (Musher 
and Cracraft, 2018). Because UCE datasets may contain aberrant loci that can cause problems for 
downstream analyses, we quantified informativeness and clock-likeness of each locus via two 
measures, λ and LR, and explored their relationship in addition to their relationship with locus 
informativeness (total number and proportion of informative sites)(Figure S1).  
 The number of informative sites per locus ranged from 4 to 273 (mean ± standard 
deviation = 99.22 ± 46.45), the proportion of informative sites per locus ranged from 0.0053–
0.39 (mean = 0.14 ± 0.063), and the LR for each locus ranged from 2007.04–25800.57 (mean = 
7360.096 ± 3608.302). Locus informativeness was correlated with both clocklike measures, but 
informativeness predicted significantly more of the variance for LR than for λ (total informative 
sites with log10λ: Adj. R2 = 0.05708, F= 71.16, p = 0.0; Proportion informative sites with log10λ: 
Adj. R2 = 0.05731, F= 71.46, p = 0.0; Total informative sites with LR: Adj. R2 = 0.1555, F= 
214.4, p = 0.0; Proportion informative sites with LR: Adj. R2 = 0.1812, F= 257.5, p = 0.0). LR 
and log10λ were also weakly correlated (Adj. R2 = 0.02058, F= 25.35, p = 0.0).  
 Our glm that modeled LR as a function of informativeness and λ did not find λ to be a 
significant predictor in the model (p=0.073) but removing lambda did not improve the model’s 
fit to the data (with λ AIC = 22054, without λ AIC = 22055). Our filtering protocol identified 83 
outlier loci, which were primarily either loci that were very un-clocklike (high LR) given their 
informativeness, or very uninformative given their low LR (relatively few informative sites). 
Removing these loci from the dataset improved the relationship between locus informativeness 
and clock-likeness (Total informative sites with LR: Adj. R2 = 0.1791, F= 235.8, p = 0.0; 
Proportion informative sites with LR: Adj. R2 = 0.2105, F= 287.8, p = 0.0; Figure S1), and 
significantly improved the quality of the model fit (AIC = 15,507). Figure S2 shows 25 
randomly-chosen examples of gene trees of loci that were identified as outlier loci (Figure S2A) 
and the 15 markers used in our divergence dating analysis (Figure S2B). Loci identified as 
outliers tended to have high values for LR with relatively low informativeness and were aberrant 
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in shape (mix of relatively long and relatively short branch lengths across the tree). After 
removing outlier loci, our 15 lowest LR UCEs (Figure S2B) ranged in LR from 2475 to 2909.  
 
Time calibrated phylogeny 
 We reconstructed a time-calibrated phylogeny using the Claramunt and Cracraft (2015) 
dataset and recovered a timeframe of diversification consistent with the previous study (Figure 
1). The BEAST analysis converged after 1.9 x 108 generations, except for a few parameters 
associated with the Birth-Death Model (see Claramunt and Cracraft, 2015), which had Effective 
Sample Size values slightly below 200. The analysis recovered a crown age of 53.65 (95% HPD 
= 49.18–58.02) mya for crown Passeriformes, 49.89 (95% HPD = 45.81–53.83) mya for stem 
Tyranni, 42.53 (95% HPD = 37.72–47.46) for crown Tyrannides-Furnariides, 38.75 (95% HPD 
= 27.44–39.5) mya for crown Tyrannides, and 26.14 (95% HPD = 19.75–32.66) mya for crown 
Tityridae, which were used as secondary node calibrations for the MCMCTree analysis. The 
BEAST phylogeny additionally recovered ages of 17.11 (95% HPD = 9.98–24.25) mya for the 
split between Xenopsaris and Pachyramphus (stem Pachyramphus), 14.76 (95% HPD = 7.68–
22.1) mya for crown Pachyramphus, 19.97 (95% HPD = 12.81–26.91) for the split between 
Tityra and Xenopsaris+Pachyramphus (stem Tityra).  

