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1. Proof of Theorem 1

Proof. A key observation throughout is that in an elementary CRS Q, any nonempty subset
R′ of reactions automatically satisfies the F–generated property, so R′ forms a RAF for Q if
and only if R′ satisfies the reflexively autocatalytic (RA) property. By the manner in which
DQ is constructed, the RA property means that the induced subgraph DQ|R′ has the property
that each vertex has in-degree at least 1.

In particular, R has a RAF if and only if DQ has a directed cycle. The ‘if’ direction of
this claim is clear. For the ‘only if’ direction, suppose that R′ is a RAF and r ∈ R′. By
the assumption that each vertex in DQ has in-degree at least 1, there is a directed walk of
length k (for any k ≥ 1) involving vertices in R′ and ending in r. Since R′ is finite if we
take k > |R′| then two vertices on this directed walk must coincide and the resulting sub-walk
between this vertex to itself gives a directed cycle in DQ. Moreover, DQ|R′ contains a directed
cycle if and only if this sub-digraph contains a chordless cycle (again, the ‘if’ direction is clear
and the ‘only if’ direction follows by the finiteness of R, so shortening each directed cycle by
following a chord leads to a sequence of cycles of decreasing length that eventually terminates
on a chordless cycle). This establishes Part (i).

For Part (ii), a subset R′ of R has the property that DQ|R′ is a chordless cycle, which implies
(by Part (i)) that R′ is a RAF. It is also an irrRAF; otherwise, the cycle would have a chord.
Conversely, if R′ has the property that DQ|R′ is not a chordless cycle, then either DQ does not
contain a cycle (in which case it is not a RAF) or it contains a cycle which either has a chord
or has other vertices reachable from it, in which case R′ is not an irrRAF. This establishes
the first sentence of Part (ii). The arguments for the second and third sentences follow similar
lines.

For Part (iii), it is clear that the union of one or more cores is a RAF; however, the resulting
set of reactions is closed if and only if all reactions that are reachable from that set are also
included.

For Part (iv), suppose that a core c′ is reachable from another core c (by definition, c is not
reachable from c′). Any closed RAF R′ that contains both c and c′ is thus not minimal, since
we could delete c′ and all the reactions that are reachable from c′ but not from c and obtain
a strict subset of R′ that is also a closed RAF. On the other hand, if R′ has the property
described in Part (iv), then it is a closed RAF by Part (iii) and it is also minimal, since any
closed RAF must contain at least one core, alongside all the reactions that are reachable from
it.
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Part (v) follows from Part (iv), since each minimal closed RAF is associated with exactly one
core, and since cores are strongly connected components of DQ these cores are vertex-disjoint
(i.e. two cores share no reaction). Consequently, the number of cores is bounded above by
the number of reactions in the maxRAF of DQ. Moreover, finding the strongly connected
components of any digraph can be done in polynomial time in the size of the digraph [3]. Each
of these strongly connected components can then be tested in polynomial time to determine if
it is a core; if so, one can then determine in polynomial time which other vertices are reachable
from it. Thus the minimal closed RAFs can be listed in polynomial time in the size of Q.

Part (vi) follows from Part (v) since Q contains a closed subRAF if and only if it contains a
minimal closed subRAF.

�

2. Proof of Proposition 1

Proof. Consider the probability pr that a single reaction r has an arc to itself (such an event is
sufficient but not necessary for DQ to contain a directed cycle). If r produces m ≥ 1 products,
we have pr = 1− (1− p)m ≥ pm ≥ p = λ/|R|. The probability that no reaction has an arc to

itself is therefore
(

1− λ
|R|

)|R|
. Since (1− x/n)n ∼ e−x, we obtain the result claimed.

�

3. Proof of Proposition 2

Proof. Part (i) follows from Part (i) of Theorem 1, combined with the fact that the adjacency
matrix A of an acyclic directed graph is nilpotent (i.e. specifically, Al+1 is the all-zero matrix
when l is the length of a longest path in the directed graph) and thus all the eigenvalues of A
are equal to zero [1]. For Part (ii), if Q contains a RAF, then DQ has a minimal (chordless)
directed cycle (which could just be a loop on a vertex). Let w be the vector that has value 1
for each vertex in this minimal directed cycle and is zero otherwise. Then w is both a left and
right eigenvector for AQ with eigenvalue 1. For Part (iii), let R′ = {r ∈ R : wr > 0}. The
condition wAQ = λw translates as

∑
r∈RwrArr′ = λwr′ . Since the right-hand side is non-zero

for each reaction r′ ∈ R′, it follows that wrArr′ 6= 0 for at least one reaction r ∈ R′; In other
words, each reaction is R′ is catalysed by the product of at least one reaction in R′. Since Q
is elementary, this implies that R′ is a RAF.

Notice that Part (iii) of Proposition 2 does not hold if left eigenvectors are substituted for
right ones. A counterexample is given by the elementary CRS for which AQ is the 2 × 2
matrix with both rows equal to [0, 1]; in this case, AQ has a principal eigenvalue of +1 but the
associated right eigenvector is a column vector with strictly positive entries, but this does not
correspond to a RAF for Q.
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4. Proof of Lemma 1

Proof. Part (i) follows by definition, since each set in the generating sequence is the closure
of a subRAF of Q and is therefore a closed RAF for Q, and a genRAF is the final set in its
generating sequence.

