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S1 Methods

S1.1 Simulation methods

All simulations were performed using custom-written C programs. Parameter values given in table
1 are used for simulations of the human-like runner. These values are chosen for the purpose of
illustration, however our qualitative results are not sensitive to these values, and the scaling analysis
in section 5 of the main text addresses the generalization of these numerical results to runners and
terrains with varying parameter values.

S1.2 Parameter values for a human-like runner

The rationale for chosing the human-like parameter values is as follows. The moment of inertia
value we use is derived from estimates made by Erdmann (1999), who find that moment of inertia
about the center of mass in the sagittal plane is ≈ 13 kg.m2 for a 75 kg human. The value for
εn = 0.63 corresponds to ≈ 40% elastic energy stored over one gait cycle, similar to estimates by
(Cavagna et al., 1964; Cavagna and Kaneko, 1977; Alexander et al., 1987). The orientation bound
φtol is equal to π/6 as it is approximately half the angle between the legs during double stance in
walking. Forward speed at take-off vx0 = 0.96 corresponds to 3 m/s for a leg length of 1 m and
vertical speed at take-off vy0 = 0.26 corresponds to ≈ 0.8 m/s (Dhawale and Venkadesan, 2018).
Distributions had nearly converged by an ensemble size of 104, hence we simulate for 105 instances
(section S2).

S1.3 Terrain model

The terrain is modelled as piecewse linear. This is achieved by first defining a one-dimensional
grid with fixed grid spacing λ. Interpolating heights between the grid points k, located at xk to
intermediate points (xt, yt) in the kth terrain patch, yields a piecewise linear, continuous terrain
profile, where terrain slope mk is discontinous at the grid points,

patch k : yt = mkxt + ck, (S1a)

where xt ∈ [xk, xk+1], (S1b)

continuity condition: mkxk+1 + ck = mk+1xk+1 + ck+1, (S1c)

where mk and ck are constants within a patch. Terrain heights at all grid points are distributed
according to ∼ U(−0.03, 0.03) (table 1). Our choice of the uniform distribution U is to improve
simulation speed, even though beta distributions described in Fig. 2e most closely matched artificial
terrain used in experiments (Dhawale et al., 2015; Dhawale and Venkadesan, 2018). The range of
heights h ∈ [−0.03, 0.03] and grid spacing λ = 0.1 was chosen to match the artificially constructed
rough terrains (Dhawale et al., 2015; Dhawale and Venkadesan, 2018).

Step-like terrains with no slope distributions were simulated by picking a height from the prob-
ability distribution prior to landing. If the chosen landing height was above the apex height of any
portion of the runner, we chose another landing height from the distribution. The probability of
this resampling occuring is ∼ 10−4.

S1.4 Calculating ground contact point

The aerial phase ends when the runner collides with the ground. The landing position is determined
by solving for the unknown intersection point xt of the runner’s aerial phase trajectory (xG, yG)
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with the condition for tangential contact between runner and ground,

parabolic flight: yG = b0 + b1xG + b2x
2
G, (S2a)

touchdown: yG = yt +
1√

1 +m2
k

, xG = xt −
mk√

1 +m2
k

, (S2b)

where b0, b1, b2 are constants that define the aerial phase trajectory. Equations (S1)-(S2) solved
simultaneously yield a quadratic equation in xt,

Ax2t +Bxt + C = 0, (S3a)

where A = b2, (S3b)

B = b1− 2b2
mk√

1 +m2
k

−mk, (S3c)

C = b0 −
b1mk − 1√

1 +m2
k

+ b2
m2
k

1 +m2
k

− ck. (S3d)

The larger of the two roots of this quadratic is the true landing point xP, if the roots are real
and the larger of the two roots is greater than xk. The other real root is always less than xk and
corresponds to the intersection of the aerial phase trajectory with the terrain patch closer to the
take-off point. On flat terrain, the smaller root is the location of the take-off point. Having solved
for xP, the position of the center of mass at landing is determined using equation (S2b).

However, if the runner lands on a grid point, the position of the center of mass appears to be
indeterminate as the grid point xk is associated with two slopes, mk and mk+1. In fact, we detect
a corner collision if the larger root of equation (S3a) is less than xk, or if the roots are complex.
Thus, we now know the position of contact point P, xP = xk, but cannot determine (xG, yG) at
contact using equation (S2b), since xk is associated with slopes mk and mk+1. We determine a
unique slope at the point xk by accounting for the aerial phase trajectory. Substituting xt = xk in
equation (S3a), we write equations (S3) as a quartic polynomial in unknown mk. We numerically
find all the roots using the Jenkins-Traub algorithm (Jenkins and Traub, 1970) and pick the real
root that corresponds to first contact between the ground and runner, i.e. when the parabolic
trajectory describing the aerial phase is above the ground.

S2 Convergence of the Monte Carlo simulations

We ran Monte Carlo simulations with different ensemble sizes to test for convergence of the steps to
failure distributions. We define the criterion for convergence as the first three moments of the dis-
tribution remaining unchanged to one significant decimal place as a function of ensemble size. This
criteria is met with an ensemble size of 104 (Fig. S1). Hence we perform Monte Carlo simulations
in the main text with an ensemble size of at least 105.

