Supplementary material for

Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect

Jantina Toxopeus^{a*}, Vladimír Koštál^b & Brent J. Sinclair^a

^aDepartment of Biology, University of Western Ontario, 1151 Richmond St N, London, ON, Canada, N6A 5B7

^bInstitute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice, Czech Republic, 370 05

*Corresponding author; present address: Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO, USA, 80204

Emails: JT, jantina.toxopeus@ucdenver.edu; VK, kostal@entu.cas.cz; BJS, bsincla7@uwo.ca

SI Methods

To measure cryoprotectant concentrations in haemolymph samples from *Gryllus veletis*, we used the following spectrophotometric assays:

Glucose — We determined haemolymph glucose concentrations using the Glucose Assay Reagent (Sigma Aldrich, Mississauga, ON, Canada), according to manufacturer's instructions. Briefly, we diluted haemolymph samples by 1:50 to 1:1000 in Tris buffer (TB; 5 mM Tris, 137 mM NaCl, 2.7 mM KCl), vortexed to mix, incubated at 70 °C for 10 min, and centrifuged at 20,000 × g for 3 min. We added 10 μl of supernatant to 90 μl of Glucose Assay Reagent (Sigma Aldrich), incubated the reaction in flat-bottomed 96-well-plates for 20 min at room temperature (c. 22 °C), and measured absorbance in a microplate spectrophotometer (SpectraMax 340PC, Molecular Devices, Sunnydale, CA, USA) at 340 nm. We determined glucose concentration in each sample by comparison to a standard curve range of 0.16 to 0.01 mg/ml glucose diluted in TB.

Glycerol – We determined haemolymph glycerol concentrations using Free Glycerol Reagent (Sigma Aldrich), according to manufacturer's instructions [1]. Briefly, we diluted haemolymph samples by 1:50 to 1:1000 in 0.05 % Tween-20, and vortexed to mix. We added 30 μl of sample to 100 μl of Free Glycerol Reagent (Sigma Aldrich), incubated the reaction in flat-bottomed 96-well-plates for 15 min at room temperature, and measured absorbance at 540 nm. We determined glycerol concentration in each sample by comparison to a standard curve range of 0.5 mM to 0.031 mM glycerol diluted in 0.05 % Tween-20.

 \underline{myo} -Inositol – We determined haemolymph \underline{myo} -inositol concentrations using the \underline{myo} -Inositol Assay Kit (Megazyme, Bray, Ireland), scaled down from manufacturer's instructions. Briefly, we diluted haemolymph samples by 1:50 to 1:1000 in distilled deinoised H₂O (ddH₂O), vortexed to mix, incubated at 70 °C for 10 min, and centrifuged at 20,000 × g for 3 min. We added 15 μl of solution A (hexokinase solution) to 20 μl of sample, and incubated the reaction at room temperature for 15 min. We then added 100 μl of solution B (inositol dehydrogenase/diaphorase solution), and incubated the reaction at room temperature for 10 min. We transferred 100 μl of this mixture into flat-bottomed 96-well-plates, and measured absorbance at 492 nm. We

determined myo-inositol concentration in each sample by comparison to a standard curve range of 0.25 to 0.016 mg/ml myo-inositol diluted in ddH₂O.

Polyethylene glycol – We measured haemolymph polyethylene glycol (PEG) concentrations using a previously described assay [2]. Briefly, we diluted haemolymph samples 1:25 in ddH_2O , and vortexed to mix. We added 500 μ l of chloroform and 500 μ l of ammonium ferrothiocyanate reagent (0.1 M FeCl₃, 0.4 M NH₄SCN) to 50 μ l of sample in 1.7 ml microcentrifuge tubes. We mixed the sample vigorously on a benchtop shaker (700 rpm) for 30 min at room temperature, and centrifuged at $600 \times g$ for 2 min. We transferred 100 μ l of the lower chloroform layer into flat-bottomed 96-well-plates, and measured absorbance at 510 nm. We determined PEG concentration in each sample by comparison to a standard curve range of 1.25 to 0.078 mM PEG-8000 (Sigma Aldrich) diluted in ddH_2O .

Proline – We measured haemolymph proline concentration using a previously described assay [3]. Briefly, we diluted haemolymph samples by 1:50 to 1:1000 in 40 % ethanol, and vortexed to mix. Samples were incubated at 4 °C overnight (18 to 24 h), and then centrifuged at 14,000 × g for 5 min. We added 40 μ l of sample to 100 μ l of ninhydrin solution [1 % (w/v) ninhydrin in 60 % acetic acid (v/v) and 20 % ethanol (v/v)], and incubated the reaction at 95 °C for 20 min. We centrifuged samples at 600 × g for 1 min, transferred 100 μ l of supernatant into flat-bottomed 96-well-plates, and measured absorbance at 520 nm. We determined proline concentration in each sample by comparison to a standard curve range of 0.5 mM to 0.016 mM proline diluted in 40 % ethanol.

