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Box S1: Empirical evaluation of cues for plasticity 

Plasticity cues can be very difficult to identify in empirical systems. By directly manipulating the 

environment, experimental work can determine which specific cue triggers phenotypic expression (e.g. 

defenses induced by predator “smell”, or kairomone [1]). A particular advantage of such laboratory 

experiments is that they allow cues to be identified by decoupling them from (i) other environmental 

variables that may covary with them in natura, and (ii) other environmental variables that drive 

selection on the plastic trait. For example, experimental work on shade responses in plants allowed 

disentangling the effects of spectral quality (red/far red ratio, an indicator of the presence of 

competitors) and the amount of light (photosynthetically active radiation, signaling neutral shade e.g. 

from a rock [2]). However, adequate manipulation of the cue may be more complex than anticipated, 

because the timing and pattern of variation in the environment is also important in eliciting phenotypic 

responses. For example, laying date in a Dutch great tit population is more sensitive to patterns of 

temperature than to average temperature per se [3,4] and so are thermal reaction norms of parasitic 

wasps [5]. Failing to integrate environmental variability in experiments may lead to poorly evaluate 

responses to an environmental factor [6].  

In nature, in contrast, the difficulty is to assess which environmental variable is actually used 

by the organisms. This requires long term ( ≥  20 years [7]) correlative studies. Many studies of 

phenotypic plasticity in the wild use a priori knowledge [7], others evaluate which environmental 

variable explains the highest proportion of phenotypic variance. For climatic predictors (e.g. in studies 

of phenology), the most common method to achieve this is to use sliding window analyses. But until 

recently and the development of statistical packages such as climwin [7,8], there was no formal 

statistical framework to assess the validity of detected cues. The recent methodological developments 

will allow assessing cues in the wild with more confidence, and will facilitate comparisons across 

studies. However, combining both experimental and in situ correlative approaches is required for a 

better understanding of each system. For example, an effect of mean temperature on laying date in 

great tits in the wild is known, but experimental work in the lab revealed later laying date in captivity 

than in the wild, suggesting the existence of other cues [9].  

While organisms respond to complex environments that combine several environmental 

variables, a majority of studies only investigate one variable as a potential cue [7]. The use of 

simultaneous cues is extremely difficult to evaluate for wild populations, as this requires not only to 

define a set of potentially relevant variables that can be used as cues, but also to have access to long 

term data for a larger panel of environmental variables. These approaches are also very demanding in 

terms of power for data analysis, and are still rarely done in the wild (but see [10]). 

 

  



Table S1 
Data summary, detailing for each population: forest type, time span over which data are available for 
blue tits and caterpillar phenology, and samples sizes for individual laying dates. The phenology of 
caterpillars is approximated by caterpillar frass mass collected regularly in coprometers, such that the 
day with the highest quantity of frass in each year corresponds to the date of the peak of caterpillar 
abundance of the year [11]. 

 D-Rouvière D-Muro E-Muro E-Pirio 

Forest type Deciduous Deciduous Evergreen Evergreen 

Nb. mean laying date obs. 
(year span) 

27 
(1991 – 2017) 

25 
(1993 – 2017) 

20 
(1998 – 2017) 

42 
(1976 – 2017) 

Nb. females / nb. obs. of laying date 905 / 2040 752 / 1433 322 / 796 884 / 2120 

Nb. caterpillar date obs. 
(year span) 

10 
(1991 – 2002) 

25 
(1993 – 2017) 

17 
(2001 – 2017) 

31 
(1987 – 2017) 

Caterpillar abundance  
(mean ± se, in mg/m²/day) 

60.23 ± 8.33 2069.08 ± 447.70 517.86 ± 94.30 183.04 ± 23.63 

 

 

  



 

 

Table S2 

Temporal trends in the four study sites for a) blue tits (laying date); b) caterpillars (date of peak 

abundance) and c) temperature (daily mean, daily maximum and daily minimum) during the 

reproductive period (from April to end of June) estimated over the period 1991-2017. Significant 

trends (p-value < 0.05) are in bold. Sample sizes are given in Table S1.  

