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Appendix A. Auxiliary proofs
Proof of Lemma 2: Let us add (3.2) and (3.3) to their respective complex conjugates. Since G, ρ
and λ̃◦n are real-valued, we find that

−∇·
(
G∇(φ̃◦n + φ̃◦n)

)
= λ̃◦nρ(φ̃◦n + φ̃◦n) in Y,

ν ·G∇(φ̃◦n + φ̃◦n)|xj=0 = −ν ·G∇(φ̃◦n + φ̃◦n)|xj=`j

 =⇒ φ̃◦n + φ̃◦n = c φ̃◦n, c= const.

i.e. that arg(cφ̃◦n(x)) = 0. On taking c∈R, we obtain Im(φ̃◦n) = 0 which completes the proof. �

Proof of Lemma 3: On recalling (3.2) and the fact that φ̃◦n is taken as real-valued by Lemma 2, we
compute the difference between (3.14) and its complex conjugate to show that

λ̃◦nρ(χ(1) − χ(1)) +∇·
(
G∇(χ(1) − χ(1))

)
= 0 in Y

ν ·G∇(χ(1) − χ(1))|xj=0 = −ν ·G∇(χ(1) − χ(1))|xj=`j

}
=⇒ χ(1) − χ(1) = cφ̃◦n,

for some vector constant c. However, one also has c= 〈cφ̃◦n〉= 〈χ(1) − χ(1)〉= 〈χ(1)〉 − 〈χ(1)〉 ≡ 0,
which establishes the claim. �

Proof of Lemma 4: On multiplying (3.22) by χ(1) and integrating by parts, we obtain

λ̃an

∫
Y
ρη(0)χ(1) dx −

∫
Y
G∇η(0) ·∇χ(1) dx =

∫
Y

( 〈1〉
ρ(0)

ρϕ̃a
n − 1

)
χ(1)dx. (A.1)

Integrating by parts one more time, the second term on the left-hand side becomes

−
∫
Y
G∇η(0) ·∇χ(1) dx = −

∫
Y
∇η(0) ·G

(
∇χ(1) + Iϕ̃a

n

)
dx+

∫
Y
∇η(0)Gϕ̃a

n dx

=

∫
Y
η(0)∇·

(
G
(
∇χ(1) + Iϕ̃a

n

))
dx+

∫
Y
∇η(0)Gϕ̃a

n dx

= − λ̃an
∫
Y
η(0)ρχ(1) dx−

∫
Y
η(0)G∇ϕ̃a

n dx+

∫
Y
∇η(0)Gϕ̃a

n dx.

By virtue of this result and the fact that ϕ̃a
n and χ(1) are real-valued, (A.1) reduces to

〈G∇η(0)〉 − (Gη(0),∇ϕ̃a
n) =

1

ρ(0)
((〈1〉ρϕ̃a

n − ρ(0))χ(1), 1) =
〈1〉
ρ(0)
ρ(1) − (χ(1), 1).

�

Proof of Lemma 5: By way of (3.18), field equation (3.26) can be recast as

−
(
µ(0): (ik̂)2 + σρ(0) ω̂2)w1 −

(
µ(1)− 1

ρ(0)
{ρ(1)⊗ µ(0)}

)
: (ik̂)3w0 = − (χ(1), 1) · ik̂. (A.2)

On recalling (3.14) and (3.21), however, one can conveniently symmetrize and integrate by parts
their weighted difference

({
(3.21)⊗ χ(1) − (3.14)⊗ χ(2)

}
, 1
)
. Noting in particular that({

∇·
(
G
(
∇χ(2) + {I ⊗ χ(1)}′

))
⊗ χ(1)}, 1) = −

({
G(∇χ(1))T · ∇χ(2)}, 1)− ({G(∇χ(1))T⊗ χ(1)}, 1),({

∇·
(
G(∇χ(1) + Iφ̃◦n)

)
⊗ χ(2)}, 1) = −

({
G(∇χ(1))T · ∇χ(2)}, 1)− ({G∇χ(2) φ̃◦n

}
, 1
)
,

where “(·)T” denotes tensor transpose, we obtain ρ(0)µ(1) = {ρ(1)⊗ µ(0)} thanks to the fact that ϕ̃a
n is

real-valued. A substitution of the last result into (A.2) immediately recovers (3.29). �

Proof of Lemma 6: The first claim is a direct result of Lemma 3 since (5.19) is a replica of (3.14)
with Y and φ̃◦n replaced by Ya and ϕ̃a

n, respectively. On the other hand, the inner product of (4.22)
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with ϕ̃a
n reads

−
(
λ̃◦nρw̃1, ϕ̃

a
n

)
−
(
∇·
(
G(∇w̃1 + ik̂w̃0)

)
, ϕ̃a
n

)
= w0

(
ik̂ ·(G∇ϕ̃a

n), ϕ̃a
n

)
+ w0

(
ρϕ̃a

n, ϕ̃
a
n

)
σω̆2, (A.3)

thanks to (4.21). On exercising repeated integration by parts and recalling (4.21) anew, the second
term on the left-hand side of (A.3) is computed as

−
(
∇·
(
G(∇w̃1 + ik̂w̃0)

)
, ϕ̃a
n

)
= −

(
∇·
(
G(∇w̃1 + ik̂w̃0)ϕ̃a

n

)
, 1
)

+
(
∇·
(
G∇ϕ̃a

n w̃1
)
, 1
)
−
(
w̃1,∇·(G∇ϕ̃a

n)
)

+ w0(ik̂Gϕ̃a
n,∇ϕ̃a

n), (A.4)

since ϕ̃a
n = ϕ̃a

n, see Remark 7. The first (resp. second) term on the right-hand side of (A.4) vanishes
thanks to (i) the divergence theorem, (ii) boundary condition (4.17) with m= 1 (resp. the flux
boundary condition in (4.8)), and (iii) the fact that ϕ̃a

n (resp. w̃1) is an element of H1
p(Ya). On

rewriting the third term on the right-hand side of (A.4) as −
(
w̃1,∇·(G∇ϕ̃a

n)
)

=
(
λ̃anρw̃1, ϕ̃

a
n

)
by

way of (4.7) and substituting the result back into (A.3), we find that

σω̆2(ρϕ̃a
n, ϕ̃

a
n

)
w0 =

[(
ik̂Gϕ̃a

n,∇ϕ̃a
n

)
−
(
ik̂ ·(G∇ϕ̃a

n), ϕ̃a
n

)]
w0 ≡ 0 =⇒ ω̆w0 = 0 (A.5)

since ϕ̃a
n is real-valued and

(
ρϕ̃a

n, ϕ̃
a
n

)
> 0. To preserve the leading-order solution, one must

have ω̆= 0 which completes the proof. �

Proof of Lemma 7: We premultiply the conjugate transpose of (5.11) by
∑
p w0p, and we subtract

the result from (5.11) premultiplied by
∑
p w0p. On relabeling dummy indexes, we obtain∑

p

∑
q

w0p
(
Apq −Apq

T)
w0q − (τ − τ)

∑
q

w0pDpqw0q = 0.

Since Apq is Hessian and Dpq is positive definite, we find that τ = τ which establishes the first
claim. By virtue of this result and the fact that Apq =−Apq , we next take the complex conjugate
of (5.11) to show that the latter also holds withw0q and τ superseded byw0q and−τ , respectively.
Finally, we note that for Q odd, there is at least one eigenvalue such that τ =−τ , whereby the
maximum rank of Apq in this case is Q− 1. �

Proof of Lemma 8: We integrate (4.25)⊗χ(1)
p by parts over Ya to obtain(

Gϕ̃a
nq∇χ(1)

p , 1
)
Ya
−
(
G∇ϕ̃a

nq ⊗ χ(1)
p , 1

)
Ya

= λ̃n
(
ρχ(1)

q ⊗ χ
(1)
p , 1

)
Ya
−
(
G∇χ(1)

q ·∇χ
(1)
p , 1

)
Ya
.

The proof then immediately follows from (5.21) upon rewriting µ(0)
pq as

µ(0)
pq =

(
G{ϕ̃a

np∇χ(1)
q }, 1

)
Ya
−
(
G{∇ϕ̃a

np ⊗ χ(1)
q }, 1

)
Ya

+ I
(
Gϕ̃a

np ϕ̃
a
nq, 1

)
Ya
.