S3 Model Details

S3.1 Passive collision

A runner with center of mass velocity v−G and angular velocity ω−, collides with a terrain patch
angled at θ with respect to the horizontal. By simultaneously solving equations describing the col-
lision at the contact point P (main text equation (1a)), and using kinematic constraints associated
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Figure S1: Monte Carlo simulations of open-loop and anticipatory runners with human-like pa-
rameter values and varying ensemble sizes. Ten simulations for each ensemble size were performed.
Open markers represent the mean value, with error bars showing the standard deviation over the
10 runs. Steps to failure distributions for the a, open-loop runner and b, anticipatory runner.
The y-axis of the plots is the joint probability p(falling at step number i,reaching step number i).
The first three central moments as a function of ensemble size for the c, open-loop runner and d,
anticipatory runner are stationary for ensemble sizes greater than 104.

with a rigid body, the linear velocity vcG and angular velocity ωc of the runner after the collision
are computed as,

collision law: vcP,t = εtv
−
P,t, (S4a)

vcP,n = −εnv−P,n, (S4b)

Hc
/P −H−/P = 0, (S4c)

kinematic constraint: vG = vP − ω
(

cos θ
− sin θ

)
, (S4d)

=⇒ vcG =




(v−G,x cos 2θ+v−G,y sin 2θ)A+v−G,xB+Cω− cos θ

2(I/G+1)

(v−G,x sin 2θ−v−G,y cos 2θ)A+v−G,yB+Cω− sin θ

2(I/G+1)


 , (S4e)

and ωc =
(εt + I/G)ω− − (1− εt)v−G,t

1 + I/G
, (S4f)

where A = I/G(εt + εn) + εn + 1, B = εtI/G − (I/G + 1)εn + 1, C = 2(εt − 1)I/G, (S4g)

and vG,t = vG,x cos θ + vG,y sin θ. (S4h)

S3.2 Relationship between εt and εtc

Based on a detailed consideration of how an animal may use its foot speed to control the tangential
collision, we arrive at equation (2) in the main text. The velocity of the foot and center of mass are
not constrained to be the same for a running animal. For example, the animal may retract the leg to
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vary the foot’s speed independent of the center of mass speed. We make the simplifying assumption
that the foot comes to rest, or nearly so, upon colliding with the ground. In an animal, there is an
additional degree of control corresponding to modulating the transmission of the collision between
the foot and center of mass through changes in the leg posture and muscle co-contraction. We do
not include this additional mode of controlling collisions in our consideration.

The use of the foot enables the runner to reduce the effective collision independent of the body’s
overall linear and angular momentum. Thus the tangential coefficient of restitution εt parametrizes
the loss of speed of the foot relative to a point on a rigid runner that does not have the ability to
modulate its foot speed. The foot speed of such a rigid runner is that of the contact point P in
the rigid running model (Fig. 1b), one that translates with the center of mass and is also affected
by any spin that the body may have. The tangential coefficient of restitution εt at the moment of
collision is therefore given by,

εt =
v−P,t − v−foot,t

v−P,t
. (S5)

These velocities are in a reference frame that is parallel to the tangential and normal directions of
the terrain at the point of contact (t̂− n̂ frame in Fig. S2). Point P refers to the contact point in
the rigid runner that is coincident with the foot at the time of contact, but whose speed is solely a
function of the body’s linear and angular momentum.

When the foot speed exactly matches ground speed as seen from the body-fixed frame, εt = 1
and the tangential collision impulse would be zero. To an external observer, the foot’s velocity
vector would be exactly normal to the terrain at the point of contact and v−foot,t = 0. If the foot’s
speed equals that of point P of the rigid runner, then εt = 0 and the runner experiences a significant
tangential collision impulse.

The open-loop and anticipatory strategies differ in how they specify the foot speed. The intended
coefficient of restitution εtc for the open-loop strategy is specified under the assumption that the
tangential speed of the contact point P equals the initial forward speed, v−P,t = vx0. Furthermore,
the open-loop strategy is only aware of the foot speed in a body-fixed frame, and its components
relative to gravity, i.e. the components of v−P − v−foot in the x-y frame. These capture the three
assumptions outlined in the main text (section 2.2). The intended coefficient εtc for the anticipatory
strategy makes no such assumption and simply follows equation S5. The respective equations for
the anticipatory and open-loop εtc are,

εtc =





v−P,x−v
−
foot,x

vx0
: open-loop,

v−P,t−v
−
foot,t

v−P,t
: anticipatory.

(S6)

By combining equation (S5) and equation (S6) we find

εt =




εtc

(
v−P,t−v

−
foot,t

v−P,x−v
−
foot,x

)(
vx0
v−P,t

)
: open-loop,

εtc : anticipatory.
(S7)

For small terrain angles θ, the tangential and horizontal components of the foot speed relative to
that of point P are nearly equal, i.e. (v−P−v−foot) · t̂ ≈ (v−P−v−foot) · x̂. Therefore, the main reason for
εtc to differ from εt for the open-loop runner is because of the ratio of speed of the contact point

∥∥v−P
∥∥

versus the assumed forward speed vx0. The open-loop relationship thus becomes εt = εtcvx0/v
−
P,t,

yielding equation (2) used in the main text.
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S3.3 Open-loop push-off strategies

PP

Terrain-fixed push-off Lab-fixed push-off

θ

θ

Jimp Jimp

n̂
ŷ

t̂

x̂

Figure S2: The terrain-fixed push-off impulse is the lab-fixed push-off impulse rotated by the terrain
slope angle θ about the contact point.