a) Laying date change  

(days per decade, ± se) 

t-value p-value r² 

D-Rouvière 0.10 (± 0.13) 0.08 0.94 -0.04 

D-Muro -0.61 (± 0.14) -0.43 0.67 -0.04  

E-Muro -3.57 (± 0.16) -2.23 0.04 0.17 

E-Pirio -3.15 (± 0.05) -5.91 <0.0001 0.45  

 

b) Food peak change  

(days per decade, ± se) 

t-value p-value r² 

D-Rouvière -20.03 (± 11.51) -1.76 0.12 0.19 

D-Muro -2.99 (± 1.80) -1.66 0.11 0.07 

E-Muro -8.33 (± 3.93) -2.12 0.05 0.18 

E-Pirio -3.57 (± 1.35) -2.65 0.01 0.17 

 

c) Statistic Temperature change 

(°C per decade, ± se) 

t-value p-value  r² 

Corsica Mean 0.66 (± 0.2) 3.93 0.0005 0.36 

Min 1.03 (± 0.3) 2.96 0.0067 0.23 

Max 1.25 (± 0.3) 3.80 0.0008 0.34 

Mainland Mean 0.61 (± 0.2) 3.92 0.0006 0.36 

Min 0.91 (± 0.4) 2.55 0.0172 0.17 

Max 1.10 (± 0.4) 2.68 0.0128 0.19 

 

  



Figure S1 

Time trends of the daily mean (in dark grey), daily minimum (in light grey) and daily maximum (in black) 

temperature per month across years for Corsican sites (D-Muro, E-Muro and E-Pirio) and the mainland 

site (D-Rouvière) for the 1991-2017 period. Values are slopes of a regression of temperature against 

year as a linear trend, estimated for each statistic (mean, max and min) for each month (± se). 

 

  



Box S2: Methods: Details of sliding windows analyses 

 

General procedure 

In order to estimate the period during which climate most strongly influences the phenology of blue 

tits and caterpillars, we implemented sliding window analyses using the package climwin [7,8]. 

Correlation between mean laying date or caterpillar date with temperature and rainfall was tested 

across years for every period of more than 1 day in all years. For mean laying date of blue tits, data on 

known second clutches were removed, and individuals with laying dates later than 30 day after the 

first laying date of the year in each population were eliminated from the data sets. We tested several 

summary statistics for both temperature and rainfall: daily mean, maximum, minimum temperature 

during each period for all populations. We defined Extreme Climatic Events (or ECE) as the highest 5% 

of the distribution of a climatic variable over a period of reference [12]. We chose this reference to be 

the period of sensitivity to mean temperature (population specific best model, see below) for the years 

1991-2017. For each climatic parameter, we tested for both linear and quadratic reaction norms. We 

allowed the window to overlap with the period of reproduction and development (respectively for 

birds and caterpillars), as a way to assess whether plasticity is predictive, i.e. if the best cues are found 

before and not during the breeding season.  

 

Among all tested combinations of climate parameters, summary statistics, and relationship functions, 

we retained the models that best predicted the among-year variation in the mean phenotype for each 

population and species. Model choice was based on three indicators of the ability of the models to 

explain the among-year variation of the phenotype:  

i) The ∆𝐴𝐼𝐶  is the difference between the Akaike Information Criterion (AIC) of a given 

model and that of a basic model including an intercept only, hereafter the base model. 

