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1 Microstructure

The scalar quantities κ
(L)
ip and κ

(L)
op describe the in-plane and out-of-plane dispersions

of fibers, respectively [1]. Their closed form expressions are

κ
(L)
ip =

1

2
− I1(â(L))

2I0(â(L))
, κ(L)

op =
1

2
− 1

8b̂(L)
+

1

4

√
2

πb̂(L)

exp(−2b̂(L))

erf(
√

2b̂(L))
, (1)

where L = I stands for intima, L = M for media, L = A for adventitia, and â(L) and b̂(L)

are the concentration parameters defining the shape of the von Mises distributions that
describe the corresponding in-plane and out-of-plane fiber dispersions in each layer.
The modified Bessel functions of the first kind of order 0 and 1 are denoted by I1

and I0, respectively. The intervals of the quantities κ
(L)
ip and κ

(L)
op are κ

(L)
ip ∈ [0, 1] and
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Figure 1: Microstructure of a representative healthy abdominal aorta. Top three figures
illustrate in-plane fiber distributions in intima (I), media (M) and adventitia (A), while
fibers through the thickness (out-of-plane) are shown in the bottom figure (reprinted
from [2]).
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κ
(L)
op ∈ [0, 1/2], respectively. When κ

(L)
op → 1/2, it indicates that there is an insignificant

number of out-of-plane fibers as they tend to be in-plane. When κ
(L)
ip = 1/2, the in-

plane fibers are isotropic. When κ
(L)
op = 1/3, the out-of-plane fibers are isotropic. Figure

1, taken from [2], indicates a typical distribution of the in-plane fibers in the intimal,
medial and adventitial layers of a healthy abdominal aorta as well as the out-of-plane
fiber distribution through the thickness. As can clearly be seen, the fibers mostly lie in
the θz-plane and have some specific directions, which, although not clearly visible, are
far from being isotropic. This allows us to expect that κ

(L)
op → 1/2 and κ

(L)
ip 6= 1/2 for

all layers (L = I, M, A) in the given healthy abdominal aorta.

2 Residual stress state: boundary/interface condi-

tions and equilibrium equations

The Cauchy stresses for each layer (L = I, M, A) are

σ(L)
rr = [c(L) + 4(1− 2A(L) −B(L))ψ

′(L)
4 ]λ(L)2

r − p(L),

σ
(L)
θθ = [c(L) + 4(A(L) +B(L) cos2 α(L))ψ

′(L)
4 ]λ

(L)2

θ − p(L), (2)

σ(L)
zz = [c(L) + 4(A(L) +B(L) sin2 α(L))ψ

′(L)
4 ]λ(L)2

z − p(L),

where p(I), p(M) and p(A) are functions of the radial coordinate r to be determined from
the boundary and interface conditions. The equilibrium equation valid for all the layers
(L = I, M, A) can be written as

dσ
(L)
rr

dr
+
σ

(L)
rr − σ(L)

θθ

r
= 0. (3)

It is convenient to write this expression in the forms of definite and semi-definite inte-
grals (L = I, M, A), i.e.

σ(L)
rr (b(L))− σ(L)

rr (a(L)) =

∫ b(L)

a(L)

σ
(L)
θθ − σ

(L)
rr

r
dr,

σ(L)
rr (r)− σ(L)

rr (a(L)) =

∫ r

a(L)

σ
(L)
θθ − σ

(L)
rr

r
dr, (4)

σ(L)
rr (b(L))− σ(L)

rr (r) =

∫ b(L)

r

σ
(L)
θθ − σ

(L)
rr

r
dr.

