Supplementary text for: Bayesian and parsimony
approaches reconstruct informative trees from simulated

morphological datasets
Martin R. Smith (martin.smith@durham.ac.uk)

2019-01-10
Contents
1 Tree distance metrics 1
1.1 SPR metric . . . . . . e e e e e e e e e e e 2
1.2 Path difference metric . . . . . . . . . e 2
1.3 Partition metric . . . . . . . . . e e e e e e e e 2
1.4 Quartet metric . . . . . . . . L e e 2
2 Desired behaviour of tree distance metrics 3
2.1 Moving a single taxon . . . . . .. ..o e 3
2.2 Moving two taxa . . . . . ... e e e 3
2.3 Maximum distance . . . . . . . .. e e 4
2.4 Unit equivalence . . . . . . . . . e 6
2.5 Unresolved trees . . . . . . . . . 7
2.6 Conclusion . . . . . . .. 7
3 Calculating resolution and accuracy 8
3.1 Visualizing these data . . . . . . . . . .. L 9
4 Using ternary diagrams to inform tree reconstruction techniques 10
4.1 Quartet metric . . . . . . L. e e 11
4.2 Partition metric . . . . . . . . e e e e e e 11
5 Why small concavity constants are unsuitable 12
References 14

This document has been generated from an R markdown file, which contains the source code used to generate
figures and conduct analyses, and is provided in the Electronic Supplementary Material that accompanies the
main article [1].

1 Tree distance metrics

A number of metrics area available to quantify the similarity between two undirected topologies (i.e. unrooted
trees with no edge lengths).
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1.1 SPR metric

The subtree pruning and regrafting (SPR) distance [2] counts the number of SPR, rearrangements necessary
to transform Tree A into Tree B.

1.2 Path difference metric

The length of a path from one tip to another in a tree is the number of edges within the tree that must be
crossed to navigate from one tip to the other.

Given two trees, is possible to calculate the difference in path length between each pair of tips.

The path difference metric [3] is the square root of the sum of squares of each of these differences.

1.3 Partition metric

The Robinson-Foulds (RF or ‘partition’) metric [3,4] measures the symmetric difference between two trees by
adding the number of bipartitions that are present in tree A (but not tree B) to the number of bipartitions
present in tree B (but not tree A).

It is most useful when the trees to be compared are very similar; it has a low range of integer values, limiting
its ability to distinguish between trees [3].

1.4 Quartet metric

Instead of partitions, symmetric differences can be measured by counting the number of four-taxon statements
(quartets) that differ between two trees [5,6].

For any four tips A, B, C and D, a bipartition on a bifurcating tree will separate tip A and either B, C or D
from the other two tips. That is to say, removing all other tips from the tree will leave one of these three
trees:
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Thus two of the random trees below share the quartet (A, B), (C, D), whereas the third does not; these
four tips are divided into (A, D), (B, C).



Same L Same_____ Different

There are (Z) groups of four taxa in a tree with n tips; for each of these groups, one of the three trees above

will be consistent with a given tree. As such, two identical trees will have a quartet distance of 0, and a
random pair of trees will have an expected (Z) /3 quartets in common. Because quartets are not independent
of one another, no pair of trees with six or more tips can have all (Z) quartets in common [3].

2 Desired behaviour of tree distance metrics

The advantages of the quartet symmetric difference over other tree distance metrics [2] are best illustrated by
examining a set of example trees.

2.1 Moving a single taxon
If trees differ only in the location of a single taxon (see taxon 1 in the trees below), then the distance between

two trees should correspond to the distance that this taxon has been moved.

Reterence tree Short move Medium move Long move
10 10 10
3 1
1 2

—

Quartet:  8/330 Quartet:  52/330 Quartet:  76/330
RF:  2/16 RF:  6/16 RF:  8/16
Path:  4.24 Path:  7.48 Path:  8.49
SPR: 1 SPR: 1 SPR: 1

The subtree pruning and regrafting (SPR) distance does not distinguish between these trees, as they differ
only in the placement of a single tip. The Robinson-Foulds, path difference and quartet metrics, in contrast,
recognize trees in which this tip has been moved further as more distant from the starting tree.