After the passive collision, the push-off impulse J imp is applied at the contact point P to propel
the runner into the flight phase. Recall that Jφ = 0 for the open-loop push policies that we
consider (main text equation (1c)). The push-off impulse J imp leads to discrete changes in the
linear velocity of the center of mass vimp, and angular velocity of the runner ωimp. As discussed in
main text section 2.3, a terrain-fixed push-off policy or a lab-fixed push-off policy both satisfy the
periodicity criteria on flat ground, namely v+G,steady = (vx0, vy0)

T and ω+ = 0, but differ in their

behavior on rough terrain. The linear velocity v+G and angular velocity ω+ at take-off under these
push-off policies are,

v+G = vcG + vimp, ω+ = ωc + ωimp, (S8a)

where vimp =





R

( I/G(1−εt)vx0
I/G+1

(1− εn)vy0

)
: terrain-fixed ,

( I/G(1−εt)vx0
I/G+1

(1− εn)vy0

)
: lab-fixed ,

(S8b)

ωimp =





(1−εt)vx0
I/G+1 : terrain-fixed ,

(1−εt)vx0 cos θ
I/G+1 +

(1−εn)vy0 sin θ
I/G

: lab-fixed ,
, (S8c)

and R =

(
cos θ − sin θ
sin θ cos θ

)
. (S8d)

S4 Open-loop runners on rough terrain

S4.1 The open-loop passive collision

The tangential collision parameter εt for open-loop runners varies from step-to-step on rough ter-
rains (main text equation (2)) and is thus characterized by distributions (Fig. S3a) that evolve
according to running dynamics described in main text equation (1). These distributions achieve
stationarity as seen in the representative case of the εt distribution with εtc = 0.4, that appears to
converge by 5 steps (Fig. S3a). Mean εt converges by 3 steps to values that are just a little larger
than the corresponding εtc values (Fig. S3c), and show a linear dependence on εtc (Fig. S3b). The
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Figure S3: Monte Carlo simulations with 106 runners of tangential collisions in the open-loop
strategy with human-like parameters on rough terrain. a, The probability density function of εt
after 5 steps and 25 steps for εtc = 0.4. b, Steady-state mean εt increases linearly with εtc. c, Mean
εt as a function of step number for different values of εtc (shown in the color bar below) converges
by approximately 3 steps. d, Standard deviation of εt as a function of step number for different
values of εtc also reaches a steady-state. However, the rate of convergence is slower at higher values
of εtc. The fluctuations at higher step number (' 25) are because we are probing the tails of the
steps to failure distributions.

shape of the distribution is affected by the εtc value as the standard deviation of the converged εt
distribution increases with εtc (Fig. S3d).

The stability benefits of higher mean εt values (Fig. S3b) are counteracted by corresponding
higher fluctuations in εt (Fig. S3d), leading to larger step-to-step fluctuations in body angular
momentum. Hence for open-loop runners, mean steps to failure shows a weak dependence on εtc
value. In main text section 5, we arrive at this same conclusion via an asymptotic analysis of the
series expansion of the orientation change over a single step caused by an unexpected terrain slope
perturbation.

S4.2 Additive noise in open-loop strategies

Additive noise in the tangential collision (main text section 3.5) of open-loop runners has little effect
on mean steps to failure (Fig. S4) compared to the same noise intensity applied to anticipatory
runners (main text Fig. 3b). For open-loop runners with human-like parameters, there is no optimal
value of εtc (Fig. S4) unlike the case with anticipatory runners where slight tangential collisions are
optimal (main text Fig. 3b). The relative insensitivity of failure statistics to added noise for the
open-loop runner is possibly because εt varies significantly on rough terrains even in the absence
of added noise (Fig. S3).
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Figure S5: Anticipatory runners on rough terrain. a, Relative frequency of failure modes for
anticipatory runners with εn = 0 on rough terrain. The orientation failure bound φtol = π/6 in
these simulations and other parameters are the same as those for the human-like runner (main
text table 1) b, Mean steps to failure as function of vx0/∆vx for the same range of parameters
shown in Fig. S7, except that εtc = 1 here.

S5 Anticipatory runners on rough terrain

In main text section 3.4 we describe how zeroing the tangential collision impulse stabilizes orien-
tation, but deviations from this strategy quickly leads to a loss in stability. To underscore how
quickly failure modes change, consider that anticipatory runners with εtc = 1 fail exclusively due
to translational instabilities while anticipatory runners with human-like parameters and εtc = 0.95
fail exclusively due to orientational instabilities (Fig. S5a). Thus, the predominant failure mode
switches quickly from translational failures to orientation failures close to εtc = 1; even runners
with εtc = 0.995 predominantly undergoing orientational failures (Fig. S5a).