The results of our MCMCTree on filtered UCE loci converged, with all ages and 
parameter values that showed high ESS values above 500. We recovered an age of 22.9 (95% 
HPD = 18.80–26.27) mya for the crown split of Tityrinae, 8.53 (95% HPD = 5.33–12.33) mya 
for Tityra, 11.68 (95% CI = 8.84–14.88) mya for crown Pachyramphus, and 2.51 (95% HPD = 
0.58–6.01) mya for crown Iodopleura. The split between Xenopsaris and Pachyramphus was 
recovered to be 13.44 (95% HPD = 10.29–16.89) mya (Figure 1). Higher-taxon ages from each 
tree and from an additional study (Prum et al., 2015) are summarized in Table S2. 
 
Macroevolutionary rates 
 TESS analyses of episodic diversification found a trend of increasing speciation and 
decreasing extinction rates through time (Figure S3). In BAMM, the best shift configuration 
(maximum posterior probability of rates through time) found increasing speciation and net-
diversification rates through time, and constant extinction rates through time (Figure S3). Our 
best model in DDD was a model without carrying capacity (AICc = 222.151, AICω = 0.354), but 
this model was only a marginal improvement over the five other models (AICω = 0.106–0.237). 
Four of these models, however, estimated values of K ranging from ~190,000 to infinity. The 
final model estimated K to be nearly 2000. Taken together these results suggest that there is no 
meaningful effect of K on net-diversification rates.  

We additionally found a relationship between palaeotemperature and net-diversification 
rates (slope = -0.03279± 0.003222, intercept = 0.2735 ± 0.02143, p < 10-15; Adjusted R-squared 
= 0.6833, F = 103.6. df = 48, p < 10-12). The best-fitting glm was one where net-diversification 
varies as a function of interactive effects of time and temperature (Table S4). Model selection in 
RPANDA, however, showed that a model where speciation rate varies exponentially with time 
(AICc = 231.9682, AICω = 0.2660) is marginally better-fitting than a model where speciation 
rate varies exponentially with temperature (AICc = 232.3937, AICω = 0.2151), though the 
difference in AICω was not significant (Table S5). Estimates of α (exponential scaler for 
speciation rate) were negative for all RPANDA models indicating that speciation rate increases 
with decreasing temperature and with decreasing time before present.  
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Supplementary Discussion 
A novel method for filtering of sequence capture data 
 We designed a novel model-based framework for identifying aberrant loci to remove 
from high-throughput sequencing datasets. Large molecular datasets, such as those resulting 
from sequence capture approaches, can be highly variable in locus informativeness and utility. 
While most modern techniques for estimating phylogeny and divergence times are robust to 
genetree discordances due to incomplete lineage sorting, deep coalescence, and (sometimes) 
hybridization, gene tree error can be a major source of noise and bias in molecular datasets 
(Richards et al., 2018). Similarly, high throughput datasets can be very difficult to analyze due to 
their size and analyzing these data is often intractable over reasonable time frames (Smith et al., 
2018). Thus, filtering and subsampling data are often necessary steps for improving efficiency of 
analyses. 
 Our filtering protocol follows previous studies’ attempts to quantify both informativeness 
and clock-likeness of molecular markers based on parsimony informative sites and likelihood 
ratios, respectively (Doyle et al., 2015; Manthey et al., 2016). We evaluated these metrics for our 
molecular dataset and found that informativeness and clock-likeness were correlated. We used 
this information to model LR as a function of informativeness and identified those loci which 
were most influential in the model, under the assumption that those loci could be a source of 
noise. Those loci contained primarily very un-clocklike genes, though a handful of genes were 
more clocklike, including two which were among the most clocklike markers in the dataset 
(Figure S1). Thus, identifying outliers was worthwhile, even though we only chose to use the 15 
most clocklike markers in the filtered dataset. Had we not identified outliers first, some of the 
markers may have biased our results. More work is needed in order to evaluate the efficacy of 
this protocol in comparison to, for example, randomly sampling markers. 
 