This difference estimates the ability of the focal model to explain the temporal variance in 

the mean phenotype, as compared to the base model. The lower the ∆𝐴𝐼𝐶, the higher the 

explicative power of the detected cue windows. 

ii) The critical probability 𝑃𝑐  represents the probability to detect the best windows as a signal 

just by chance (akin to a p-value). We ran randomization procedure to test for the 

probability of false positives. We ran five simulation models using different 

randomizations of the mean phenotype across years (five randomisations are sufficient 

when using 𝑃𝑐 according to robustness analyses of van de Pol et al. 2016) for each type of 

climate variable and summary statistics. The best model in these simulations with 

randomized datasets was chosen based on ∆𝐴𝐼𝐶, and the probability of false positive in 

cue detection was then quantified as 𝑃𝑐. The smaller the 𝑃𝑐, the lower the probability that 

the cue window is detected just by chance. 

iii) The confidence set (%CI), quantifies the extent to which there are several models with very 

similar explanatory power, and thus provides a confidence interval on window limits. It is 

the percentage of all tested window models (for a given combination of climatic variable 

and summary statistics) that are required to reach 95% of the sum of all Akaike weights 

(𝑤𝐴𝐼𝐶 = exp (∆𝐴𝐼𝐶)). The models within this set compose the 95% confidence set of 

windows for the particular climatic variables tested. A small %CI suggests that only a few 

window models contribute to the cumulative predictive power of all tested windows, such 

that the best window is a reliable signal. The smaller the %CI, the higher the reliability of 



the detected cues windows (opening and closing day of the windows are detected 

precisely).  

 

The best model is the one that combines the smallest ∆AIC, the smallest %CI and the smallest Pc. In 

small datasets with lack of statistical power, %CI will increase. A window could have the best ∆𝐴𝐼𝐶 but 

a high 𝑃𝑐, meaning that the signal, despite strong statistical explicative power, is likely to be detected 

just by chance. In such a case, we evaluated the second best ∆𝐴𝐼𝐶; if the latter was associated with 

high 𝑃𝑐, we moved on to the third best ∆𝐴𝐼𝐶, etc.and selected the first model in the list with low 𝑃𝑐. In 

small data sets, windows length will be sub-estimated [7]. For the summary statistic that best explains 

among-year variation of the phenotype, we estimated the median windows of models in the 

confidence set at 95%.  

Note that mean temperature and the number of ECE are significantly positively correlated for blue tits 

windows in D-Rouvière (r² = 0.68), D-Muro (r² = 0.48) and E-Pirio (r²= 0.26), but not in E-Muro (p-value 

= 0.09, r² = 0.12). 

 

Comparison of windows between populations 

We wanted to test if the differences in best cue windows of blue tits from D-Rouvière and E-Pirio were 

significant. We focused only on these two populations because statistical power was high and 

equivalent in these populations, but much lower in the two other D-Muro and E-Muro populations. 

We computed the ∆𝐴𝐼𝐶𝑠𝑎𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠  of a model where a single window was estimated for both 

populations. This was done by running the analysis on a pooled dataset including both the D-Rouvière 

and E-Pirio populations, with a fixed effect for population, in interaction with climate (i.e. mean 

temperature in window). Interactions between population and climate effects in the base line model 

allowed estimating different reaction norms of plasticity of laying date with respect to temperature 

for each population, but still using the same cue window for both populations. We then compared this 

model to the sum of ∆𝐴𝐼𝐶  of the best models (models 1) of D-Rouvière and E-Pirio estimated 

separately (∆𝐴𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ). Note that when the two populations are analyzed separately, 

compared to a model with no population effect, two additional parameters are estimated (open and 

close days for the second population). We thus added 2 points of ∆𝐴𝐼𝐶  in ∆𝐴𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 

compared with the model (∆𝐴𝐼𝐶𝑠𝑎𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠). If the sum of ∆𝐴𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 is lower than the 

∆𝐴𝐼𝐶𝑠𝑎𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, then estimating two different windows for the two populations provides a better 

fit to the data than a single common window, providing evidence that populations differ in their 

climate windows.  

For comparison, the three sliding windows analyses are implemented with the same reference day 

(starting day of the sliding windows) equal to 1st July (however, results are consistent regardless of 

what reference day is used).Results from the sliding windows analyses show that, 

∆𝐴𝐼𝐶𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 =  ∑ ∆𝐴𝐼𝐶 =  ∆𝐴𝐼𝐶𝐷−Rouviè𝑟𝑒 + ∆𝐴𝐼𝐶𝐸−𝑃𝑖𝑟𝑖𝑜 + 2  

                                          =  −35.44 − 39.08 + 2 

                                          =  −72.52  

and 

∆𝐴𝐼𝐶𝑠𝑎𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 =  −19.98  



This clearly indicates that D-Rouvière and E-Pirio have different opening and closing days of 

temperature windows.  

