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Appendix A Derivation of mono-molecular chain mean

and variances using the chemical mas-

ter equation

In this section, we provide an example on how to derive moments of the chemical master
equation (CME) solution without explicit CME evaluation. The presented analysis is
specific to the two species mono-molecular chain model as presented in the main text.
Our approach is based on the examples from Erban et al. [2], however, the result is more
complex since we deal with a two chemical species, A and B.
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For convenience, we restate the model. Here we consider a two species mono-molecular
chain,

∅ k1→ A
k2→ B

k3→ ∅, (A.1)

with known kinetic rate parameters k1, k2 and k3. Given the state vector, X(t) =
[A(t), B(t)]T , the respective propensity functions are

a1(X(t)) = k1, a2(X(t)) = k2A(t), a3(X(t)) = k3B(t). (A.2)

The stoichiometric vectors are

ν1 =

[
1
0

]
, ν2 =

[
−1
1

]
, ν3 =

[
0
−1

]
. (A.3)

For P (x, t | x0) = P(X(t) = x | X(0) = x0), the general form of the CME is

dP (x, t | x0)

dt
=

M∑
j=1

aj(x− νj)P (x− νj, t | x0)− P (x, t | x0)
M∑
j=1

aj(x). (A.4)

After substituting the propensity functions (Equation (A.2)) and stoichiometric vectors
(Equation (A.3)) into Equation (A.4), we obtain the CME specific to the mono-molecular
chain model (Equation (A.1))

dP (a, b, t | a0, b0)
dt

= k1P (a− 1, b, t | a0, b0) + k2(a+ 1)P (a+ 1, b− 1, t | a0, b0) (A.5)

+ k3(b+ 1)P (a, b+ 1, t | a0, b0)− (k1 + k2a+ k3b)P (a, b, t | a0, b0).

Henceforth, we will denote pa,b(t) as the solution to the mono-molecular CME (Equa-
tion (A.5)).

Rather than solve the full CME, we seek a solution to the mean copy number of A at
time t,

Ma(t) =
∞∑
a=0

∞∑
b=0

apa,b(t), (A.6)

the mean copy number of B at time t,

Mb(t) =
∞∑
a=0

∞∑
b=0

bpa,b(t), (A.7)

the variance of A at time t,

Va(t) =
∞∑
a=0

∞∑
b=0

(a−Ma(t))
2 pa,b(t), (A.8)

the variance of B at time t,

Vb(t) =
∞∑
a=0

∞∑
b=0

(b−Mb(t))
2 pa,b(t), (A.9)

and the covariance of A and B at time t,

Ca,b(t) =
∞∑
a=0

∞∑
b=0

(a−Ma(t)) (b−Mb(t)) pa,b(t). (A.10)
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We will derive a system of ODEs that describe the evolution of Ma(t),Mb(t), Va(t),
Vb(t), and Ca,b(t) without explicitly solving the CME in Equation (A.5). Instead we
exploit the linearity of the derivative along with the property,

∞∑
a=0

∞∑
b=0

pa,b(t) = 1, (A.11)

for all t.
To derive an ODE for Ma(t), we multiply Equation (A.5) by a and sum over all a and

b.

d

dt

[
∞∑
a=0

∞∑
b=0

apa,b(t)

]
=
∞∑
a=1

∞∑
b=0

k1apa−1,b(t) +
∞∑
a=0

∞∑
b=1

k2a(a+ 1)pa+1,b−1(t)

+
∞∑
a=0

∞∑
b=0

k3a(b+ 1)pa,b+1(t)−
∞∑
a=0

∞∑
b=0

a(k1 + k2a+ k3b)pa,b(t).

After changing indices (a−1→ a in the first term, a+1→ a and b−1→ b in the second
term, and b+ 1→ b in the third term), we obtain

d

dt

[
∞∑
a=0

∞∑
b=0

apa,b(t)

]
=
∞∑
a=0

∞∑
b=0

k1(a+ 1)pa,b(t) +
∞∑
a=0

∞∑
b=0

k2(a− 1)apa,b(t)

+
∞∑
a=0

∞∑
b=0

k3abpa,b(t)−
∞∑
a=0

∞∑
b=0

a(k1 + k2a+ k3b)pa,b(t).

We simplify the right hand side,

d

dt

[
∞∑
a=0

∞∑
b=0

apa,b(t)

]
= k1

∞∑
a=0

∞∑
b=0

pa,b(t)− k2
∞∑
a=0

∞∑
b=0

apa,b(t),

and apply property (A.11) to give

d

dt

[
∞∑
a=0

∞∑
b=0

apa,b(t)

]
= k1 − k2

∞∑
a=0

∞∑
b=0

apa,b(t).