Macroevolutionary rates 
 Virtually all models estimated parameters that were consistent with positive net-
diversification rates and thus increasing diversity through time (Figures 3, S3, S4, S5, and S6). 
Only TESS estimated negative net-diversification rates early in Tityrinae’s history, but this result 
is contrary to the bulk of macroevolutionary modeling results. Although BAMM also showed an 
overall increase in rates of net-diversification over time, speciation rate was always higher than 
extinction rate. Similarly, all models in DDD estimated speciation rates to be greater than 
extinction rates, thereby supporting the observed pattern of increasing diversity through time, 
and negative values for α in all of the RPANDA models are also consistent with increasing net-
diversification rates toward present (Table S5; Figure S6). Negative α in temperature-dependent 
models indicates that speciation rates increase with decreasing temperature. Because 
contemporary temperatures are lower close to the present, this result is consistent with increasing 
net-diversification at present. Similarly, negative estimates for α in time-dependent models show 
that speciation rate increases with decreasing time before the present. Therefore, speciation rates 
are highest at time = 0 (present) and lowest at time = ~23 (Tityrinae origin). 

The best-fitting DDD model was one where K was not estimated, thereby rejecting 
models of diversity-dependent diversification. Interestingly, models that did incorporate K 
estimated K to be extremely high (Table S3). For example, all DDD models except one 
estimated K to be at least one order of magnitude higher than the total number of extant bird 
species (10,000–20,000 avian species in total; e.g., Barrowclough et al., 2016) and thus four 
orders of magnitude higher than all extant Tityrinae. Even the model with the lowest estimate of 
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K (the third-best model) estimates K to be nearly 2000 species. These abnormally high estimates 
indicate that K has no effect on net-diversification and that diversity-dependent mechanisms 
have had no influence on Tityrinae diversification. 
 We also statistically evaluated the effect of temperature on net-diversification. Although 
we find a strong negative relationship between palaeotemperature and net-diversification rates 
(Figures 3, S5, and S6), we lacked robust statistical support to show that temperature alone 
explains diversification rates better than time (Table S5; Figure S6). For example, although 
temperature explains nearly 68% of the variance in net-diversification rates through time 
estimated in TESS, time explains roughly 94%. Our best-fitting glm, on the other hand, was a 
model where net-diversification varies with interactions of time and temperature. That is, under 
the best glm, net-diversification varies with time, but the effect of time on net-diversification also 
varies with temperature. Therefore, based on the glms, time and temperature are both important 
parameters influencing diversification. 

As an independent test of climate-mediated diversification, RPANDA resulted in 
statistical uncertainty. When conditioning on stem ages we showed that a model where 
speciation rate varied as a function of palaeotemperature was nearly as well-fitting as a model 
where rates only varied with time, and we find similar results when conditioning on the crown 
ages. Here, time may be the most important predictor of net-diversification rate, but this 
observation is still consistent with a hypothesis of barrier displacement if the rate of barrier 
formation and degradation is relatively constant through time (e.g., see Albert et al., 2017). 
While palaeotemperature has likely played some role in influencing barrier displacement, 
temperature is just one parameter out of a large number of variables that may influence barrier 
change. For example, additional unmeasured factors such as precipitation, erosion, and tectonics 
are also important parameters in a model of barrier displacement, but would be difficult (if not 
impossible) to measure and factor into our analyses. 

We also suspect that imprecise estimates of divergence times in our dated phylogeny 
could bias the RPANDA results and limit the fit of the models to the data, and that our dataset 
lacks the power to distinguish among models due to relatively small sample size. For example, it 
would be very difficult to measure slight increases and decreases in speciation rate over 
relatively short periods on the order of 104 years based on a tree with 50 terminal taxa with 
posterior densities of node ages in the order of 106 years (Figure 1). However, that same time 
frame of 104 years is the temporal scale in which we see many dramatic shifts in global 
temperature. Therefore, levels of temporal precision in the temperature dataset are far finer and 
more exact than levels of precision in our divergence times and subsequent net-diversification 
rate estimates. The problems of sample size and precision are also reflected in the wide posterior 
densities surrounding parameter estimates in TESS (Figures 3 and S3). Furthermore, on a spatial 
scale, temperature is likely imprecise because we use global measurements, which do not pick up 
local effects driven by, for example, Andean orogenic uplift. 