The mean steps to failure for an anticipatory runner with εtc = 1 is captured by a single
parameter vx0/∆vx (Fig. S5b). The logic is similar to that in main text section 5 where the scaling
analysis is for orientational failures, while here the failure mode is due to losing translational
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stability (main text Fig. 1c). For a runner landing on sloped ground with forward speed v−G,x = vx0,

the loss in forward speed due to the terrain perturbation is ∆vx = vx0 − v+G,x over a single step.
Following the logic outlined in main text section 5, the mean steps to failure N should scale as,

N ∼ vx0/∆vx, (S9a)

where ∆vx = sin θ(vy0(cos θ − 1 + εn(cos θ + 1)) + vx0 sin θ(1 + εn)). (S9b)

Power series: ∆vx = 2εnvy0θ + vx0(1 + εn)θ2 +O(θ3). (S9c)

Equation (S9c) is the power series expansion for ∆vx about θ = 0 to second order in θ. The
power series analysis suggests that shallower flight trajectories (reducing vy0) and increasing energy
dissipation (reducing εn) increases the mean steps to translational failure. The implications of
shallower flight trajectories have been discussed in the discussion section of the main text. Results
from the Monte Carlo simulations in main text Fig. 3a find that reducing εn increases mean steps
taken for anticipatory runners with εtc = 1, consistent with equations (S9b)-(S9c).

S5.1 Forward collision parameter ε̂t as a function of εtc

Figure S6: Evolution of forward collision parameter ε̂t as a function of step number and εtc. a, The
probability density function of ε̂t after 3 steps and 20 steps for εtc = 0.5. b, Mean ε̂t as a function
of step number for different values of εtc (shown in the color bar below). The mean converges by
approximately 5 steps for all values of εtc. c, Standard deviation of ε̂t as a function of step number
for different values of εtc. While the standard deviation converges by 15 steps for values of εtc < 1,
for εtc = 1 it increases monotonically, plateauing after approximately 80 steps.

The forward collision parameter ε̂t is characterized by a distribution as described in main
text section 3.6. The distributions of ε̂t with εtc = 0.5 after 3 steps and 20 steps are relatively
unchanged (Fig. S6a) in comparison to the distribution of ε̂t with εtc = 1 (main text Fig. 4a)
where the distribution broadens significantly more as a function of step number. The mean of the
distribution for all values of εtc converges by 5 steps (Fig. S6b), while the standard deviation for
εtc sufficiently below 1 converges by approximately 15 steps (Fig. S6c). When εtc = 1, or if εtc is
sufficiently close to 1, the standard deviation of the distribution approaches steady state only after
80 steps.

S6 Linear stability analysis: Jordan decomposition of T ol and T an

The linear stability analysis for the open-loop runner proceeds analogously to the analysis for the
anticipatory runner discussed in main text section 4. We define a Poincaré section transverse to
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the runner’s trajectory in phase space at the apex of the aerial phase (vy = 0), and a return map
fol that maps the state of the runner ψn at the apex of the aerial phase at step n, to the state at
the apex of the aerial phase on the following step ψn+1 (main text Fig. 5). The state ψ, return
map fol, and its linearization T ol are defined by,

ψ =
(
x y φ vx ω

)T
(S10a)

ψn+1 = fol(ψn), (S10b)

∆ψn+1 = T ol∆ψn, where T ol =
∂fol

∂ψ

∣∣∣
ψ∗
, (S10c)

and ∆ψ = ψ −ψ∗, where ψ∗ = fol(ψ
∗). (S10d)

The linearized return maps, T ol and T an are non-diagonalizable as discussed in main text section 4.
Thus an eigen-factorization of these matrices is not possible, so we perform a Jordan decomposition
of T ol and T an. The Jordan decomposition of T ol is,

T ol = V olJolV
−1
ol , (S11a)

where Jol =




1 0
√

2εnvy0 0 0

0 1
√
2

1+I/G
vy0(I/G(εn − 1)− εn) 0 0

0 0 1 0 0
0 0 0 εn(2εn − 1) 0
0 0 0 0 0



, (S11b)

and V ol =




0 1 0 0
(1−I/G−4εn)vy0I/G

1+I/G

0 0 0 1 0
1 0 0 0 −vy0
0 0 −1√

2
0 I/G

0 0 1√
2

0 1



. (S11c)

The linearized return map T ol has rank 4, with two stable eigenvalues; λ = 0 and λ = εn(2εn − 1).
The second stable eigenvalue corresponds to perturbations to the height of the apex of the aerial
phase. The remaining eigenvalues are λ = 1 which are associated with eigenvectors ν1, ν2, and
generalized eigenvector ν3, the same as the eigenvectors and generalized eigenvector associated
with eigenvalues λ = 1 for T an (main text equation (7a)). Thus, a perturbation in the subspace
spanned by these vectors ∆ψ0 displays the same scaling with step number n as described in main
text equation (8) for the anticipatory runner. These relationships for the open-loop runner are
summarized as follows,

∆ψ0 =
3∑

k=1

αkνk, ∆ψn = nα3(a1ν1 + a2ν2) + ∆ψ0, (S12a)

∆ψn ≈ n α3




√
2

1+I/G
vy0(I/G(εn − 1)− εn)

0√
2εnvy0

0
0



, for n� 1, (S12b)

substituting a1 =
√

2εnvy0, and a2 =

√
2

1 + I/G
vy0(I/G(εn − 1)− εn), (S12c)
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which are the off-diagonal terms of Jol (equation S11b). While the growth of the instability shows
the same dependence on step number n as the anticipatory runner (main text equation (8)), the
value of a2 differs, i.e. the projection onto ν2 of a perturbation along ν3 upon action of the return
map T ol.