Using the definition of Ma(t) (Equation (A.6)), we obtain the ODE for the mean of A,

dMa(t)

dt
= k1 − k2Ma(t). (A.12)

Similarly, we derive an ODE for Mb(t) by muliplying Equation (A.5) by b and proceed
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in the same manner as we did for Ma(t)

d

dt

[
∞∑
a=0

∞∑
b=0

bpa,b(t)

]
=
∞∑
a=1

∞∑
b=0

k1bpa−1,b(t) +
∞∑
a=0

∞∑
b=1

k2b(a+ 1)pa+1,b−1(t)

+
∞∑
a=0

∞∑
b=0

k3b(b+ 1)pa,b+1(t)−
∞∑
a=0

∞∑
b=0

b(k1 + k2a+ k3b)pa,b(t)

=
∞∑
a=0

∞∑
b=0

k1bpa,b(t) +
∞∑
a=0

∞∑
b=0

k2(b+ 1)apa,b(t)

+
∞∑
a=0

∞∑
b=0

k3(b− 1)bpa,b(t)−
∞∑
a=0

∞∑
b=0

b(k1 + k2a+ k3b)pa,b(t)

= k2

∞∑
a=0

∞∑
b=0

apa,b(t)− k3
∞∑
a=0

∞∑
b=0

bpa,b(t).

Using the definitions of Ma(t) (Equation (A.6)) and Mb(t) (Equation (A.13)) we obtain
the ODE for the mean of B,

dMb(t)

dt
= k2Ma(t)− k3Mb(t). (A.13)

To derive the ODE for Va(t), first note that through expanding Equation (A.8) it can
be shown that

Va(t) +Ma(t)
2 =

∞∑
a=0

∞∑
b=0

a2pa,b(t). (A.14)

Thus, we multiply Equation (A.5) by a2, sum over all a and b, change indices, and simplify
as follows,

d

dt

[
∞∑
a=0

∞∑
b=0

a2pa,b(t)

]
=
∞∑
a=1

∞∑
b=0

k1a
2pa−1,b(t) +

∞∑
a=0

∞∑
b=1

k2a
2(a+ 1)pa+1,b−1(t)

+
∞∑
a=0

∞∑
b=0

k3a
2(b+ 1)pa,b+1(t)−

∞∑
a=0

∞∑
b=0

a2(k1 + k2a+ k3b)pa,b(t)

=
∞∑
a=0

∞∑
b=0

k1(a+ 1)2pa,b(t) +
∞∑
a=0

∞∑
b=0

k2(a− 1)2apa,b(t)

+
∞∑
a=0

∞∑
b=0

k3a
2bpa,b(t)−

∞∑
a=0

∞∑
b=0

a2(k1 + k2a+ k3b)pa,b(t)

= k1

∞∑
a=0

∞∑
b=0

pa,b(t) + (2k1 + k2)
∞∑
a=0

∞∑
b=0

apa,b(t)− 2k2

∞∑
a=0

∞∑
b=0

a2pa,b(t)

= k1 + (2k1 + k2)
∞∑
a=0

∞∑
b=0

apa,b(t)− 2k2

∞∑
a=0

∞∑
b=0

a2pa,b(t).

Using the definition of Ma(t) (Equation (A.12)) and property (A.14), we have the ODE,

d

dt

[
Va(t) +Ma(t)

2
]

= k1 + (2k1 + k2)Ma(t)− 2k2
(
Va(t) +Ma(t)

2
)
.
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Apply the chain rule to obtain,

dVa(t)

dt
= −2Ma(t)

dMa(t)

dt
+ k1 + (2k1 + k2)Ma(t)− 2k2

(
Va(t) +Ma(t)

2
)
, (A.15)

then substitute Equation (A.12) into Equation (A.15) and simplify to arrive at the ODE
for the variance of A,

dVa(t)

dt
= k1 + k2Ma(t)− 2k2Va(t). (A.16)

Similarly, to derive the ODE for Vb(t) we note that through expanding Equation (A.9)
and Equation (A.10) it can be shown that

Vb(t) +Mb(t)
2 =

∞∑
a=0

∞∑
b=0

b2pa,b(t), (A.17)

and

Ca,b(t) +Ma(t)Mb(t) =
∞∑
a=0

∞∑
b=0

abpa,b(t). (A.18)

Thus, we multiply Equation (A.5) by b2, sum over all a and b, change indices, and simplify
as follows,

d

dt

[
∞∑
a=0

∞∑
b=0

b2pa,b(t)