The conditions of no stresses on the inner and outer surface of the composite artery
and the equilibrium equations in the semi-indefinite form allow the computation of p(I)

and p(A):

σ(I)
rr (a(I)) = 0 ⇒ p(I) = [c(I) + 4(1− 2A(I) −B(I))ψ

′(I)
4 ]λ(I)2

r +

∫ r

a(I)

σ
(I)
rr − σ(I)

θθ

r
dr, (5)

σ(A)
rr (b(A)) = 0 ⇒ p(A) = [c(A) + 4(1− 2A(A) −B(A))ψ

′(A)
4 ]λ(A)2

r +

∫ b(A)

r

σ
(A)
θθ − σ

(A)
rr

r
dr.
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Equilibrium equations for separate layers in the form of definite integrals are expressed
as follows

σ(I)
rr (b(I))−����

�:0
σ(I)
rr (a(I)) =

∫ b(I)

a(I)

σ
(I)
θθ − σ

(I)
rr

r
dr,

σ(M)
rr (b(M))− σ(M)

rr (a(M)) =

∫ b(M)

a(M)

σ
(M)
θθ − σ

(M)
rr

r
dr, (6)

��
���

�:0
σ(A)
rr (b(A))− σ(A)

rr (a(A)) =

∫ b(A)

a(A)

σ
(A)
θθ − σ

(A)
rr

r
dr.

The interface conditions σ
(I)
rr (b(I)) = σ

(M)
rr (a(M)) and σ

(M)
rr (b(M)) = σ

(A)
rr (a(A)), in turn,

allow to reduce the above system to the following single integral equation∫ b(I)

a(I)

σ
(I)
θθ − σ

(I)
rr

r
dr +

∫ b(M)

a(M)

σ
(M)
θθ − σ

(M)
rr

r
dr +

∫ b(A)

a(A)

σ
(A)
θθ − σ

(A)
rr

r
dr = 0, (7)

which needs to be satisfied and, thus, it imposes some restrictions on the geometry of
the problem. The last unknown of the system p(M) can be determined from either of
the interface conditions as a function of the radial coordinate r. Here we use σ

(I)
rr (b(I)) =

σ
(M)
rr (a(M)), which yields

p(M) = [c(M) +4(1−2A(M)−B(M))ψ
′(M)
4 ]λ(M)2

r +

∫ b(I)

a(I)

σ
(I)
rr − σ(I)

θθ

r
dr+

∫ r

a(M)

σ
(M)
rr − σ(M)

θθ

r
dr.

(8)

3 Loaded stress state: solution procedure

To describe the loaded state of the composite aorta we employ the following deformation
field 

ρ =

√
r2 − a2

I

λz
+ ρ2

a,

ϑ = θ,

ζ = λzz,

(9)

which captures both inflation and extension. Particularly, parameter λz will be used
to descibe the deformations due to axial loadings. The unloaded geometry can be
described as r ∈ [aI , bA], θ ∈ [0, 2π], z ∈ [−l, l], and the deformed geometry as ρ ∈
[ρa, ρb] = [ρ(aI), ρ(bA)], ϑ ∈ [0, 2π], ζ ∈ [−η, η]. Cylindrical coordinate system {ρ, ϑ, ζ}
describes the deformed body configuration. The deformation gradient Fload is expressed
as

Fload =
r

ρλz
eρ ⊗ er +

ρ

r
eϑ ⊗ eθ + λzeζ ⊗ ez. (10)
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In order to account for residual stresses, it is necessary to consider residual defor-
mations of individual layers described via the following deformation gradients

F(I)
res =

R

rk(I)λ
(I)
z

er ⊗ ER +
k(I)r

R
eθ ⊗ EΘ + λ(I)

z ez ⊗ EZ ,

F(M)
res =

πL(M)R

rk(M)βl(M)
er ⊗ ER +

rβ

L(M)
eθ ⊗ EZ +

l(M)k(M)

πR
ez ⊗ EΘ, (11)

F(A)
res =

L
(A)
2

πrλ
(A)
z

er ⊗ EX +
πr

L
(A)
2

eθ ⊗ EY + λ(A)
z ez ⊗ EZ .

Then, the multiplicative decomposition rule is used to describe the stress state of the
loaded and residually stressed aortic layers, i.e.