 

  



Table S3 

Consistency of information from local records of temperature (iButtons with temperature log every 

hour) and data from meteorological stations. Data from iButtons are available from 2009 to 2016 in D-

Rouvière, and from 2013 to 2016 in E-Pirio, E-Muro and D-Muro. The congruence was estimated by 

regressions of the local average daily temperature (minimum daily temperature + maximum daily 

temperature / 2) from i-buttons placed near nest-boxes over corresponding mean daily temperatures 

from national meteorological stations (meteorological stations of Calvi for Corsican sites and Saint 

Martin de Londres for the D-Rouvière site). r² is the  coefficient of determination. Significant slopes (p-

value < 0.05) are in bold. Sample sizes are given in Table S1. 

 Intercept Slope r² 

 Estimates (± se) t-value  p-value Estimates (± se) t-value  p-value  

D-Rouvière 4.66 (± 0.40) 11.68 <0.0001 0.84 (± 0.02) 37.68 <0.0001 0.65 

D-Muro 1.85 (± 0.39) 4.73 <0.0001 0.91 (± 0.02) 40.92 <0.0001 0.73 

E-Muro 0.80 (± 0.46) 1.76 0.08 0.98 (± 0.02) 40.24 <0.0001 0.78 

E-Pirio -0.26 (± 0.25) -1.02 0.31 0.96 (± 0.01) 68.19 <0.0001 0.84 

  



Table S4 

Results from sliding windows analyses for blue tits and caterpillars. The best models are highlighted in 

red for each population. ∆𝐴𝐼𝐶: Difference between the Akaike information criteria of the focal model 

and that of the base model (a model including the intercept only, see electronic supplementary 

material Box S2 for details about ∆𝐴𝐼𝐶 , Pc and %CI). Each line presents the best model from a sliding 

window analysis with the corresponding climate factors, statistics and function. Open and close day of 

time windows are counted backwards, starting from the reference day (= earliest date of phenotype + 

30 day), consistent with the output format of the sliding windows implemented in climwin [7,8]. Note 

that in the main text, results are transformed to be expressed forward, with a reference Day 1= 1st 

January (see also table S5). 

 

Sliding windows analyses 1 to 12 and ECE were implemented with the described combination of 

climate variable, summary statistics and reaction norm function. In the specific case of models “Cue1 

+ ECE”, sliding windows analyses were implemented including in the base model the best temperature 

window estimated in model 1, in order to take into account the effects of annual mean temperature. 

However, in the table, we report for these “Cue1 + ECE” models the global ∆𝐴𝐼𝐶 i.e. the sum of the 

∆𝐴𝐼𝐶 of the model 1 and of the model “Cue1 + ECE”. The ∆𝐴𝐼𝐶 of all models in the table are thus 

directly comparable (with reference to a base model with intercept only). 



Blue tits 

 Parameters D-Rouvière D-Muro 

Model Cue Statistic Function Threshold Open Close ∆𝐴𝐼𝐶 𝑃𝑐  %CI Threshold Open Close ∆𝐴𝐼𝐶 𝑃𝑐  %CI 