]
=
∞∑
a=1

∞∑
b=0

k1b
2pa−1,b(t) +

∞∑
a=0

∞∑
b=1

k2b
2(a+ 1)pa+1,b−1(t)

+
∞∑
a=0

∞∑
b=0

k3b
2(b+ 1)pa,b+1(t)−

∞∑
a=0

∞∑
b=0

b2(k1 + k2a+ k3b)pa,b(t)

=
∞∑
a=0

∞∑
b=0

k1b
2pa,b(t) +

∞∑
a=0

∞∑
b=0

k2(b+ 1)2apa,b(t)

+
∞∑
a=0

∞∑
b=0

k3(b− 1)2bpa,b(t)−
∞∑
a=0

∞∑
b=0

b2(k1 + k2a+ k3b)pa,b(t)

= k2

∞∑
a=0

∞∑
b=0

apa,b(t) + k3

∞∑
a=0

∞∑
b=0

bpa,b(t)

+ 2k2

∞∑
a=0

∞∑
b=0

abpa,b(t)− 2k3

∞∑
a=0

∞∑
b=0

b2pa,b(t).

Using the definitions of Ma(t) (Equation (A.6)) and Mb(t) (Equation (A.7)), and prop-
erties (A.17) and (A.18) we have the ODE

d

dt

[
Vb(t) +Mb(t)

2
]

= k2Ma(t)+k3Mb(t)+2k2 (Ca,b(t) +Ma(t)Mb(t))−2k3
(
Vb(t) +Mb(t)

2
)
.

We apply the chain rule

dVb(t)

dt
= −2Mb(t)

dMb(t)

dt
+ k2Ma(t) + k3Mb(t) (A.19)

+ 2k2 (Ca,b(t) +Ma(t)Mb(t))− 2k3
(
Vb(t) +Mb(t)

2
)
,
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then substitute Equation (A.13) into Equation (A.19) and simplify to obtain the ODE
for the variance of B

dVb(t)

dt
= k2Ma(t) + k3Mb(t) + 2k2Ca,b − 2k3Vb(t). (A.20)

Finally, we derive the ODE for Ca,b(t) by multiplying Equation (A.5) by ab, summing
over all a and b, changing indices, and simplifying as follows:

d

dt

[
∞∑
a=0

∞∑
b=0

abpa,b(t)

]
=
∞∑
a=1

∞∑
b=0

k1abpa−1,b(t) +
∞∑
a=0

∞∑
b=1

k2ab(a+ 1)pa+1,b−1(t)

+
∞∑
a=0

∞∑
b=0

k3ab(b+ 1)pa,b+1(t)−
∞∑
a=0

∞∑
b=0

ab(k1 + k2a+ k3b)pa,b(t)

=
∞∑
a=0

∞∑
b=0

k1(a+ 1)bpa,b(t) +
∞∑
a=0

∞∑
b=0

k2(a− 1)(b+ 1)apa,b(t)

+
∞∑
a=0

∞∑
b=0

k3a(b− 1)bpa,b(t)−
∞∑
a=0

∞∑
b=0

ab(k1 + k2a+ k3b)pa,b(t)

= k1

∞∑
a=0

∞∑
b=0

bpa,b(t)− k2
∞∑
a=0

∞∑
b=0

bpa,b(t)

− (k2 + k3)
∞∑
a=0

∞∑
b=0

abpa,b(t) + k2

∞∑
a=0

∞∑
b=0

a2pa,b(t).

Using the definition of Ma(t) (Equation (A.6)) and Mb(t) (Equation (A.7)), and proper-
ties (A.14) and (A.18) we obtain the ODE

d

dt
[Ca,b(t) +Ma(t)Mb(t)] = k1Ma(t)− k2Mb(t)− (k2 + k3) (Ca,b(t) +Ma(t)Mb(t))

+ k2
(
Va(t) +Ma(t)

2
)
.

Apply the chain rule and product rule

dCa,b(t)

dt
= −Ma(t)

dMb(t)

dt
−Mb(t)

dMa(t)

dt
+ k1Ma(t)− k2Mb(t) (A.21)

− (k2 + k3) (Ca,b(t) +Ma(t)Mb(t)) + k2
(
Va(t) +Ma(t)

2
)
,

then substitute Equation (A.12) and Equation (A.13) into Equation (A.21) and simplify
to obtain the ODE for the covariance of A and B

dCa,b(t)

dt
= k2Va(t)− k2Ma(t)− (k2 + k3)Ca,b(t). (A.22)

Therefore, Equations (A.12),(A.13),(A.16),(A.20), and (A.22) form a non-homogeneous
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linear system of ODEs,

dMa(t)

dt
= k1 − k2Ma(t),

dMb(t)

dt
= k2Ma(t)− k3Mb(t),

dVa(t)

dt
= k1 + k2Ma(t)− 2k2Va(t),

dVb(t)

dt
= k2Ma(t) + k3Mb(t) + 2k2Ca,b(t)− k3Vb(t),

dCa,b(t)

dt
= k2Va(t)− k2Ma(t)− (k2 + k3)Ca,b(t).