The stability of the anticipatory runner is discussed in detail in main text section 4. The Jordan
decomposition of T an when εtc < 1 is,

T an = V anJanV
−1
an , (S13a)

where Jan =




1 0
√

2εnvy0 0 0

0 1 −
√

2εnvy0 0 0
0 0 1 0 0
0 0 0 εn(2εn − 1) 0
0 0 0 0 εt



, (S13b)

and V an =




0 1 0 0
(1+εt(2εn−1))I/Gvy0

εt−1
0 0 0 1 0

1 0 0 0
(1+εt(2εn−1))vy0

εt−1
0 0 −1√

2
0 I/G

0 0 1√
2

0 1



. (S13c)

The anticipatory runner has a full rank return map T an, and stable eigenvalues λ = εn(2εn − 1),
which is identical to the open-loop runner, and λ = εt which differs from the open-loop runner.
The off-diagonal elements of Jan are a1 =

√
2εnvy0 and a2 = −

√
2εnvy0 (equation S13b), which

correspond to the projection onto ν1 and ν2 respectively, of a perturbation along ν3 upon action
of the return map T an.

When εtc = εt = 1 for the anticipatory runner, the linearization of fan aboutψ∗ (main text equa-
tions 6) yields a different form for T an. The Jordan decomposition of T an when εtc = 1 is,

T an = V anJanV
−1
an , (S14a)

where Jan =




1 2εnvy0 0 0 0
0 1 0 0 0
0 0 1 2εnvy0 0
0 0 0 1 0
0 0 0 0 εn(2εn − 1)



, (S14b)

and V an =




0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0



. (S14c)

There is a single stable eigenvalue of λ = εn(2εn − 1) which is identical to that of the open-
loop runner and the anticipatory runner with εtc < 1. The remaining 4 eigenvalues are λ =
1 which are associated with eigenvectors ν1, ν2 and generalized eigenvectors ν3 and ν4 (main
text equations (9a)). Perturbations along ν3 project onto ν1, and perturbations along ν4 project
onto ν2, upon action of the return map T an (equation (S14b)). The off-diagonal elements of Jan

are a1 = a2 = 2εnvy0.
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Figure S7: Mean steps to failure for the anticipatory runner (εtc < 1) plotted against all other
parameters: I/G, θ, vy0, εn, vx0, εtc. Here, θ refers to the typical slope angle the runner would en-
counter, defined as θ = h/λ, where λ is the grid spacing of the terrain and [−h, h] is the range of
heights of the terrain (section S1.3).

S7 Scaling analysis of orientational failures

In main text section 5, we show that the orientation failure bound φtol and the orientation change
over a single step φ• from encountering an unexpected terrain slope predict the mean steps to failure
N , as N ∼ φtol/φ•. The many parameters that define the runner and its gait do not separately
predict mean steps to failure as accurately as the parameter φtol/φ• (Fig. S7).

The change in orientation over one step can be calculated using the vertical velocity v+y,• and
angular velocity ω+

• at take-off as φ• = 2v+y,•ω
+
• (• = ‘ol’ for open-loop and ‘an’ for anticipatory).

For a runner landing on a terrain patch angled at θ with respect to the horizontal, with center of

mass velocity v−G =
(
vx0 −vy0

)T
and angular velocity ω− = 0, the take-off velocities v+y,•, ω

+
• , and
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orientation change φ•, are given by

ω+
an =

(1− εtc)(vx0(1− cos θ) + vy0 sin θ)

1 + I/G
, (S15a)

ω+
ol =

vx0(1− cos θ) + vy0 sin θ

1 + I/G
, (S15b)

v+y,an = vy0 +
(1 + εn + I/Gεn)(vx0 sin 2θ − vy0(1− cos 2θ))

2(1 + I/G)
, (S15c)

v+y,ol = vy,an +
2εtcvx0 sin θ

2(1 + I/G)
, (S15d)

φan =
1− εtc

(1 + I/G)2
A
(
B + (εtc − 1)C + (D + I/Gεtc)E + F − I/Gεtcvy0

)
,

φol =
1

(1 + I/G)2
A
(
B + (2εtc − 1)C +DE + F

)
,

where A = vy0 sin θ + vx0(1− cos θ), B = 2(1 + I/G)(1− εn)vy0 cos θ,

C = 2I/Gvx0 sin θ, D = 1 + εn + I/Gεn,

E = vy0 cos 2θ + vx0 sin 2θ, F = (I/Gεn + εn − 1)vy0.