1 Temperature Mean Lin - 98 24 -35.44 0.0007 2 - 78 16 -16.84 0.002 6 

2 Temperature Max Lin - 46 46 -11.37 0.52 77 - 49 48 -14.13 0.45 69 

3 Temperature Min Lin - 46 34 -22.54 0.0007 3 - 49 49 -12.60 0.47 75 

4 Temperature Mean Quad - 99 23 -35.12 0.002 2 - 4 1 -17.22 0.05 8 

5 Temperature Max Quad - 77 69 -11.25 0.90 71 - 289 276 -15.88 0.996 47 

6 Temperature Min Quad - 45 34 -21.26 0.002 3 - 4 2 -20.48 0.05 20 

7 Rain Mean Lin - 350 350 -8.60 0.90 93 - 199 195 -15.07 0.73 83 

8 Rain Max Lin - 350 350 -8.60 0.89 91 - 155 155 -13.91 0.55 81 

9 Rain Min Lin - 161 159 -9.66 0.82 94 - 155 155 -13.91 0.94 94 

10 Rain Mean Quad - 292 292 -12.20 0.83 82 - 348 348 -22.75 0.009 9 

11 Rain Max Quad - 351 350 -12.86 0.95 85 - 348 348 -22.75 0.002 14 

12 Rain Min Quad - 350 350 -12.13 0.82 94 - 348 348 -22.75 0.93 87 

ECE Temperature Sum Lin 13.36 96 40 -7.91 0.37 67 15.82 53 24 -5.72 0.58 77 

Cue  1 + ECE Temperature Sum Lin - - - - - - - - - - - - 

 Parameters E-Muro E-Pirio 

Model Cue Statistic Function Threshold Open Close ∆𝐴𝐼𝐶 𝑃𝑐  %CI Threshold Open Close ∆𝐴𝐼𝐶 𝑃𝑐  %CI 

1 Temperature Mean Lin - 55 12 -14.92 0.04 41 - 54 17 -39.08 7.5 e-05 1 

2 Temperature Max Lin - 52 14 -14.29 0.13 49 - 28 28 -22.46 7.6 e-05 10 

3 Temperature Min Lin - 310 310 -8.99 0.75 90 - 28 28 -22.46 0.1 56 

4 Temperature Mean Quad - 236 234 -12.77 0.84 52 - 17 54 -37.72 0.001 1 

5 Temperature Max Quad - 32 14 -15.01 0.32 52 - 28 28 -20.10 0.05 20 

6 Temperature Min Quad - 308 299 -11.37 0.84 73 - 28 28 -20.10 0.12 37 

7 Rain Mean Lin - 27 22 -11.35 0.73 92 - 74 8 -18.05 6.2 e-05 6 

8 Rain Max Lin - 24 22 -14.54 0.78 91 - 64 6 -8.66 0.88 84 

9 Rain Min Lin - 175 174 -5.92 0.74 94 - 111 107 -10.18 0.94 94 

10 Rain Mean Quad - 24 17 -15.46 0.87 62 - 24 38 -19.21 0.001 7 

11 Rain Max Quad - 24 19 -17.33 0.24 42 - 250 250 -8.32 0.99 67 

12 Rain Min Quad - 330 330 -5.07 0.74 94 - 64 6 -11.20 0.94 94 

ECE Temperature Sum Lin 17.15 47 24 -18.24 0.002 5 18.15 50 17 -17.78 0.002 32 

Cue  1 + ECE Temperature Sum Lin 17.15 47 24 -25.84 0.21 62 18.15 50 33 -49.10 0.03 50 

 

Caterpillars 

 Parameters D-Muro E-Pirio 

Model Cue Statistic Function Threshold Open Close ∆𝐴𝐼𝐶 𝑃𝑐  %CI Threshold Open Close ∆𝐴𝐼𝐶 𝑃𝑐  %CI 

1 Temperature Mean Lin - 88 33 -21.17 0.001 7 - 94 8 -24.8 0.0002 2 

ECE Temperature Mean Lin 15.92 88 57 -15.91 0.005 21 21.7 41 40 -9.26 0.25 64 

Cue 1 + ECE Temperature Mean Lin 15.92 78 76 -10.73 0.14 60 21.7 18 18 -6.45 0.74 82 



Table S5 

Estimated best and median mean temperature cue windows (see electronic supplementary material 

Box S2 for details about choice of best windows and estimation of median windows). 1 = 1st January. 

Negative value of ordinal means day in the previous year (before 1st January).  