After solving for the homogeneous solution, a particular solution may be obtained through
using the method of undetermined coefficients. Given the initial conditions A(0) = a0
and B(0) = b0 with probability one, the solution, in the case when k2 6= k3, is

Ma(t) =
k1
k2

+

(
a0 −

k1
k2

)
e−k2t, (A.23)

Mb(t) =
k1
k3

+
k2a0 − k1
k3 − k2

e−k2t +

(
b0 −

k2a0 − k1
k3 − k2

− k1
k3

)
e−k3t, (A.24)

Va(t) =
k1
k2

+

(
a0 −

k1
k2

)
e−k2t − a0e−2k2t, (A.25)

Vb(t) =
k1
k3

+
k2a0 − k1
k3 − k2

e−k2t +

(
b0 −

k2a0 − k1
k3 − k2

− k1
k3

)
e−k3t +

2a0k
2
2

k23 − k22
e−(k3+k2)t

− a0k2
k3 − k2

e−2k2t +

[
a0k2
k3 − k2

(
1− 2k2

k3 + k2

)
− b0

]
e−2k3t, (A.26)

Ca,b(t) = − a0k2
k3 − k2

e−(k3+k2)t +
a0k2
k3 − k2

e−2k2t. (A.27)

Equations (A.23)–(A.27) are the time dependent solutions for the moments and from
these solutions we can evaluate the long time limit, t→∞, to give simple expression for
the associated stationary solutions,

lim
t→∞

Ma(t) =
k1
k2
,

lim
t→∞

Va(t) =
k1
k2
,

lim
t→∞

Mb(t) =
k1
k3
,

lim
t→∞

Vb(t) =
k1
k3
,

lim
t→∞

Ca,b(t) = 0.

See the example codes DemoCMEMeanVar.m and DemoStationaryDist.m for the evaluation
of this solution.
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Appendix B Evaluation of the mono-molecular chain

chemical master equation solution

Jahnke and Huisinga [5] derive an analytic solution to the CME for a general mono-
molecular BCRN. Applying their general solution to the species mono-molecular chain
(Equation (A.1)) results in the following general solution to the CME (Equation (A.5)),

P (a, b, t | a0, b0) = P (a, b, λa(t), λb(t))∗M (a, b, a0, αa(t), αb(t))∗M (a, b, b0, βa(t), βb(t)) ,
(B.1)

where ∗ is the discrete convolution operation [5]. P (a, b, λa(t), λb(t)) is a product Poisson
distribution, given by

P (a, b, λa(t), λb(t)) =


λa(t)

a

a!

λb(t)
b

b!
e−(|λa(t)|+|λb(t)|), if a ≥ 0, b ≥ 0,

0 otherwise,
(B.2)

where the functions λa(t) and λb(t) are obtained through the initial value problem (IVP)

dλa(t)

dt
= k1 − k2λa(t),

dλb(t)

dt
= k2λa(t)− k3λb(t), t > 0, (B.3)

with initial conditions λa(0) = λb(0) = 0.M (a, b, a0, αa(t), αb(t)) andM (a, b, b0, βa(t), βb(t))
are multinomial distributions, given by

M (a, b, a0, αa(t), αb(t)) =

a0!
(1− |αa(t)| − |αb(t)|)a0−|a|−|b|

(a0 − |a| − |b|)!
αa(t)

a

a!

αb(t)
b

b!
if |a|+ |b| ≤ a0,

0 otherwise,

(B.4)
and

M (a, b, b0, βa(t), βb(t)) =

b0!
(1− |βa(t)| − |βb(t)|)b0−|a|−|b|

(b0 − |a| − |b|)!
βa(t)

a

a!

βb(t)
b

b!
if |a|+ |b| ≤ b0,

0 otherwise.