Because of temporal imprecision, net-diversification rate estimates probably become 
somewhat smoothed through time. We attempted to circumvent the problem of disparate degrees 
of temporal precision by “smoothing” temperature measurements. To do this, we took mean 
temperatures during ~450,000-year intervals (Table S4). By averaging temperatures over longer 
periods of time, we reduce the temporal precision of the temperature dataset, thereby improving 
comparability of the two datasets (i.e., diversification rates and temperature). Remarkably, this 
resulted in a statistically significant result that showed that a model where net-diversification rate 
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varies in relation to interactions of time and temperature greatly outperforms the other models 
where net-diversification rate varies in relation to time or temperature alone (Table S4).  

Nevertheless, more data are needed in order to more robustly determine the relationship 
between temperature and diversification. Even though we lack a robust causal relationship 
between temperature and net-diversification rate, we suggest that future studies should further 
investigate this relationship in detail. Specifically, studies that sample large clades (hundreds or 
thousands of species) at dense taxonomic scales (e.g., subspecies, phylogenetic species, or 
“coalescent” species) and use rigorous fossil-calibrated divergence dating based on genome-wide 
markers may provide increased precision of divergence times and rates of diversification through 
time. Additionally, modeling diversification as a function of climate at more local scales (i.e., 
South American instead of global) and including measures of precipitation, if possible, might 
assist in teasing apart the relative effects of time and palaeoclimate. 
 
Diversification in Amazonia 

Amazonia is known for its high species richness and debates over how this diversity was 
generated have been ongoing for decades (Haffer, 1969; Cracraft and Prum, 1988; Smith et al., 
2014). All early divergences within Tityrinae appear to have occurred within proto-Amazonia 
but are not easily-explained by the presence of current barriers that separate extant clades. This is 
probably due the dynamic history of those barriers through landscape changes over the last ten 
million years. For example, the Aripuanã River, which was likely an important historical barrier, 
has since become a less effective dispersal barrier (Fernandes et al., 2012, 2014; Ferreira et al., 
2017). Within-Amazonian splits were clearly important for generating diversity in Tityrinae from 
the Miocene through the Pleistocene, as in situ speciation in Amazonia was exceptionally high 
(Figure 2). Although the timing of the establishment of the Amazon River drainage is still 
debated (Campbell et al., 2006; Hoorn et al., 2010; Nogueira et al., 2013), the existence of a 
massive mega-wetland system, called Pebas, in western Amazonia during the Miocene is well-
known based on fossil vertebrates, palynology, and sedimentology (Latrubesse, et al., 2010; 
Antoine et al., 2015; Salas-Gismondi et al., 2015; Tejada-Lara et al., 2015). Similarly, Miocene 
Amazonia saw a series of marine transgressions that may have separated populations of 
organisms in the Andean foothills, Guiana Shield, and Brazilian Shield (Aleixo and Rossetti, 
2007). Transgressions are thought to have occurred at roughly 15-13 mya and possibly again at 
10-5 mya (Hernandez et al., 2005; Aguilera et al., 2013; Jaramillo et al., 2017), which roughly 
corresponds to early splits in Tityrinae. In combination with a dynamic fluvial landscape that 
postdates the Miocene (Campbell et al., 2006; Latrubesse et al., 2010; Hoorn et al., 2010; Ribas 
et al., 2012), these marine transgressions may have contributed to high in situ speciation for 
Tityrinae in Amazonia (Figure 2). 
 
Atlantic-Amazonian connections 

Much variance exists in the timing of speciation between taxon-pairs between Atlantic 
and Amazonian forests (see main text). For example, splits between P. m. marginatus and P. m. 
nanus across this region are likely tied to relatively old Amazon-Atlantic forest connections that 
existed in the south, while younger splits within P. polychopterus in the south may be associated 
with more recent climatically-mediated gallery and dry forest connections and regressions 
between southern ecosystems (Arruda et al., 2018; Costa et al., 2018; Trujillo-Arias et al., 2018). 
Extensive wetlands connecting the western Amazonia and Paraná basins during the Miocene 
may have facilitated connectivity between river edge specialists and/or gallery forest birds until 
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the formation of the Fitzcarrald arch roughly 4 Ma (Espurt et al., 2010; Tagliacollo et al., 2015), 
which may have isolated populations of humid forest and edge taxa from east to west. However, 
previous work has demonstrated that speciation times across this region vary, rendering the 
effect of this arch on avian speciation uncertain (Claramunt, 2014).  Even so, the relationship 
between Amazonian river edge specialists (e.g., P. polychopterus nigriventris) and southeastern 
South American taxa (e.g., P. polychopterus spixii) documented by a previous study is 
recapitulated by Tityrinae herein (Claramunt, 2014). 
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Supplementary Tables: 
 
Table S1: A list of all samples used in this study. 