F
(L)
res&load = FloadF

(L)
res (L = I, M, A), (12)

so that the left Cauchy-Green tensor is

B
(L)
res&load = F

(L)
res&load

(
Fres&load

)(L)T
= λ(L)2

ρ eρ ⊗ eρ + λ
(L)2

ϑ eϑ ⊗ eϑ + λ
(L)2

ζ eζ ⊗ eζ . (13)

Following the same approach as for the residually stressed configuration, the stresses
for the loaded and residually stressed configuration can then be expressed as

σ(L)
ρρ = [c(L) + 4(1− 2A(L) −B(L))ψ

′(L)
4 ]λ(L)2

ρ − p̃(L),

σ
(L)
ϑϑ = [c(L) + 4(A(L) +B(L) cos2 α(L))ψ

′(L)
4 ]λ

(L)2

ϑ − p̃(L), (14)

σ
(L)
ζζ = [c(L) + 4(A(L) +B(L) sin2 α(L))ψ

′(L)
4 ]λ

(L)2

ζ − p̃(L).

The corresponding equilibrium equations are

dσ
(L)
ρρ

dρ
+
σ

(L)
ρρ − σ(L)

ϑϑ

ρ
= 0, (15)

with the interface conditions between the layers of the aorta

σ(I)
ρρ (ρ(b(I))) = σ(M)

ρρ (ρ(a(M))), σ(M)
ρρ (ρ(b(M))) = σ(A)

ρρ (ρ(a(A))), (16)

and the boundary conditions, which imply blood flow pressure P on the inner surface
of the cylinder and no stress on its outer surface

σ(I)
ρρ (ρa) = P, σ(A)

ρρ (ρb) = 0. (17)

For given values of pressure P and axial stretch λz, this boundary-value problem can be
resolved using the same approach as described above (Section 2 of the supplementary
material).
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4 Residual stress state: classical opening angle

method

In the classical opening angle method, aortic rings are cut along the thickness to release
stress. To model that we assume that the aortic wall is homogeneous (labeled as (W)
and standing for “wall”) and its zero-stress state is given by the sector

R ∈ [A(W), B(W)], Θ ∈ [α(W), 2π − α(W)], Z ∈ [−L(W), L(W)]. (18)

The sector is then closed into the ring

r ∈ [a(W), b(W)], θ ∈ [0, 2π], z ∈ [−l, l]. (19)

The deformation field necessary to deform a sector into the ring is given by
r =

√
R2 − A(W)2

k(I)λ
(W)
z

+ a(W)2 ,

θ = k(W)(Θ− α(W)
0 ),

z = λ
(W)
z Z.

(20)

Here λ
(W)
z = l/L(W) is a constant stretch in the axial direction, while k(W) = π/(π−α(W)

0 )
is the opening angle measure. The deformation gradient F(W) can be expressed as

F(W) =
R

rk(W)λ
(W)
z

er ⊗ ER +
k(W)r

R
eθ ⊗ EΘ + λ(W)

z ez ⊗ EZ . (21)

Since F(W) is diagonal, the left Cauchy-Green deformation tensor B(W) = F(W)F(W)T

has the same diagonal elements as C(W), and the principal stretches in the radial and
the circumferential directions are

λ(W)
r =

R

rk(W)λ
(W)
z

, λ
(W)
θ =

k(W)r

R
. (22)

The corresponding stresses can be determined as

σ(W)
rr = [c(W) + 4(1− 2A(W) −B(W))ψ

′(W)
4 ]λ(W)2

r − p(W),

σ
(W)
θθ = [c(W) + 4(A(W) +B(W) cos2 α(W))ψ

′(W)
4 ]λ

(W)2

θ − p(W), (23)

σ(W)
zz = [c(W) + 4(A(W) +B(W) sin2 α(W))ψ

′(W)
4 ]λ(W)2

z − p(W).

The equilibrium equation is

dσ
(W)
rr

dr
+
σ

(W)
rr − σ(W)

θθ

r
= 0. (24)

Zero-stress boundary condition on the inner surface of the aorta σ
(W)
rr (a(W)) = 0 allows

to determine the Lagrange multiplier p(W) as a function of r

p(W) = [c(W) + 4(1− 2A(W) −B(W))ψ
′(W)
4 ]λ(W)2

r +

∫ r

a(W)

σ
(W)
rr − σ(W)

θθ

r
dr, (25)

while the remaining zero-stress boundary condition on the outer surface of the aorta
σ

(W)
rr (b(W)) = 0 has to be satisfied.
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