2.2 Moving two taxa

Intuitively, moving a pair of tips on a tree should lead to higher tree distances than moving a single tip. In
the case of a short move, the RF distance does not differ whether one or two tips are moved. For larger



moves, however, the RF distance is less when two tips are moved than when a single tip is moved. The path
and quartet metrics perform as expected.

The trees below differ from a reference tree in the position of a single tip (tip 1), or a pair of tips (tips 10 and
11), which have been moved a short, medium or long distance from their original positions.

Reterence tree Short move 1 Short move 2
11 11
10 10
9 11
10
6
3 1 3
2 3 2
1 2 1
Quartet:  8/330 Quartet:  24/330
RF:  2/16 RF: 2/16
Path: 4.24 Path:  5.29
SPR: 1 SPR: 1
Reterence tree Medium move 1 Medium move 2
11 11
10 10
9
6
11
6 10
5 1
3 3
2 3 2
1 2 1
Quartet:  52/330 Quartet:  78/330
RF: 6/16 RF:  4/16
Path: 7.48 Path: 8.25
SPR: 1 SPR: 1
Reference tree Long move 1 Long move 2
11
10 11
9 10
6
5 6 3
2
3 11
2 3 10
1 2 1
Quartet:  76/330 Quartet:  92/330
RF: 8/16 RF: 6/16
Path:  8.49 Path: 11.1
SPR: 1 SPR: 1

2.3 Maximum distance

A distance metric should distinguish slightly-perturbed trees from random trees and those that are more
different from the starting tree than expected by chance.

The Robinson-Foulds metric can reach its maximum value when a single taxon is relocated from the most



basal to the most derived point of a pectinate tree, representing a maximal value despite retaining relationship
information about all other taxa.

Pectinate tree Move one taxon Random tree
11 1 —

10

1 2 I
Quartet:  120/330 Quartet:  240/330
RF:  16/16 RF:  16/16
Path: 17.7 Path: 224
SPR: 1 SPR: 4

A notable proportion of random trees receive a lower RF distance from the original tree, even though they do
not show any structural similarity. This is not the case with the quartet symmetric difference.

Distance between pectinate tree (above) and random trees
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An advantage of the quartet symmetric distance is that the normalized metric of a random tree is % [3,6].

As such, trees that are more different than expected by chance can be readily recognized, as their distance
metric will be greater than %. The ‘maximum distance’ tree depicted below was identified using the R

package TreeSearch [7], using the quartet difference from the reference tree as an optimality criterion.



Rerterence tree Random tree Maximum distance
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Quartet:  226/330 Quartet:  244/330
RF:  16/16 RF:  16/16
Path:  17.7 Path:  15.6
SPR: 4 SPR: 4

2.4 Unit equivalence

A further shortcoming of the RF metric is that not all partitions represent an equivalent amount of information.
A partition distance of 1 could mean that two trees differ in an uninformative partition, or a more informative
partition. All quartets, in contrast, are equally informative.

Consider a balanced and an unbalanced eight-taxon tree:

Balanced tree E Asymmetric tree E

c c
[
b b
2
a a

Each tree divides the eight taxa into five bipartition splits.
The information content (Shannon entropy) of a split can be calculated based on what proportion of eight-tip
trees contain the split in question. This is a function of the evenness of the split:

Matching trees | p(Match in random tree) | Information content / bits
Partition size: 2:6 945 0.0909 3.459432
Partition size: 3:5 315 0.0303 5.044394
Partition size: 4:4 225 0.0216 5.529821

In the first tree, split 1 is even, dividing four taxa from four others (4:4); splits 2-5 are maximally uneven
(2:6). The total information content of these five splits is 19.37, whereas that of the five splits in the second



tree, of sizes 2:6, 3:5,4:4, 3:5 and 2:6, is 22.54. Put another way, a random tree will on average share more
partitions with the balanced tree (whose partitions are predominantly uneven and thus likely to be matched)
than the asymmetric tree (which contains more even partitions that are less likely to occur in a random tree).