 
 
Table S2: Age estimates for a set of clades based on our analyses in addition to a recently 
published phylogenomic study (Prum et al., 2015). 
 

 
 
 
 
 
 
 

Material Institution Tissue/Coll. # Genus Species Subspecies Coded_as Citation
Tissue Cantebury Museum Acanthisitta chloris acachl Jarvis et al., 2014
Tissue AMNH DOT 12145 Elaenia albiceps chilensis Elaenia_albiceps_chilensis_DOT12145 This study
Tissue USNM 626253 Iodopleura fusca Iodop_fusca_S626253 NSF grant 1146248
Tissue LSUMNS 9597 Iodopleura isabellae Iodop_isalae_L9597 NSF grant 1146248
Tissue MPEG 55056 Lepidothrix nattereri Lep_nat_MPEG55056 This study
Tissue FMNH 393859 Pachyramphus aglaiae albiventris P_a_alb393859 Musher and Cracraft, 2018
FJ501700.1 AMNH 3688 Pachyramphus aglaiae latirostris Pachyramphus_agliae1 [RAG dataset] Tello et al., 2009
Tissue UWBM 104042 Pachyramphus aglaiae sumichrasti Pac_sum104042 Musher and Cracraft, 2018
Skin AMNH 494147 Pachyramphus albogriseus albogriseus P_albogriseus_494147 This study
Tissue LSUMNS 33450 Pachyramphus albogriseus guayaquilensis P_a_gua33450 Musher and Cracraft, 2018
Tissue LSUMNS 41620 Pachyramphus albogriseus ornatus P_a_orn_41620 Musher and Cracraft, 2018
Tissue LSUMNS 8114 Pachyramphus albogriseus salvini Pac_salv8114 Musher and Cracraft, 2018
Tissue FMNH 390007 Pachyramphus castaneus amazonus P_c_ama390007 Musher and Cracraft, 2018
Tissue FMNH 395729 Pachyramphus castaneus castaneus P_c_cas395729 Musher and Cracraft, 2018
Tissue LSUMNS 46602 Pachyramphus cinnamomeus cinnamomeus P_c_cin46602 Musher and Cracraft, 2018
Tissue LSUMNS 8812 Pachyramphus cinnamomeus fulvidior P_c_fulv8812 Musher and Cracraft, 2018
Tissue LSUMNS 12174 Pachyramphus homochrous homochrous P_h_hom12174 Musher and Cracraft, 2018
Tissue LSUMNS 2306 Pachyramphus homochrous homochrous P_h_hom2306 Musher and Cracraft, 2018
Tissue UAM KSW 1195 Pachyramphus major itzensis P_tzensis_1195 This study
Tissue UWBM 101156 Pachyramphus major uropygialis P_m_uro101156 Musher and Cracraft, 2018
Tissue MPEG UNA 141 Pachyramphus marginatus marginatus P_marginatus_141 This study
Tissue LSUMNS 7221 Pachyramphus marginatus nanus P_nanus_7221 Musher and Cracraft, 2018
Tissue INPA 5436 Pachyramphus marginatus nanus Pac_nan5436 This study
Tissue USNM 650772 Pachyramphus marginatus nanus Pac_nan650772 Musher and Cracraft, 2018
Tissue INPA 13868 Pachyramphus minor Pac_min13868 Musher and Cracraft, 2018
Skin FMNH 282130 Pachyramphus polychopterus dorsalis Pac_dor282130 Musher and Cracraft, 2018
Tissue FMNH 473791 Pachyramphus polychopterus nigriventris P_p_nig473791 Musher and Cracraft, 2018
Tissue FMNH 392915 Pachyramphus polychopterus polychopterus P_p_pol392915 Musher and Cracraft, 2018
Tissue LSUMNS 60813 Pachyramphus polychopterus similis P_p_sim60813 Musher and Cracraft, 2018
Tissue FMNH 433661 Pachyramphus polychopterus spixii P_p_spi433661 Musher and Cracraft, 2018
Tissue USNM 636057 Pachyramphus polychopterus spixii P_spixii_636057 This study