�

Proof of Lemma 10: We first recall that Apq is real-valued symmetric and that Bpq is imaginary
skew-symmetric, whereby there exists a real-valued orthogonal matrix Rpq with the sought
properties in each case. Next, we demonstrate the invariance of ρ(0) under transformation (5.33)
by observing from (5.30) that∑

p

ρ̃(0)
p =

∑
p,r

Tprρ
(0)
r T

T
rp = ρ(0)

∑
r

ρ(0)
r

∑
p,q,s

RpqD
-1/2
qr RpsD

-1/2
sr = ρ(0)Q =

∑
r

ρ(0)
r .

To show the uniqueness of ˜̃ϕa
nq when Mpq (M =A,B) has no repeated eigenvalues, we let

π̃anq = (ρ(0)/ρ(0)
q )1/2 ϕ̃a

nq, q= 1, Q (no summation)

be the rescaled eigenfunction basis satisfying (ρπ̃anq, π̃
a
nr)Ya

= δqrρ
(0), and we note that all such

orthonormal bases can be “rotated” into one another by some orthogonal transformation Wpq .
Next, we restart the analysis from ρ-orthogonal basis ϕ̃a′

nq that is distinct from ϕ̃a
nq , but normalized

so that (ϕ̃a′
nq, ϕ̃

a′
nq)Ya

= 1 as before. In this case, we find that ρ(0)′ = ρ(0) by the earlier argument and
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that
ϕ̃a′
nq =

∑
r

Vqr ϕ̃
a
nr, Vqr =

∑
t,s

D′1/2
qt WtsD

-1/2
sr , q, r= 1, Q,

whereWts is orthogonal andD′qt is the “mass matrix”Dqt computed for basis ϕ̃a′
nq . As a result, the

counterpart of Rpq in (5.33) computed for ϕ̃a′
nq reads R′pq =

∑
sRpsW

T
sq and consequently ˜̃ϕa′

nq =
√
ρ(0)
∑
r,sR

′
qrD

′-1/2
rs ϕ̃

a′
ns = ˜̃ϕa

nq , as long as Mpq has no repeated eigenvalues which guarantees the
uniqueness of Rps.

On substituting (5.33) into the transformation rule for dyads Mpq in (5.31), we immediately
recover both (5.34) and the claimed orthonormality of ˜̃ϕa

nq . Finally, the invariance of Ãpq and B̃pq
in (5.34) is demonstrated by an argument similar to that used to establish the uniqueness of ˜̃ϕa

nq ,
noting in particular that ρ(0)∑

r,sD
-1/2
prMrsD

-1/2
sq due to ϕ̃a

nq and ρ(0)∑
r,sD

′-1/2
pr M

′
rsD

′-1/2
sq due to ϕ̃a′

nq

share the same eigenvalues λM
p (M =A,B) irrespective of their multiplicity. �
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Appendix B. Application to polyatomic chains
Consider a periodic chain of alternating masses and springs whose unit cell containsN massesmj

(j = 1, N ) that are spatially separated by ∆x= `/N . We denote by cj the stiffness of spring
connecting mj and mj+1. The chain is excited by a “plane-wave” body force with frequency ω
and wavenumber k such that mass mj , with spatial coordinate xl (l ∈Z), is subjected to external
force f̃ ei(kxl−ωt). Without loss of generality, we write l= j for the reference unit cell and omit the
time factor e−iωt, which gives the balance of linear momentum as

− ω2mjuj + (cj+cj−1)uj − cj−1uj−1 − cjuj+1 = f̃ eikxj , j = 1, N (B.1)

where uj is the displacement of the jth mass. By analogy to (2.3), we seek the Bloch-wave
solution uj = ũje

ikxj where ũj is N -periodic. This reduces (B.1) to∑
j

(
Clj(ik)− ω2Mlj

)
ũj = f̃ , l= 1, N, (B.2)

where Mlj is a diagonal mass matrix; i=
√
−1; k is the wave number, and Clj(ik) is a

Hermitian stiffness matrix that depends on wavenumber k. On setting f̃ = 0, (B.2) yields the
eigenvalues λn(k) = ω2

n(k) and affiliated eigenvectors φnj (k)∈R (j, n= 1, N ) for the chain. In this
setting, the definition of effective motion (2.15) near point (ωn, 0) in the frequency-wavenumber
domain degenerates to