Of the 10 395 eight-tip trees, many more bear at least one partition in common with a balanced tree than
with an asymmetric tree, whereas the distribution of quartets is identical:

8-tip trees with N common quartets
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[ Balanced
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2.5 Unresolved trees

Whereas the path distance and SPR metrics are only defined on bifurcating trees, symmetric difference
approaches can be applied to trees that contain polytomies — i.e. not every node is resolved as bifurcating.

2.6 Conclusion

Quartet dissimilarity is the only available metric of tree distance that fulfils all of the following desiderata:

o Allocates trees higher distances if a clade moves greater distances

o Allocates trees higher distances if a the clade that is moved is larger

o Distinguishes contradicted from unresolved information in trees that are not fully bifurcating (resolved)
o Identifies pairs of trees that are more random than expected by chance

e Does not reach its maximum value after relatively trivial rearrangements



3 Calculating resolution and accuracy

One way to modify a tree topology is to reduce its resolution by collapsing nodes, without changing any
of the relationships presented within the tree. The trees below have been derived from a reference tree by
collapsing one and many nodes:

Reterence tree Much polytomy

11
{10

 ——]

One polytomy

— .
—

—

3 E—]
1 i §

Quartets contradicted ~ 0/330

—
—

Quartets contradicted ~ 0/330

Quartets unresolved  8/330 Quartets unresolved  123/330

Partitions contradicted ~ NA/8 Partitions contradicted ~ NA/8

Partitions unresolved ~ NA/8 Partitions unresolved ~ NA/8

These trees do not contain any quartets or partitions that are not present in the reference tree, though they
do contain a number of unresolved quartets and partitions.

We can alternatively choose to change the topology, and then collapse some nodes. The following trees
represent the same loss of resolution as the previous trees, but applied to a tree in which one tip (tip 1) has

been moved relative to the reference tree:

One moved, no polytomy One moved, one polytomy

11 ——I11
I:lo 10

One moved, much polytomy

—

—

—

—

Quartets contradicted  52/330 Quartets contradicted  52/330 Quartets contradicted  52/330

Quartets unresolved  0/330 Quartets unresolved  8/330 Quartets unresolved ~ 65/330

Partitions contradicted ~ NA/8 Partitions contradicted ~ NA/8 Partitions contradicted ~ NA/8

Partitions unresolved ~ NA/8 Partitions unresolved ~ NA/8 Partitions unresolved ~ NA/8

This causes results in trees that contradict a number of partitions or quartets that occurred in the original
reference tree.

We could introduce a larger change to the tree topology by moving a ‘cherry’, i.e. two adjacent taxa (10 &



11):

Iwo moved, no polytomy Iwo moved, one polytomy Iwo moved, much polytomy
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Quartets contradicted ~ 78/330 Quartets contradicted  78/330 Quartets contradicted  0/330
Quartets unresolved  0/330 Quartets unresolved  8/330 Quartets unresolved  205/330

Partitions contradicted ~ NA/8 Partitions contradicted ~ NA/8 Partitions contradicted ~ NA/8
Partitions unresolved ~ NA/8 Partitions unresolved ~ NA/8 Partitions unresolved ~ NA/8

3.1 Visualizing these data

The number of quartets or partitions that are unresolved, different, or identical to the reference tree can be
visualized using ternary diagrams:
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In these plots, the vertical direction corresponds to the normalized symmetric distance. Collapsing nodes
decreases the resolution (movement in the horizontal direction), but can increase accuracy; the balance
between resolution lost and accuracy gained determined whether the collapsing of nodes increases or decreases
net divergence.