FJ501699.1 AMNH 2286 Pachyramphus polychopterus spixii P_Pachyramphus_polychopterus1 [RAG] Tello et al., 2009
Tissue LSUMNS 7299 Pachyramphus rufus juruanus P_r_juru7299 Musher and Cracraft, 2018
Tissue USNM 643957 Pachyramphus spodiurus P_spod28466 Musher and Cracraft, 2018
Tissue KU 89835 Pachyramphus surinamus Pac_nan650777 [incorrectly coded] Musher and Cracraft, 2018
Tissue AMNH DOT6128 Pachyramphus validus audax P_v_aud6128 Musher and Cracraft, 2018
Tissue FMNH 392917 Pachyramphus validus validus P_v_val392917 Musher and Cracraft, 2018
Tissue LSUMNS 19903 Pachyramphus versicolor costaricensis P_v_cos19903 Musher and Cracraft, 2018
Tissue LSUMNS 1674 Pachyramphus versicolor meridionalis P_v_meri1674 Musher and Cracraft, 2018
Tissue IAvH-BT 1630 Pachyramphus versicolor versicolor P_v_vers_1630 Musher and Cracraft, 2018
Tissue LSUMNS 37974 Pachyramphus viridis viridis P_v_vir37974 Musher and Cracraft, 2018
Tissue KU 18786 Pachyramphus xanthogenys peruanus P_x_xant_18786 Musher and Cracraft, 2018
FJ501743.1 AMNH 11874 Schiffornis turdina Schiffornis_turdina1 [RAG] Tello et al., 2009
Tissue AMNH DOT2451 Schiffornis virescens Schiffornis_virescens_DOT2451 This study
Tissue AMNH DOT12143 Scytalopus fuscus Scytalopus_fuscus_DOT12143 This study
Tissue MPEG GDL 023 Tityra cayana braziliensis Tityra_cayana_GDL_023 This study
Tissue LSUMNS 3145 Tityra cayana cayana Tityra_cayan_L3145 This study
Skin FMNH 282133 Tityra inquisitor buckleyi Tityra_inquisitor_buckleyi_FMNH_282133 This study
Tissue KU 3625 Tityra inquisitor inquisitor Tityra_inquis_KU3625 NSF grant 1146248
Tissue MPEG UFAC 422 Tityra inquisitor pelzelni Tityra_inquisitor_UFAC_422 This study
Skin AMNH 408024 Tityra semifasciata columbiana Tityra_columbiana_408024 This study
Tissue AMNH DOT3682 Tityra semifasciata costaricensis Tit_sem3682 This study
Skin AMNH 493766 Tityra semifasciata deses Tityra_deses_493766 This study
Tissue FMNH 474321 Tityra semifasciata fortis Tityra_semata_474321 This study
Tissue MPEG ORX425 Tityra semifasciata semifasciata Tityra_semata_MPEGORX425 This study
Tissue MPEG AMZ 082 Troglodytes musculus Tr_musculus Tiago Souza (MPEG)
Tissue ANSP 8359 Xenopsaris albinucha X_albin627351 Musher and Cracraft, 2018
FJ501767.1 ANSP 8359 Xenopsaris albinucha Xenopsaris_albinucha [RAG] Tello et al., 2009

Dataset/citation Crown Passeriformes (mya) Stem Tyranni (mya) Crown Tyrannides-Furnariides (mya) Crown Tyrannides (mya) Crown Tityridae (mya)
RAG (BEAST) 53.8 (49.65–57.82) 50.05 (46.47–53.60) 45.77 (37.88–47.24) 34.33 (28.86–40.59) 26.31 (19.67–33.64)

UCEs 95% (MCMCTree) 55.49 (50.74–58.10) 49.42 (46.38–53.33) 41.51 (37.97–46.16) 29.55 (27.97–32.34) 25.34 (21.35–27.82)
Prum et al., 2015 49 (41.5–55.5) 46.8 (38-53) 38.2 (27–46) 27 (17.5–36.5) 16 (5-25)

- - -
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Table S3: Model fitting results for diversification models that explicitly incorporate carrying 
capacity (K) (Etienne et al., 2012). The best-fitting model is shown in bold. 
 