(S15e)

The parametric dependence of φtol/φ• (φ• defined in equation (S15e)) on εtc and εn is captured
by a power series approximation of φ• to second order in θ (main text equations (11a)-(11b)). The
contour plots of φtol/φ• shown here using the truncated power series form of φ• (Fig. S8) display
the same qualitative trends as the ones in main text Fig. 7 which use the complete expression
for φ• (equation (S15e)). Therefore, we analyze failure statistics and runner morphology in main
text section 5 and section 6 using the truncated power series approximation for φ•.
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Figure S8: Contour plots of a, φtol/φol and b, φtol/φan as a function of εn and εtc, where the form
of φ• shown in the power series expansion to second order in θ has been used (main text equa-
tions (11a)-(11b)). The values of the contours differ slightly between the plots shown here and in
the main text Fig. 7 but the qualitative trends are the same. The same parameter values are used
in both these calculation, vy0 = 0.2, I/G = 0.15, vx0 = 1, θ = 0.3, φtol = 1. For the anticipatory
runner, maximum εtc = 0.99 to ensure that the calculation is limited to the region where runners
primarily undergo orientational failures (Fig. S5a).

S8 Steps to failure statistics

All the numerically estimated distributions of the steps to failure show similar qualitative features.
They are unimodal with a long tail, and are relatively insensitive to changes in the terrain height
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distribution (Fig. S1, main text Fig. 2e). The similarity of the distributions suggests that the
stochastic dynamics underlying these distributions may be characterized by a small number of
parameters.

The linear stability analysis shows that there are no changes to the linear or angular velocities
as a result of perturbations from the ground. Focusing on the orientational instability, this implies
that the rate of change of the angular velocity from step-to-step is zero. However, the terrain
introduces perturbations at every step. When the correlation length of the random terrain is much
smaller than a step length, like in the Monte Carlo simulations, the step-to-step perturbations may
be treated as uncorrelated random perturbations. Irrespective of the distribution from which the
random terrain is constructed, we make a heuristic appeal to the central limit theorem and posit
that the net effect of the terrain perturbations is simply a Gaussian random forcing. Thus the
stochastic step-to-step model for the orientation is that the discrete second derivative of the angle
φ is forced by a Gaussian random variable:

φ(n+ 2)− 2φ(n+ 1) + φ(n) = w, (S16a)

where w ∼ N (0, σ2), (S16b)

The random forcing w is drawn from a Gaussian with mean < w >= 0 and variance < w2 >= σ2.
In the absence of noise, the solution to the second-order difference equation yields φ(n) = n(φ(1)−
φ(0)) + φ(0). Thus the orientation of the runner φ grows linearly with step number n in response
to an initial perturbation (φ(1)− φ(0)) as found in main text section 4.

With initial conditions φ(1) = φ(0) = 0, the probability distribution of φ after n steps is given
by

p(φ, n) =
e
− φ2

2σ2f(n)

√
2πσ2f(n)

, (S17a)

where f(n) =
n(n+ 1)(2n+ 1)

6
. (S17b)

When n� 1, f(n) ∼ n3

3
. (S17c)

The probability distribution p(φ, n) is Gaussian with mean < φ >= 0 and variance that grows as
n3 for large n.

Orientation failures occur when a runner’s orientation exceeds φtol. Thus, the probability of
having failed by n steps, which we denote with pfall(n), is given by

pfall(n) = p(|φ| > φtol, n), (S18a)

=⇒ pfall(n) = 1− erf

(
φtol√

2σ2f(n)

)
, (S18b)

where erf(x) =
1√
π

∫ x

−x
e−u

2
du, (S18c)

is the error function. The probability of failing at step number n, denoted by psteps(n), is given
by the probability of taking n − 1 steps without failing, and then failing at step number n, i.e.

psteps(n) = p(|φ| > φtol, n
∣∣∣|φ| < φtol, n− 1). This is equivalent to the probability flux at φtol at step
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n, given by

psteps(n) = pfall(n)− pfall(n− 1), (S19a)

=⇒ psteps(n) = erf

(
φtol√

2σ2f(n− 1)

)
− erf

(
φtol√

2σ2f(n)

)
. (S19b)

The mean steps to failure N are thus given by

N =
∞∑

n=0

npsteps(n), (S20a)

=⇒ N =

√
6

π

∞∑

i=1

−1i+1

(
3

2

)i
ζ

(
3(2i− 1)

2

)
(φtol/σ)2i−1

(i− 1)!
, (S20b)

We use the approximation f(n) = n3/3 and ζ(p) is the Riemann-zeta function defined by ζ(p) =∑∞
i=0 1/ip for p > 1. The mean steps to failure depend on a single parameter, φtol/σ, the ratio of

the tolerance-angle φtol to the intensity of the external noisy forcing w.
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Figure S9: Steps to failure statistics of the single parameter stochastic model. a, psteps from
equation (S19) and b, pfall from equation (S18) plotted against steps taken n with human-like
parameter values for φtol and σ = φol (main text table 1). The mean of this distribution 9.6, is
similar to the numerically computed mean steps to failure for the open-loop runner with human-like
parameters which is 9.61± 0.01 (Fig. S1c). However, for a wider range of φtol/φ• values, the mean
of the analytical model (open circles) for c, open-loop runners and d, anticipatory runners deviates
from mean steps to failure from the Monte Carlo simulations (open diamonds, main text Fig. 6).
The parameters values used for φtol and φ• are shown in Fig. S7.