〈u〉 =
∑
j

ũjφ
n
j , φnj = φnj (0);

a formula that is readily generalized to include both “apex” points (ωn, π/`), repeated
eigenvalues, and nearby eigenvalues by applying the developments from Section 4, Section 5,
and Section 6, respectively. Then, by way of scalings

k = ka+ εk̂, ω2 = λ̃an + εσω̆2 + ε2σω̂2, ka ∈ {0, π/`}, ε = o(1), σ=±1,

and the asymptotic expansion ũj = ε−2ũj0 + ε−1ũj1 + ũj2 + εũj3 + · · · , (B.2) can be expanded
in powers of ε to produce a cascade of matrix equations that form the basis for establishing both
leading- and second-order descriptions of the effective motion.

Remark 1. The exact dispersion relationship due to (B.2) reads cos(k`) = 1−P(ω), where P is a real-
valued polynomial of degree 2N . Inside (the positive half of) the first Brillouin zone, this relationship can
be inverted as k`= g(ω), where g(ω) = cos−1(1−P(ω)) is a single-valued function mapping {ω ∈R+:

0<P(ω)< 2} to (0, π/`). In light of Theorem 3, repeated eigenvalues at ka with multiplicity Q> 2 are
thus not possible in a polyatomic chain for each such situation would violate the single-valuedness of g(ω).

Remark 2. When Q= 2 at ka ∈ {0, π/`}, we find that dk/dω= `−1[P (ω)(2−P (ω))]−1/2P ′(ω) is
bounded at ka, i.e. that |dω/dk|> 0 there. By Theorem 3, this further precludes the situations with Q= 2

and rank(Apq) = 0 in a polyatomic chain.
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Appendix C. Comparison with the results in [11]
To evaluate the effective parameters ρ(0), µ(0), ρ(2), µ(2) and µ(0)

pq for a chessboard-like medium
according to (4.28), (4.33), (5.21) and (5.32), eigenfunctions ϕ̃a

n(x) and cell functions χ(m)(x)

(m=1, 2, 3) are computed using the finite element platform NGSolve [28]. The unit cell (either Y
or Ya, depending on the apex) is discretized using fourth-order finite elements, with the
maximum element size bounded from above by 0.05|Y |1/2. Before examining the general case
with variable shear modulus and mass density, we first evaluate the effective tensor T =µ(0)/ρ(0)

for a medium with constant shear modulus as in [11] by taking `1=`2=2, G= (1, 1, 1, 1), and r=

(1, 101, 201, 101). This particular configuration, while bearing little relevance from the viewpoint
of elastic solids, is nonetheless useful as a vehicle to verify the numerical implementation.

Remark 3. At this point, we recall our premise that |Y |= 1. This limitation can, however, be handled
with little difficulty; for instance, at every apex ka with a 6= 0, the foregoing results remain valid for
any |Y |>0 by taking |Ya|= |Y |

∏d
j=1(1+aj) in lieu of the measure given in (4.6). When a= 0, a similar

modification (omitted herein for brevity) can be implemented.

For all apex points and solution branches under consideration, we find by simulations that:
(i) T is diagonal when the eigenvalue is simple; (ii) so are tensors Tpq =µ(0)

pq/ρ
(0) (using the

eigenfunction basis as in Lemma 10) when the eigenvalue is repeated, and (iii) Tpq = 0 for p 6= q.
In this setting, Table C.1 compares the present results with those in [11] at apexes A, B, and C

for the first four solution branches. For brevity of notation, we refer to the effective tensors T11
and T22 simply as “T ” when listing the results for repeated eigenvalues. As can be seen from the
display, there is a good overall agreement between the two sets of results.

Table C.1. Non-trivial components of the effective tensor T =µ(0)/ρ(0) at apexes A, B, and C for the first four branches

versus the values obtained in [11], assuming a chessboard-like medium as in Fig. 3 with `1=`2=2, G= (1, 1, 1, 1)

and r= (1, 101, 201, 101). For clarity, all instances of repeated eigenvalues (Q= 2) are indicated by an asterisk.