 
 
Table S4: Results for generalized linear model test with averaged values for temperature and 
net-diversification across 50 intervals during the history of Tityrinae as estimated in TESS. The 
best model is M3, which models net-diversification rate as a linear function of interactive effects 
of time and temperature. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model
estimated 

parameters
logL AICc AICω

Speciation 
rate (λ)

Extinction 
rate (µ)

Carrying 
Capacity (K)

Birth-death constant rates 2 -108.942 222.151 0.339 0.340 0.119 NA
Linear dependence of 
speciation rate without 

extinction
2 -109.344 222.954 0.227 0.277 NA 1040588

Linear dependence of 
speciation rate with extinction

3 -108.942 224.430 0.108 0.340 0.118 189619

Exponential dependence of 
speciation rate with extinction

3 -109.013 224.572 0.101 0.390 0.149 Infinity

Linear dependence of 
extinction rate

3 -108.942 224.430 0.108 0.341 0.120 356419

Exponential dependence of 
extinction rate

3 -108.942 222.151 0.116 0.364 0.087 1742

Model
Adj. R-
squared

slope
standard 

error
p-value 
(slope)

intercept
standard 

error
p-value 

(intercept)
AIC AICω

M1: Time 0.943 0.013 0.000 0.000 0.210 0.005 0.000 -243.898 0.009
M2: Temp 0.677 0.274 0.021 0.000 -0.033 0.003 0.000 -157.074 0.000

Time 0.009 0.002 0.000
Temp 0.007 0.003 0.026

Time:temp 0.001 0.000 0.027
M3: Time and Temp 0.955 -253.386 0.9910.0130.178 0.000
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Table S5: Model-fitting results for ten models: two constant net-diversification, four in which 
net-diversification varies with time, and four in which net-diversification varies with 
temperature. Models were conditioned on both stem and crown ages.  

 
 

Model Conditioning
Number of 
parameters

logL AICc AICω
speciation 

rate (λ)

exponential 
scaler for 
speciation 

rate (α)

extinction 
rate (µ)

exponential 
scaler for 
extinction 
rate (Β)