(B.5)
The functions αa(t), αb(t), βa(t) and βb(t) are obtained through the IVPs

dαa(t)

dt
= −k2αa(t),

dαb(t)

dt
= k2αa(t)− k3αb(t), t > 0, (B.6)

and

dβa(t)

dt
= −k2βa(t),

dβb(t)

dt
= k2βa(t)− k3βb(t), t > 0, (B.7)

with initial conditions αa(0) = 1, αb(0) = 0, βa(0) = 0, and βb(0) = 1.
Equation (B.1) represents a direct substitution of the two species mono-molecular

chain into the general solution by Jahnke and Huisinga [5]. However, direct point-wise
evaluation of this solution is not feasible. Specifically, there are two challenges: (i) the
two convolutions are taken over an infinite two-dimensional integer lattice; and (ii) the
non-zero probabilities in the product Poisson and Multinomial distribution can be so
small that numerical underflow/overflow is almost certain. The first issue can be solved
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by determining the finite set of lattice sites that do not contribute to the convolutions,
this can be achieved by invoking specific features of Equation (A.1). The second issue
requires that we perform calculations using logarithms of probabilities rather than the
true probabilities. Extra care must be taken in the convolution summations.

We first simplify the convolution operations to ensure finite computations. Solving
the IVPs B.3,B.6, and B.7 yields, for k2 6= k3,

λa(t) =
k1
k2

(
1− e−k2t

)
, (B.8)

λb(t) =
k1
k3

+
k1

k3 − k2
[
e−k2t + (k2 − 2k3)e

−k3t
]
, (B.9)

αa(t) = e−k2t, (B.10)

αb(t) =
k2

k3 − k2
(
e−k2t − e−k3t

)
, (B.11)

βa(t) = 0, (B.12)

βb(t) = e−k3t. (B.13)

A key result is that βa(t) is zero for all time (Equation (B.12)). Through substitution of
Equation (B.12) into Equation (B.5), we have

M (a, b, b0, 0, βb(t)) =

b0!
(1− |βb(t)|)b0−|a|−|b|

(b0 − |a| − |b|)!
0a

a!

βb(t)
b

b!
if |a|+ |b| ≤ b0,

0 otherwise.

(B.14)

This implies that M (a, b, b0, βa(t), βb(t)) = 0 if a 6= 0. That is,

M (a, b, b0, 0, βb(t)) =

b0!
(1− |βb(t)|)b0−|b|

(b0 − |b|)!
βb(t)

b

b!
if a = 0, and |b| ≤ b0,

0 otherwise.

(B.15)

We can now make a significant simplification of the second convolution in Equa-
tion (B.1). LetMa(a, b, t) =M (a, b, a0, αa(t), αb(t)) andMb(a, b, t) =M (a, b, b0, 0, βb(t)),
we have

Ma(a, b, t) ∗Mb(a, b, t) =
∑
aw∈N

∑
bw∈N

Ma(aw, bw, t)Mb(a− aw, b− bw, t)

=
∑
bw∈N

Ma(a, bw, t)Mb(0, b− bw, t),

where N = Z+ ∪ {0}. By Equation (B.15), Mb(0, b, t) = 0 if |b| > b0. Furthermore, we
have b ≥ 0 from the definition of the BCRN (Equation (A.1)). It follows that only terms
with b ≥ bw ≥ max(0, b− b0) can contribute to the convolution, that is,

Ma(a, b, t) ∗Mb(a, b, t) =
b∑

bw=max(0,b−b0)

Ma(a, bw, t)Mb(0, b− bw, t).

While this convolution never involves more that b terms, we can apply a further constraint
on the upper bound of the index. By Equation (B.4) we haveMa(a, b, t) = 0 if |a|+ |b| >
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a0. Since a ≥ 0 and b ≥ 0 from the definition of the BCRN (Equation (A.1). That
is, terms with bw ≥ a0 − a ≥ 0 will not contribute to the convolution. Therefore, the
multinomial convolution term in Equation (B.1) is

Ma(a, b, t) ∗Mb(a, b, t) =

min(b,max(0,a0−a))∑
bw=max(0,b−b0)

Ma(a, bw, t)Mb(0, b− bw, t). (B.16)

Let P(a, b, t) = P (a, b, λa(t), λb(t)) and substitute Equation (B.16) into Equation (B.1)
to yield

P (a, b, t | a0, b0) = P (a, b, t) ∗

min(b,max(0,a0−a))∑
bw=max(0,b−b0)

Ma(a, bw, t)Mb(0, b− bw, t)


=
∑
az∈N

∑
bz∈N

P (a− az, b− bz, t)

min(bz ,max(0,a0−az))∑
bw=max(0,bz−b0)

Ma(az, bw, t)Mb(0, bz − bw, t)

 .
By definition of the product Poisson distribution (Equation (B.2)), P (a, b, t) = 0 for
a < 0 or b < 0. Hence, only terms with a ≥ az and b ≥ bz contribute to the convolution.
Therefore, we obtain the following expression for Equation (B.1)

P (a, b, t | a0, b0) =
a∑

az=0

b∑
bz=0

P (a− az, b− bz, t) (B.17)

×

min(bz ,max(0,a0−az))∑
bw=max(0,bz−b0)

Ma(az, bw, t)Mb(0, bz − bw, t)

 ,
which requires O(ab2) evaluations of either Equation (B.2), Equation (B.4) or Equa-
tion (B.15).