The probability of failing at step n, psteps(n) (Fig. S9a), and its cumulative distribution pfall(n)
(Fig. S9b) are qualitatively similar to the numerically computed steps to failure distributions shown
in Fig. S1 and main text Fig. 2e, and the cumulative distributions shown in main text Fig. 2a,b,
in that they are unimodal with long tails.

We compare the mean of the numerically computed steps to failure distributions and the ana-
lytically derived mean from the stochastic model (Fig. S9c,d). The standard deviation of the noise
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from the terrain is equated to the orientation change in a single step due to the terrain according
to σ = φ• (main text section 5). since φ• sets the scale for orientation change over a single step
due to an unexpected terrain slope (main text section 5). The mean steps to failure in both the
Monte Carlo simulations and the analytical Markov chain model show power laws as a function of
φtol/φ•, but with different exponents (Fig. S9c,d).

S9 Effect of changing runner size relative to terrain grid spacing

The size of the runner r` relative to the grid spacing of the terrain λ determines the range of terrain
slopes accessed by the runner (main text section 6, Fig. S10). For example, if λ/r` = 1, the range
of terrain slopes encountered by the runner is nearly the same as the slope distribution of the
terrain itself (Fig. S10a). By decreasing this ratio to λ/r` = 0.01 while keeping the terrain slope
distribution constant, we find that the range of slopes encountered by the runner is significantly
lower (Fig. S10b). We quantify this trend using the parameter σrunner/σterrain where σrunner is the
standard deviation of the slope distribution encountered by the runner, and σterrain is the standard
deviation of the terrain slope distribution. The parameter σrunner/σterrain approaches 1 as λ/r`
increases (Fig. S10c).

Figure S10: Effect of varying the ratio of leg length r` to terrain grid spacing λ. The probability
density function of the terrain slope (tan θ) encountered by the open-loop runner (orange) with
human-like parameters is plotted for grid spacing a, λ = r` and b, λ = 0.01r`. The height
distribution of the terrain grid points was adjusted so that the terrain’s slope distribution (blue)
was the same in all simulations. The number of steps used to generate these probability density
functions was∼ 106. c, Shows the standard deviation of the slope encountered by the runner relative
to the standard deviation of the terrain’s slope distribution. d, The mean slope encountered by
the runner as a function of grid spacing λ.

The mean slope encountered by the runner is always greater than zero (Fig. S10d) even though
the slope distribution of the terrain has a zero mean. As the range of slopes encountered by the
runner increases, the mean slope encountered by the runner deviates further from zero (Fig. S10d).
This is consistent with the observation from the Monte Carlo simulations that runners slow down
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on rough terrain since the effect of the mean slope encountered is to redirect forward momentum
into vertical momentum.

S10 Monte Carlo simulations with a lab-fixed push-off policy

The change in angular velocity due to the push-off impulse J imp applied under the lab-fixed push-
off policy destabilizes the runner as it exacerbates angular momentum fluctuations that arise due
variations in terrain slope angle θ. When θ > 0, the runner collides with lower tangential velocity
compared to flat ground, resulting in a smaller clockwise pitching moment than if the runner were
colliding with a flat terrain patch. Yet the clockwise pitching moment induced by the the push-off
impulse J imp is larger than what it would be on flat ground (equation S8d), causing the runner
to spin excessively in the clockwise direction. Conversely, when θ < 0, the runner lands at a
shallower angle, increasing the tangential collision impulse and inducing a larger clockwise angular
impulse on the runner compared to what it would experience when θ = 0. However, the push-off
impulse induces a smaller counter-clockwise change in angular velocity at push-off ωimp relative to
flat ground (equation S8d), causing the runner to spin in the anti-clockwise direction. In contrast,
the angular velocity change due to the push-off impulse under the terrain-fixed push-off policy is
indepedent of the terrain slope θ (equation S8d). As we have seen in the main text this push-off
cannot stabilize the runner. However, it does not amplify angular momentum fluctuations caused
by slope variations like in the lab-fixed push-off policy. Thus the lab-fixed push-off policy leads to
quicker orientatonal failures compared to the terrain-fixed push-off policy.

S10.1 Open-loop runners

Open-loop runners with a lab-fixed push-off and human-like parameters only fail due to losing
orientational stability (Fig. S11a). Increasing energy dissipation in the direction normal to the
terrain surface reduces mean steps taken by these open-loop runners. This trend contrasts that
observed with the terrain-fixed push-off where increasing normal energy dissipation increased the
steps taken (main text Fig. 2d). The increase in mean steps taken with the lab-fixed push-off is at
most 1 for a 100% reduction in energy dissipation, from εn = 0 to εn = 1 at a fixed value of εtc
(Fig. S11b).

Reducing εtc increases steps taken (Fig. S11b), unlike the trend observed with the terrain-
fixed push-off policy where changing εtc had negligible effect on the mean steps to failure (main
text Fig. 2d). Open-loop runners increase mean steps taken by 2 when εtc is reduced from 1 to 0
while holding εn fixed at any value (Fig. S11b).