Constant speciation Stem 1 -116.41 234.90 0.06 0.2501
Constant speciation and 

extinction
Stem 2 -114.49 233.24 0.14 0.3865 0.2423

Speciation varies 
exponentially with time

Stem 2 -113.85 231.97 0.26 0.3432 -0.0706

Speciation varies 
exponentially with time 
and constant extinction

Stem 3 -113.85 234.24 0.08 0.3432 -0.0706 0.0000

Extinction varies 
exponentially with time 
and constant speciation

Stem 3 -114.21 234.97 0.06 0.3627 0.1633 0.0345

Speciation and extinction 
vary exponentially with 

time
Stem 4 -113.85 236.63 0.02 0.3432 -0.0706 0.0000 0.0208

Speciation varies 
exponentially with 

temperature
Stem 2 -113.96 232.18 0.23 0.3848 -0.0922

Speciation varies 
exponentially with 

temperature and constant 
extinction

Stem 3 -113.96 234.46 0.07 0.3846 -0.0922 0.0000

Extinction varies 
exponentially with 

temperature and constant 
speciation

Stem 3 -114.21 234.97 0.06 0.3627 0.1592 0.0306

Speciation and extinction 
vary exponentially with 

temperature
Stem 4 -113.96 236.85 0.02 0.3847 -0.0907 0.0000 0.0250

Constant speciation crown 1 -115.01 232.11 0.01 0.2452
Constant speciation and 

extinction
crown 2 -112.49 229.25 0.06 0.4030 0.2846

Speciation varies 
exponentially with time

crown 2 -110.91 226.09 0.28 0.3683 -0.0962

Speciation varies 
exponentially with time 
and constant extinction

crown 3 -110.91 228.37 0.09 0.3684 -0.0962 0.0000

Extinction varies 
exponentially with time 
and constant speciation

crown 3 -110.60 227.74 0.12 0.3330 0.0679 0.1361

Speciation and extinction 
vary exponentially with 

time
crown 4 -109.54 229.58 0.05 0.3297 -0.0623 0.0003 0.4437

Speciation varies 
exponentially with 

temperature
crown 2 -111.43 227.12 0.17 0.4089 -0.1125

Speciation varies 
exponentially with 

temperature and constant 
extinction

crown 3 -111.36 229.26 0.06 0.4108 -0.0809 0.0666

Extinction varies 
exponentially with 

temperature and constant 
speciation

crown 3 -110.60 227.74 0.12 0.3330 0.0614 0.1206

Speciation and extinction 
vary exponentially with 

temperature
crown 4 110.54 230.01 0.04 0.3505 -0.0594 0.0006 0.3596
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Supplementary Figures:  
 
Figure S1: Regressions for clock-likeness (measured by likelihood ratio; LR) as a function of 
(A) the proportion of informative sites, (B) the number of informative sites, and (C) the log(λ) of 
per locus, where λ is the optimal smoothing parameter for the penalized likelihood analysis in 
ape (Paradis et al., 2004). Low values of λ are indicative of higher heterogeneity in branch rates, 
and thus lower clock-likeness. Gray points represent outlier loci. Gray lines represent each linear 
model before filtering outliers, and red lines represent the linear model after filtering outliers. 
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Figure S2: A random subsample of 25 gene trees for loci that were considered outliers and 
removed from downstream analysis (left), and the 15 most clocklike markers after filtering, 
which were used for molecular divergence dating analysis (right). The values for number of 
parsimony informative sites (IS) and the likelihood ratio (LR) are above each gene tree. Values 
in red represent low LR gene trees that were none-the-less identified as outliers. 
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IS: 194 LR: 2868 IS: 221 LR: 2869 IS: 195 LR: 2891

IS: 102 LR: 2901 IS: 92 LR: 2905 IS: 123 LR: 2909

Example outlier loci      Loci used for divergence dating
IS: 100 LR: 3414 IS: 47 LR: 5595 IS: 74 LR: 13470 IS: 62 LR: 13168 IS: 29 LR: 4885

IS: 186 LR: 9005 IS: 114 LR: 15145 IS: 10 LR: 16810 IS: 109 LR: 14398 IS: 4 LR: 17714

IS: 40 LR: 12087 IS: 72 LR: 13937 IS: 54 LR: 3638 IS: 86 LR: 19750 IS: 31 LR: 14707

IS: 96 LR: 2973 IS: 47 LR: 5292 IS: 26 LR: 5802 IS: 17 LR: 19084 IS: 51 LR: 13241

IS: 82 LR: 17512 IS: 23 LR: 3063 IS: 69 LR: 4848 IS: 7 LR: 5887 IS: 130 LR: 12927
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Figure S3: Left: speciation (purple) and extinction (red) rates through time from TESS. Right: 
The posterior probabilities of speciation (purple bars) and extinction (red bars) rate shifts through 
time.  
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Figure S4: BAMM best shift configuration results for (left to right) speciation rates, extinction 
rates, and net-diversification rates. 
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Figure S5: The relationship between net-diversification estimate in TESS and temperature (adj. 
R-sq. = 0.66813) for 50 intervals between the root and tips of the dated Tityrinae phylogeny.  
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Figure S6: Results from best-fitting RPANDA models conditioned on the crown showing how 
speciation rate varies as a function of time and palaeoclimate (mean global temperature relative 
to present). Model-fitted net-diversification estimates for pure birth with exponential dependence 
on time (top row), and pure birth with exponential dependence on temperature (bottom row). 
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Figure S7: Results from RAxML on concatenated UCEs. 
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