Now that we have bounded the number of operations required to evaluate the solution
of the CME, we now address the problem of numerical overflow/underflow. There are two
possible sources for this type of numerical error. Firstly, the factorials and products of
powers involved in the evaluation of Equation (B.2), Equation (B.4), and Equation (B.15)
can be very large, causing overflow. Secondly, the probabilities in the convolution terms
can be very small, causing underflow.

To avoid these issues we work with logarithms of probabilities. For the non-zero cases
of Equations (B.2), (B.4) and (B.15), we have

lnP (a, b, t) = a lnλa(t) + b lnλb(t)− (|λa(t)|+ |λb(t)|)−
a∑

ai=1

ln ai −
b∑

bi=1

ln bi, (B.18)

lnMa (a, b, t) = a lnαa(t) + b lnαb(t) + (a0 − a− b) ln (1− αa(t)− αb(t))

+

a0∑
ai=a0−a−b

ln ai −
a∑

ai=1

ln ai −
b∑

bi=1

ln bi, (B.19)

lnMb (a, b, t) = b ln βb(t) + (b0 − b) ln (1− βb(t)) +

b0∑
bi=b0−b

ln bi −
b∑

bi=1

ln bi. (B.20)
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Equations (B.18)–(B.20) enable the computation to proceed with overflow or underflow
being significantly less likely. Therefore, we take the logarithm of Equation (B.17) to
obtain

lnP (a, b, t | a0, b0) = ln

[
a∑

az=0

b∑
bz=0

elnP(a−az ,b−bz ,t)+lnF(az ,bz ,t)

]
, (B.21)

where

lnF(az, bz, t) = ln

min(bz ,max(0,a0−az))∑
bw=max(0,bz−b0)

elnMa(az ,bw,t)+lnMb(0,bz−bw,t)

 . (B.22)

Computing the logarithms of summations of exponential functions in Equation (B.21) and
Equation (B.22) is still prone to overflow and underflow since the probabilities will be
very small in practice. A common solution to numerically stable logarithm of summations
of exponential functions is known as the “log-sum-exp trick”. This works by noting, for
any x, y ∈ R, that

ln [ex + ey] = ln
[(
ex−max(x,y) + ey−max(x,y)

)
emax(x,y)

]
= ln

[
ex−max(x,y) + ey−max(x,y)

]
+ max(x, y).

Thus, computations are re-scaled to the natural scale of the terms in the summation,
thus terms that do underflow would not have affected the result significantly. Now, let

R(az, bz) = max
bw∈[max(0,bz−b0),min(bz ,max(0,a0−az))]

{lnMa(az, bw, t) + lnMb(0, bz − bw, t)} ,

and
S(a, b) = max

[az ,bz ]∈[0,a]×[0,b]
{lnP (a− az, b− bz, t) + lnF (az, bz, t)} .

Then use S(a, b) and R(az, bz) with the “log-sum-exp trick” to yield a numerically robust
form of Equation (B.21). That is,

lnP (a, b, t | a0, b0) = ln

[
a∑

az=0

b∑
bz=0

elnP(a−az ,b−bz ,t)+lnF(az ,bz ,t)−S(a,b)

]
+ S(a, b), (B.23)

where

lnF(az, bz, t) = ln

min(bz ,max(0,a0−az))∑
bw=max(0,bz−b0)

elnMa(az ,bw,t)+lnMb(0,bz−bw,t)−R(az ,bz)

+R(az, bz).

(B.24)
The example code, CMEsolMonoMol.m provides a numerical implementation of the CME
solution (Equation (B.1)) using Equation (B.23) and Equation (B.24).
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Appendix C Synthetic data

The synthetic data used in the main manuscript and example code is provide in Table C.1
for the mono-molecular chain model and in Table C.2 for the enzyme kinetics model.

Table C.1: Data, Yobs, used for inference on the mono-molecular chain. Generated using
true parameter values k1 = 1.0, k2 = 0.1, and k3 = 0.05 and initial conditions, A(0) = 100
and B(0) = 0.

Y(t1) Y(t2) Y(t3) Y(t4)
t 25 50 75 100
A(t) 14 12 17 15
B(t) 68 34 14 14

Table C.2: Data, Yobs, used for inference on the enzyme kinetic model. Generated using
true parameter values k1 = 0.001, k2 = 0.005, and k3 = 0.01 and initial conditions
S(0) = E(0) = 100 and C(0) = P (0) = 0.