Open-loop runners with a lab-fixed push-off policy perform best when εn = 1, εtc = 0 and worst
when εn = 0, εtc = 1. The difference in mean steps taken at these extremes is just 3 steps. The
maximum mean steps taken by the open-loop runner with a lab-fixed push-off is 9 steps (Fig. S11b),
the same as the minimum number of steps taken by the open-loop runner with a terrain-fixed
push-off policy (main text Fig. 2d). Thus, compared to the terrain-fixed push-off policy, open-loop
runners with the lab-fixed push-off policy fare worse, and display differing trends in how stability
is determined by the collision parameters, εn and εtc. However, similar to the terrain-fixed push-off
policy, varying parameters governing the passive collision has a small effect on the mean steps to
failure compared to similar changes in collision parameters in anticipatory runners.
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Figure S11: Runners with a lab-fixed push-off policy: effect of energy dissipation and tangential
collisions. a, Open-loop runners with human-like parameters and εtc = 0, εn = 1 undergo ori-
entational failures on rough terrain, while human-like anticipatory runners with εtc = 1, εn = 1
maintain orientation but lose forward momentum. b, Contour map of mean steps to failure for
the human-like open-loop runner as a function of εn and εtc. c, Contour map of the mean steps
to failure for the anticipatory runner as a function of εn and εtc zoomed into the region near the
maximum steps taken where contour spacing is small. d, Away from the maximum, contour spac-
ing increases for the anticipatory runner demonstrating reduced sensitivity to changes in εn and
εtc. The εtc = 0 strategy is identical between the open-loop and anticipatory runners like with the
terrain-fixed push-off policy.

S10.2 Anticipatory runners

Anticipatory runners with a lab-fixed push-off policy increase mean steps taken as energy dissipation
in the direction normal to the terrain surface is reduced. This is in contrast to the trend observed
for anticipatory runners with the terrain-fixed push-off policy, where increasing normal energy
dissipation increases mean steps to failure (main text Fig. 3a). Anticipatory runners fail by losing
orientational stability except when εtc = 1 and εn = 1 (Fig. S11a), in contrast to the terrain-fixed
push-off policy where anticipatory runners maintain orientation when εtc = 1, and regardless of
the value of εn (main text Fig. 3a). At εtc = 1, anticipatory runners with a lab-fixed push-off,
increase mean steps taken by over 4-fold, from 7 to over 30 for a 100% reduction in normal energy
dissipation from εn = 0 to εn = 1 (Fig. S11c).

Reducing the tangential collisional impulse at landing εtc increases mean steps to failure for the
anticipatory runner with a lab-fixed push-off if εn is sufficiently high, while showing the opposite
trend below that εn value (Fig. S11d). This is in contrast to the trend observed in anticipatory
runners with the terrain-fixed push-off policy where mean steps taken always increases when εtc is
reduced (main text Fig. 3a).

Anticipatory runners with a lab-fixed push-off policy perform best when εtc = 1, εn = 0 and
worst when εtc = 1, εn = 0. The lab-fixed push-off policy is consistently worse in terms of stability
than the terrain-fixed push-off policy for a given pair of εtc, εn values. At εtc = 1, εn = 1 both
push-off policies are identical, as this corresponds to J imp = 0 in both.
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Running with slight non-zero tangential collisions is optimal in the presence of sensorimotor
noise (Fig. S12a). Sensorimotor noise is modeled as additive noise to εtc as described in main
text section 3.5. This trend is similar to that found with the terrain-fixed push-off policy (main
text Fig. 3b).

S10.3 Scaling analysis of mean steps taken
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Figure S12: Effect of sensorimotor noise on stability, and scaling analysis of mean steps to failure.
a, Contour map of mean steps taken as a function of εtc and ∆εt shows that mean steps to failure
reduces with increasing sensorimotor noise ∆εt. Scuffing the ground upon landing is optimal as
noise intensity ∆εt is increased. Red circles denote the optimal εtc value for a given ∆εt. In these
simulations εn = 1. b, For the anticipatory runner with εtc = 1, εn = 1, the mean steps to trans-
lational failure are predicted by the parameter vx0/∆vx. The values of the remaining parameters
used in this simulation are shown in Fig. S7. Mean steps to orientation failure are captured by
the parameter c, φtol/φol for the open-loop runner, and by d, φtol/φan, for the anticipatory runner.
The parameter values used for these simulations are also shown in Fig. S7.

The mean steps to failure N for the steps to orientational failure on rough terrains are predicted
by the orientation change over a single step relative to the failure bound φtol/φ•, N ∼ φtol/φ•
(Fig. S12c,d). The loss of forward speed relative to initial forward speed (vx0/∆vx) predicts the
mean steps to translational failure N ∼ vx0/∆vx for anticipatory runners with εtc = 1 and εn = 1
(Fig. S12b). These trends are similar to those observed for the runner with a terrain-fixed push-off
policy (main text Fig. 6), although there is a greater spread in the data about the trend line with
the lab-fixed push-off.
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