4 Using ternary diagrams to inform tree reconstruction tech-
niques

This means of visualization provides a helpful way to understand how effective different methods of phylogenetic
reconstruction are on particular trees.

Here I have taken a representative dataset simulated from a 22-tip reference tree [8], and analysed the dataset
in TNT v1.5 [9] under equal weights parsimony and implied weights (with concavity constants of 1, 2, 3, 5
and 10), and in MrBayes v3.2.2 [10] using the Markov K model [11].

For each parsimony analysis, I recorded a strict consensus of all optimal trees, then proceeded to collapse
groups with a Bootstrap GC support under -95, -90, -85. . .

For each Bayesian analysis, I collapsed all groups whose posterior probability was under x, at 20 uniformly
spaced values of z from 0.5 to 1.0.

These trees represent a progressive loss of resolution (precision) from the optimal tree, allowing an exploration
of the relationship between resolution and accuracy. In each plot, resolution decreases from left to right.

Congreve and Lamsdell [8] argue that equal weighting is the optimal superior method because it resolves the
fewest incorrect bipartitions — that is, its most-resolved tree is the closest to the top-right edge of the ternary
diagram. By this measure, all methods are improved by collapsing nodes until none remain.

On the view advocated here, the optimal tree is the one that has the lowest normalized distance from the
generative tree, which corresponds to the greatest position in the vertical direction. (The normalizing constant
is the maximum possible number of partitions or quartets that could be resolved, not the number that are
actually resolved in a pair of trees.)

By this measure, collapsing the least-supported nodes leads to an increase in tree quality, as predicted by
Goloboff [12]: nodes with low support are likely to be incorrect. Collapsing better-supported nodes, however,
reduces tree quality: nodes with high support are likely to be correct.
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With this particular dataset, the optimal tree is not perfectly resolved in any method. In fact, of all 100
datasets, the best available tree was only perfectly resolved in a 18% of cases. The best tree available under a
specific method was perfectly bifurcating in 0-22% of cases:

Equal weights | IW, k=1 | IW, k=2 | IW, k=3 | IW, k=5 | IW, k=10 | IW consensus
2 16 22 18 16 9 2

With the 100, 350 and 1000 character datasets of O’Reilly et al. [13], the best available tree was almost never
perfectly resolved.
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Best | Markov | Equal weights | IW, k=2 | k=3 | k=5 | k=10 | k=20 | k=200 | IW consensus
100 0.07 0.0 0.00 6.12 | 6.63 | 853 | 6.53 | 6.12 6.12 0
350 0.07 0.0 0.40 14.10 | 9.60 | 6.90 | 850 | 7.70 7.10 0
1000 | 0.11 0.2 1.61 12.92 | 12.31 | 11.20 | 12.61 | 10.19 | 11.60 0

4.1 Quartet metric

We can also examine the situation if we average across all 100 Congreve & Lamsdell datasets:

Markov

Equal weights
Implied, k=10
Implied, k=5
Implied, k=3
Implied, k=2
Implied, k=1
Implied, k=2..10

Identical quartets

As the worst-supported nodes are progressively collapsed, the accuracy of implied weights trees begins to
increase, decreasing the total distance of trees from the generative tree (thus meaning that the provide a
better representation of the generative tree).

One question we can ask is how much we should reduce the resolution. After a certain point, the increase in
accuracy gained by collapsing the least supported nodes no longer offsets the information lost by sacrificing
resolution.

Bayesian and equal weights trees already produce incompletely resolved trees, and a further reduction of
resolution does not improve their quality.

Under implied weights, averaged over these datasets, the optimum trade-off between accuracy and resolution
comes when collapsing nodes with a Bootstrap GC support value below:

Equal weights | IW, k=1 | IW, k=2 | IW, k=3 | IW, k=5 | IW, k=10 | IW consensus
-5 -20 -15 -15 -15 -10 -25

The only analyses to produce significantly different (p = 0.01) results from implied weights (at k = 3) or
Bayesian are equal weights and implied weights with £ = 1. Both these approaches are significantly worse.