Y(t1) Y(t2) Y(t3) Y(t4) Y(t5)
t 0 20 40 60 80
P (t) 0 5 16 28 39
P (t) + ξ 2.04 6.99 14.30 28.71 38.14
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Appendix D Additional ABC results

In the main manuscript only marginal probability densities are used to demonstrate ABC
convergence. Here we present plot matrices with the bivariate marginals also.

Since the mono-molecular chain model has three rate parameters, we have three uni-
variate marginals posteriors and three bivariate marginal posteriors. Through application
of the ABC with acceptance threshold, ε, the equivalent marginals are

p(k1 | ρ(Yobs,Sobs) ≤ ε) =

∫∫
R2

p(k1, k2, k3 | ρ(Yobs,Sobs) ≤ ε) dk2 dk3, (D.1)

p(k2 | ρ(Yobs,Sobs) ≤ ε) =

∫∫
R2

p(k1, k2, k3 | ρ(Yobs,Sobs) ≤ ε) dk1 dk3, (D.2)

p(k3 | ρ(Yobs,Sobs) ≤ ε) =

∫∫
R2

p(k1, k2, k3 | ρ(Yobs,Sobs) ≤ ε) dk1 dk2, (D.3)

p(k1, k2 | ρ(Yobs,Sobs) ≤ ε) =

∫
R
p(k1, k2, k3 | ρ(Yobs,Sobs) ≤ ε) dk3, (D.4)

p(k1, k3 | ρ(Yobs,Sobs) ≤ ε) =

∫
R
p(k1, k2, k3 | ρ(Yobs,Sobs) ≤ ε) dk2, (D.5)

p(k2, k3 | ρ(Yobs,Sobs) ≤ ε) =

∫
R
p(k1, k2, k3 | ρ(Yobs,Sobs) ≤ ε) dk1. (D.6)

The exact univariate and bivariate marginal posteriors are plotted against the ABC pos-
terior for ε = [50, 25, 12.5, 0] (with ε = 0 meaning the exact posterior is sampled using
the CME-based likelihood). Equations (D.1)–(D.6) are plotted in Figure D.1.

Reducing ε further than 12.5 is prohibitive, even for the mono-molecular chain model.
Both Barber et al. [1] and Fearnhead and Prangle [3] provide an asymptotic result for the
computation time, C, as a function of ε, that is, C = O(ε−d), where d is the dimensionality
of the data used in the ABC inference. For the synthetic data we have from Table C.1,
we have d = ntN . Figure D.2 demonstrates that the computation times we obtain are
consistent with this.
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Figure D.1: Convergence of ABC posterior to the true posterior as ε→ 0 for the mono-
molecular chain inference problem. Marginal posteriors are plotted for ε = 50 (blue solid),
ε = 25 (red solid), ε = 12.5 (yellow solid), and ε = 0 (black dashed). Here, the ε = 0 case
corresponds to the exact likelihoods using the CME solution. Univariate marginals are
plotted on the diagonals and bivariate marginals on off diagonal elements. Contour lines
in bivariate marginal plots are selected such that six equal probability density intervals
are shown. The true parameter values (black dotted) are k1 = 1.0, k2 = 0.1 and k3 = 0.05.
Note that the exact Bayesian posterior does not recover the true parameter for k3.

Figure D.2: Computation time growth of ABC rejection sampling against theoretical
result. Computations are performed using an Intel® Core™ i7-5600U CPU (2.6 GHz).
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Appendix E ABC Multilevel Monte Carlo

Here we provide the ABC Multilevel Monte Carlo scheme (ABCMLMC) (see Warne et al. [6]
for more details and the derivation). This particular implementation computes an esti-
mate of the posterior mean. Given a sequence of acceptance thresholds, ε0 > ε1 > · · · >
εL = ε, and a sequence of sample numbers m0 > m1 > · · · > mL (see Giles [4] and Warne
et al. [6] for details on optimally computing the sample numbers), ABCMLMC proceeds
as follows:

1. initialise ` = 0;

2. set i = 1;

3. generate a prior sample θ∗ ∼ p(θ);

4. generate simulated data, S∗obs ∼ s(Sobs;θ
∗);

5. if ρ(Yobs,S
∗
obs) ≤ ε`, accept θ(i)

ε`
= θ∗ and set i = i+ 1, otherwise continue;

6. if i ≤ m`, go to step 3, otherwise continue;

7. set F̂`,j(z) =
∑m`

i=1 1z

(
k
(i)
ε`,j

)
/m` for j = 1, 2, . . . ,M ;