 

 Blue tits Caterpillars 

Ordinal day  

(1= 1st January) 

Best Window Median window Best Window Median window 

Open 

day 

Close 

day 

Open 

day  

Close 

day 

Open 

day 

Close 

day 

Open 

day  

Close 

day 

D-Rouvière 17 91 22 91 - - - - 

D-Muro 35 97 19 88 42 97 10 107 

E-Muro 74 117 -75 89 - - - - 

E-Pirio 90 127 87 130 72 158 80 156 

 

  



Figure S2 

Correlation between the window estimated from the best model (represented by the black dot) and 
all other possible windows of mean temperature for a) D-Rouvière, b) D-Muro, c) E-Muro and d) E-Pirio 
population (positive autocorrelation in purple; negative autocorrelation in red). Graphics from the 
function autowin in climwin R package. Some differences in patterns of correlation are visible 
among populations: in deciduous populations, the peak of correlation is less steep than in the 
evergreen populations. This is in line with the interpretation that the environment is less predictable 
in evergreen populations. 

a) 

 

b) 

 

  



c) 

 

d) 

 

  



Table S6 

Temporal trend in the number of positive ECE at 5% during the cue window. r² is the coefficient of 

determination. Significant slopes (p-value < 0.05) are in bold.  Sample sizes are given in Table S1. 

 Number of ECE  

(per decade, ± se) 

t-value p-value r² 

D-Rouvière 0.73 (± 0.71) 1.03 0.31 0.002 

D-Muro 0.71 (± 0.29) 2.45 0.02 0.11  

E-Muro 0.49 (± 0.16) 2.98 0.005 0.16 

E-Pirio 1.8 (± 0.5) 3.48 0.001 0.21  

  

 

  



Table S7  

Blue tit reaction norm favoured by selection estimated by the regression of the date of caterpillar peak 

abundance on the detected cues for blue tits. For evergreen populations, we present results for cues 

taken both as mean temperature (MeanT) and the number of positive ECEs. Models with both MeanT 

and ECE are not better than models with MeanT (or ECE) alone (not shown). r² is the coefficient of 

determination. Significant slopes (p-value < 0.05) are in bold.  Sample sizes are given in Table S1. 

 Climate Intercept Slope r² 

  Estimates (± se) t-value  p-value Estimates (± se) t-value  p-value  

D-Rouvière MeanT 192.72 (± 29.17) 6.61 0.0002 -8.39 (± 3.62) -2.32 0.049 0.33 

D-Muro MeanT 169.02 (± 9.02) 18.75 <0.0001 -4.88 (± 0.83) -5.90 <0.0001 0.59 

E-Muro 
MeanT 228.36 (± 39.36) 5.80 <0.0001 -7.99 (± 2.93) -2.73 0.02 0.29 

ECE 125.42 (± 3.94) 31.81 <0.0001 -1.87 (± 1.50) -1.25 0.23 0.03 

E-Pirio 
MeanT 216.74 (± 20.87) 10.39 <0.0001 -4.43 (± 1.47) -3.01 0.005 0.21 

ECE 162.07 (± 2.38) 68.09 <0.0001 -0.97 (± 0.25) -3.84 0.0006 0.31 

 

  



Table S8 

Synchrony between blue tits and their preys, assessed by the regression between mean laying date of 

blue tits and caterpillar date of peak abundance. r² is the coefficient of determination. Significant 

slopes (p-value < 0.05) are in bold. Sample sizes are given in Table S1. 

 Intercept Slope r² 

 Estimates (± se) t-value  p-value Estimates (± se) t-value  p-value  

D-Rouvière 8.33 (± 76.56) 0.11 0.92 1.21 (± 0.79) 1.53 0.16 0.13 

D-Muro 7.50 (± 14.85) 0.51 0.62 1.11 (± 0.15) 7.32 <0.0001 0.69 

E-Muro 8.40 (± 46.03) 0.18 0.86 1.06 (± 0.43) 2.45 0.03 0.24 

E-Pirio 44.74 (± 24.38) 1.83 0.08 0.85 (± 0.19) 4.49 0.0001 0.39 
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