4.2 Partition metric

We can run the same analysis counting partitions in place of quartets.

11
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Under the partition metric, the most informative trees were found after collapsing nodes with a Bootstrap
GC support value of:

Equal weights | IW, k=1 | IW, k=2 | IW, k=3 | IW, k=5 | IW, k=10 | IW consensus
5 10 5 10 10 5 -5

The partition metric advocates a greater loss of resolution than the quartet metric. Otherwise, it too finds no
statistically significant difference between the effectiveness of the methods, except again that equal weights,
and implied weights with £ = 1, are significantly worse.

5 Why small concavity constants are unsuitable

Of the implied weights concavity constants analysed above, k = 1 is strikingly (and significantly) worse than
other values. It is worth recalling the mathematical underpinning for implied weights [14]:

Character penalty = where:

Pl
e e is the number of additional steps;
e k is the concavity constant.

The penalty can be normalized such that the first extra step in a character incurs a unit cost:

Normalized penalty = (1 + k) 7.

12



As k — oo, the penalty _t7 — £, and the normalized penalty (1+k) 7% — ¢ This is to say, each subsequent

step contributes the same amount to a tree’s penalty; as k — oo, implied weights converges to equal weights.

At lower values of k, the penalty for extra steps decreases such that each subsequent additional step is
penalized less than the previous one. As k — 0, the penalty for the first step converges to one, and the
penalty for subsequent steps converges to zero. At this extreme, the optimal tree is the one that maximises
the number of characters that are convex. (A convex character is one that can be plotted onto the tree
with no additional steps; its derived states each exhibit a unique origin.) All characters that are not convex
are uninformative, as the number of steps beyond the first is irrelevant to their total contribution to tree
score. This situation corresponds to clique analysis [15], a method that is no longer advocated for use in
phylogenetic reconstruction.

The value k = 1 marks a significant point in the transition from parsimony analysis to clique analysis, because
the highest cost that can be associated with a single character is less than twice the cost of a single extra step.

The cost associated with the first extra step is ﬁ = % As the number of extra steps increases(e — 00), the
penalty increases towards its maximum value of 235 — 1, i.e. just under twice the cost of the first step.

As such, given a pair of characters, a reconstruction that assigns infinitely many changes of one character,
but no additional steps to the other, will be preferred to a reconstruction in which both characters undertake
a single additional step.

k =100

Normalized penalty

Extra steps

Two characters with one extra step receive a total normalized penalty of two (dotted line). At
progressively smaller values of k, a single character must exhibit increasingly more steps before
it receives the same penalty. Once k& < 1, no amount of steps in a single character will elicit a
penalty equal to that which would be encountered if a second character undertook a single extra
step.

13



Because non-convex characters are not entirely uninformative, this situation is not strictly equivalent to
clique analysis. For example, trees that reconstruct fewer steps in a single non-convex character will still
be preferred to those that reconstruct more steps in the same character; and a tree that imposes two extra

steps on three characters receives the same penalty (3 X 2-%1 = 2) as one that imposes one extra step on four
1

Nevertheless, a value of k = 1 places significantly more emphasis on maximising the number of convex
characters than on minimizing the total number of steps in any given (non-convex) character, behaviour
that is more characteristic of clique analysis than parsimony analysis. This supports the long-standing
recommendation [12] that low values of k should be avoided.

As there does not yet exist an objective method for selecting a single value of k for parsimony analysis, it
has been proposed that nodes are recovered by a range of concavity constants are likely to be correct [16].
Studies that take a consensus of all trees found to be optimal under a range of concavity values (e.g. [17])
should consider discounting topologies that are only recovered under low values of k (cf. [18,19]).
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