8. if ` = 0, then set θ̂ε =
∑m`

i=1 θ
(i)
ε`
/m`, set ` = ` + 1, and go to step 2, otherwise

continue;

9. set i = 1;

10. set k
(i)
ε`−1,j

= F̂−1`−1,j(F̂`,j(k
(i)
ε`,j

)) for j = 1, 2, . . . ,M ;

11. set θ(i)
ε`−1

= [k
(i)
ε`−1,1

, k
(i)
ε`−1,2

, . . . , k
(i)
ε`−1,M

] and set i = i+ 1;

12. if i ≤ m`, then go to step 9, otherwise continue;

13. set F̂`,j(z) = F̂`−1,j(z) +
∑m`

i=1

(
1z

(
k
(i)
ε`,j

)
− 1z

(
k
(i)
ε`−1,j

))
/m`;

14. set θ̂ε = θ̂ε +
∑m`

i=1

(
θ(i)
ε`
− θ(i)

ε`−j

)
/m`;

15. if ` = L, then terminate, otherwise set ` = `+ 1 and go to step 2;
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Appendix F ABC algorithm configurations and ad-

ditional results

The following algorithm configurations for the ABC rejection sampler, ABCMCMC,
ABCSMC and ABCMLMC are used to generate the results in Tables 3 and 4 of the main
manuscript. The parameters are also contained in the code examples, DemoABCMethodsMonoMol.m
and DemoABCMethodsMichMent.m .

For the mono-molecular chain model inference problem each algorithm is configured
as follows: for the ABC rejection sampler we set m = 100 and ε = 15; for ABCMCMC
we set mn = 500, 000, mb = 100, 000, mh = 10, 000, the proposal kernel is a Gaussian
random walk with covariance matrix, Σ = diag(1 × 10−3, 1 × 10−5, 2.5 × 10−5), and
ε = 15; for ABCSMC we use mp = 100, the proposal kernel is a Gaussian random walk
with covariance matrix, Σ = diag(1 × 10−3, 1 × 10−5, 2.5 × 10−5), and the discrepancy
threshold sequence is ε1 = 100 with εr+1 = εr/2 for r = 2, 3, . . . , 5; for ABCMLMC we
use the discrepancy threshold sequence ε0 = 100 with ε`+1 = ε`/2 for ` = 1, 2, . . . , 4, and
the sample number sequence, m0 = 800, with m`+1 = M`/2 for ` = 1, 2, . . . , 4. For the
prior, we assume all parameters are independent of each other and uniformly distributed
with k1 ∼ U(0, 2), k2 ∼ U(0, 0.2), and k3 ∼ U(0, 0.1).

Similarly for the enzyme kinetics model inference problem each algorithm is configured
as follows: for the ABC rejection sampler we set m = 100 and ε = 2.5; for ABCMCMC we
set mn = 500, 000, mb = 100, 000, mh = 10, 000, the proposal kernel is a Gaussian random
walk with covariance matrix, Σ = diag(2.25×10−8, 5.625×10−7, 6.25×10−6), and ε = 2.5;
for ABCSMC we use mp = 100, the proposal kernel is a Gaussian random walk with
covariance matrix, Σ = diag(2.25× 10−8, 5.625× 10−7, 6.25× 10−6), and the discrepancy
threshold sequence is ε1 = 40 with εr+1 = εr/2 for r = 2, 3, . . . , 5; for ABCMLMC we use
the discrepancy threshold sequence ε0 = 40 with ε`+1 = ε`/2 for ` = 1, 2, . . . , 4, and the
sample number sequence, m0 = 800, with m`+1 = M`/2 for ` = 1, 2, . . . , 4. For the prior,
we assume all parameters are independent of each other and uniformly distributed with
k1 ∼ U(0, 0.003), k2 ∼ U(0, 0.015), and k3 ∼ U(0, 0.05).

The resulting marginal posterior distributions are presented in Figure F.1. ABCSMC
and ABCMLMC recover the true parameters effectively and as less computationally in-
tensive. For the enzyme kinetic inference problem, more tuning and samples are required

Figure F.1: Comparison of ABC posteriors generated by the ABC rejection sampler
(red solid), ABCMCMC (yellow solid), ABCSMC (purple solid) and ABCMLMC (blue
solid) for the mono-molecular chain inference problem. The true parameter values (black
dashed) are k1 = 1.0, k2 = 0.1 and k3 = 0.05.

to obtain good estimates of the full marginal posterior distributions. Especially, since the
ABCMCMC trajectory undergoes a long excursion into the low density tails.
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