Apex a ωn T [1, 1] T [2, 2] T [2, 2] [11] T [2, 2] [11]

A (0,0) 0.2853∗ −0.1605 0.0046 −0.1605 0.0046

A – 0.2853∗ 0.0046 -0.1605 0.0046 −0.1605

A – 0.3098∗ 0.1723 0.0052 0.1723 0.0052

A – 0.3098∗ 0.0052 0.1723 0.0052 0.1723

B (1,0) 0.1339 −0.0541 0.0069 −0.0542 0.0068

B – 0.1784 0.0692 0.0107 0.0692 0.0107

B – 0.2946 −0.0066 -0.1289 −0.0066 −0.1289

B – 0.3192 −0.0067 0.1430 −0.0067 0.1430

C (1,1) 0.1716 −0.0254 -0.0254 −0.0254 −0.0254

C – 0.2156∗ 0.0397 -0.0220 0.0400 −0.0220

C – 0.2156∗ −0.0220 0.0397 −0.0220 0.0400

C – 0.3118 0.0401 0.0401 0.0401 0.0401

References
11. R.V. Craster, J. Kaplunov, E. Nolde and S. Guenneau (2011). High-frequency homogenization

for checkerboard structures: defect modes, ultrarefraction, and all-angle negative refraction,
J. Opt. Soc. Am. A 28, 1032–1040.

28. J. Schöberl (2014). C++11 Implementation of Finite Elements in NGSolve, ASC Report 30/2014,
Institute for Analysis and Scientific Computing, Vienna University of Technology.



6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Appendix D. Effective description of nearby dispersion branches

(a) Tetratomic chain
Consider first the tetratomic chain behavior featuring Q= 2 nearby eigenvalues at k`= π, see the
circled region in Fig 2(b). We pursue asymptotic expansion about the first (i.e. bottom) eigenvalue
at k`= 1, which yields γ1 = 0, γ2 = 0.073487, and

[Apq] =

[
0 0.008724

−0.008724 0

]
k̂, [γqDpq] =

[
0 0

0 0.073487

]
. (D.1)

Accordingly we find that rank(Aγpq) = 2, whereby the “twin cones” model (6.13) applies. For
completeness, we note that alternative expansion about the second (i.e. top) eigenvalue at k`= 1

only reverses the sign of Apq and Dpq , and consequently does not affect the result shown in
Fig. 6(a).

(b) Chessboard-like solid
For the cluster of Q= 3 nearby eigenvalues at apex A of the chessboard medium (branches 3–5
in Fig. 4), we expand about the (repeated) fourth eigenvalue at ka = 0, which yields γ1 = γ2 = 0,
γ3 =−1.508519, and

[Apq] =

 0 0 8.730555

0 0 −8.349118

−8.730555 8.349118 0

 ‖k̂‖ for
k̂

‖k̂‖
= (1, 0), (D.2)

[Apq] =

 0 0 −0.269717

0 0 −12.077152

0.269717 12.077152 0

 ‖k̂‖ for
k̂

‖k̂‖
= 1√

2
(1, 1), (D.3)

[γqDpq] =

0 0 0

0 0 0

0 0 −1.536198

 , (D.4)

which demonstrate that rank(Aγpq) = 2. In this case, we also find that θ12 = θ21 = 0, θ13 ⊥ θ23,
and ‖θ13‖= ‖θ23‖= 12.08016. This allows us to identify “rotation” (5.29) of the eigenfunction
basis, affecting only the first two eigenfunctions (representing the fourth and the fifth branch), so
that (5.22) holds in each direction k̂/‖k̂‖. After such “rotations”, we obtain D̃pq =Dpq and

[Ãpq] =

0 0 0

0 0 12.08016

0 −12.08016 0

 ‖k̂‖ for
k̂

‖k̂‖
= (1, 0), (D.5)

[Ãpq] =

0 0 0

0 0 12.08016

0 −12.08016 0

 ‖k̂‖ for
k̂

‖k̂‖
= 1√

2
(1, 1), (D.6)

according to (5.30). We note that the transformed matrix Ãpq is the same in both directions;
however the applied “rotation” (5.29) is different in each case. This suggests a mixing of phonons
that is dependent on k̂/‖k̂‖. By virtue of (D.5) and (D.6), we find that the “parabola with cones”
model (6.19)–(6.20) applies uniformly in all perturbation directions.
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