Trehalose – We measured haemolymph trehalose concentrations using a previously described assay [4]. Briefly, we diluted haemolymph samples by 1:50 to 1:1000 in Tris buffer (TB), vortexed to mix, incubated at 70 °C for 10 min, and centrifuged at 20,000 × g for 3 min. For each sample, we added 30 μl of trehalase stock [TS; 0.3 % (v/v) porcine trehalase enzyme (Sigma Alrich) in TB] to a 30 μl aliquot of supernatant to lyse trehalose into glucose monomers. We added 30 μl of TB to a second aliquot of supernatant. Samples were incubated at 37 °C overnight (18 to 24 h), centrifuged at 20,000 × g for 3 min, and processed using the Glucose Assay Reagent, as described above. We determined baseline glucose haemolymph concentration by comparing samples incubated in TB to a standard curve range of 0.16 to 0.1 mg/ml glucose

diluted in TB. We calculated trehalose haemolymph concentration by comparing samples incubated in 1:1 TB:TS to a standard curve range of 0.16 to 0.1 mg/ml trehalose diluted in 1:1 TB:TS, and subtracting the signal from baseline glucose haemolymph.

SI References

- 1. Crosthwaite JC, Sobek S, Lyons DB, Bernards MA, Sinclair BJ 2011 The overwintering physiology of the emerald ash borer, *Agrilus planipennis* Fairmaire (Coleoptera: Buprestidae). *J. Insect Physiol.* **57**, 166-173.
- 2. Nag A, Mitra G, Ghosh PC 1996 A colorimetric assay for estimation of polyethylene glycol and polyethylene glycolated protein using ammonium ferrothiocyanate. *Analytical Biochemistry*. **237**, 224-231.
- 3. Carillo P, Gibon Y. Protocol: extraction and determination of proline https://www.researchgate.net/publication/211353600_PROTOCOL_Extraction_and_determination of proline2011 [28 June 2018].
- 4. Tennessen JM, Barry WE, Cox J, Thummel CS 2014 Methods for studying metabolism in *Drosophila*. *Methods*. **68**, 105-115.

SI Tables

Table S1. Generalised linear models testing the effect of elevated cryoprotectant concentrations on survival of freeze-tolerant (FT) and freeze-intolerant (FI) crickets and their fat body cells. Separate models were run for each group (FI, FT-LLT, and FT-Lt) within each sample type (whole crickets, and fat body frozen *ex vivo*). Freeze-intolerant crickets were frozen to -8 °C for 1.5 h (FI); FT crickets were frozen to the LLT (-12 °C for 1.5 h; FT-LLT), or for the Lt (1 week at -8 °C; FT- Lt). Fat body from FI crickets was frozen to -8 °C for 10 min (FI); fat body from FT crickets was frozen to the cellular LLT (-16 °C for 10 min; FT-LLT), or for the cellular lethal time (24 h at -8 °C; FT- Lt). LLT, lower lethal temperature; Lt, lethal time. Significant effect of cryoprotectant on survival denoted by bold *P*-values.

Sample	FI		FT-LLT		FT-Lt	
Cryoprotectant	χ^2	P	χ^2	P	χ^2	P
Whole crickets						
myo-Inositol	0.000	1.000	0.847	0.397	0.007	0.994
Proline	0.000	1.000	0.899	0.369	2.558	0.011
Trehalose	0.000	1.000	3.162	0.002	1.922	0.045
Combination ^a	0.000	1.000	1.913	0.045	2.516	0.013
Glycerol	0.002	0.998	3.237	0.001	2.391	0.017
PEG	0.000	1.000	0.011	0.991	0.007	0.994
Glucose	0.000	1.000	0.305	0.761	0.008	0.994
Fat body frozen ex vivo						
myo-Inositol	0.788	0.431	2.170	0.030	1.921	0.045
Proline	0.652	0.515	0.268	0.789	0.376	0.707
Trehalose	0.878	0.379	0.635	0.526	1.981	0.048
Combination ^a	1.290	0.197	2.611	0.009	2.329	0.020
Glycerol	3.517	< 0.001	2.611	0.009	0.872	0.383
PEG	0.901	0.368	0.322	0.747	0.856	0.392
Glucose	0.299	0.765	0.215	0.829	0.588	0.556

^a 'Combination' is a combination of *myo*-inositol, proline, and trehalose.