Part (ii): For each reaction r ∈ R, let ρ(r) denote the set of reactants of r. We prove
Part(ii) by induction on k. For k = 2, suppose that r ∈ R1. Then ρ(r) ⊆ F and there exists
some molecule type x ∈ F ∪ π(R1) that catalyses r. Since R2 is a closed RAF, and since the
reactants and at least one catalyst (namely x) are available in the enlarged food set for R2,
namely Y2 = F ∪ π(R1), then r ∈ R2. Thus Part (ii) holds for k = 2. Suppose now that Part
(ii) holds for k = m and that R1,R2, . . . ,Rm+1 is a generating sequence for Q. We need to
show that Rm ⊆ Rm+1. To this end, suppose that r ∈ Rm. Then ρ(r) ⊆ π(Rm−1) and there
exists a molecule type x ∈ F ∪ π(Rm) that catalyses r. Now Rm−1 ⊆ Rm by induction and so
ρ(r) ⊆ π(Rm). Thus the reactants and at least one catalyst of r are in Ym+1 = F ∪π(Rm), and
so, by the closure property, r ∈ Rm+1. This establishes the induction step, and thereby Part
(ii).

�

5. Proof of Theorem 2

Proof. For the first claim in Part (i), if R1 = ∅ then Q|F contains no RAF and so Q has no
genRAF. Suppose that R1 6= ∅. Then R(Q) is a genRAF for Q since it has the generating
sequence Ri (i ≥ 1) (noting that Ri is the closure in Q of Ri which is the maxRAF (and so
a RAF) for Q|F when i = 1, and for Q|(F ∪ π(Ri−1), when i > 1). For the second claim in
Part (i), suppose that R′ is a genRAF for Q; will show that R′ ⊆ R(Q). Let (R′i, i ≥ 1) be a
generating sequence for R′. We show by induction on i that R′i ⊆ Ri for all i > 1. The base
case i = 1 holds since R1 is the maxRAF of Q|F which contains any other RAF of Q|F , and so
the closure of R1 in Q, namely R1 contains the closure in Q of any other RAF of Q|F . Suppose
the induction hypothesis holds for all values of i up to j ≥ 1. Then Rj+1 is the maxRAF of
Q|(F ∪ π(Rj)) and so it contains any RAF of Q|(F ∪ π(R′j)) since R′j ⊆ Rj (by the induction

hypothesis) and so F ∪ π(R′j) ⊆ F ∪ π(Rj). Consequently, the closure of Rj+1 in Q, namely,

Rj+1, contains the closure in Q of any RAF of Q|(F ∪ π(R′j)). Thus the induction hypothesis

holds, which establishes that R′ ⊆ R(Q).
For Part (ii), observe that R(Q′) is a genRAF for Q′ (by Part (i)) and so if R′ = R(Q′) then
R′ is a genRAF for Q′. Since R′ is a closed RAF for Q, R′ is also a genRAF for Q (since the
closure in Q of any subset of reactions from R′ is a subset of R′). Conversely, suppose that R′
is a genRAF for Q. Then since R′ is a closed RAF for Q, R′ is also a genRAF for Q′. Now,
R(Q′) ⊆ R′, and since R(Q′) contains any other genRAF for Q′ (in particular, R′) by Part
(i), we have R(Q′) = R′, as required.

For Part (iii), the proof of the claim (regarding the construction of R(Q)) follows from the
fact that the maxRAF (of Qi), and its closure (in Q) can be computed in polynomial time in
the size of the CRS [2]. The the second claim then follows from Part (ii).
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For Part (iv), consider the following algorithm. Given a closed RAF R′ for Q, let R′1,R
′
2, . . .

be the generating sequence for R(Q′) (described above, but with R replaced by R′ and Q by

Q′ = (X,R′, C, F )). From Part (ii) we have R(Q′) = R′, and so R′1,R
′
2, . . . is a generating

sequence for R′.
Now, let Q′1 = Q′|F and for i > 1, let Q′i = Q|(F ∪π(R′i−1)). Notice that Q′1 is an elementary

CRS, and for i > 1 we can regard Q′i as an elementary RAF with enlarged food set F ∪π(R′i−1).
Thus we can apply Part (v) of Theorem 1, and in polynomial time in |Q| search all the minimal
closed RAFs for Qj and determine whether the closure in Q of any of these results in a strict
subset (say R′′) of R′. When such a set R′′ exists, its closure is clearly a closed RAF for Q that
is a strict subset of R′. However, if no such set R′′ is located then we claim that R′ contains
no closed RAF for Q as a strict subset. To see why, suppose that there is a closed RAF for
Q that is strictly contained within R′. In that case there exists a minimal closed RAF for Q
that is strictly contained in R′, and we denote such a minimal closed RAF as R∗. Let j be the

smallest value of i for which R∗ is contained in R′i as a strict subset (this is well defined, since
R∗ is strictly contained in R′). Then R∗ is a closed RAF for Qj also, and its closure in Q is
a strict subset of R′, so the closure in Q of any minimal closed RAF for Qj that lies strictly
within R∗ would also be a strict subset of R′.

�

6. Proof of Theorem 3

Proof. Let L = {f(x, r) : (x, r) ∈ C}, and let M = maxL. Consider the CRS Q′ =
(X ′,R∗, C∗, F ) obtained from Q by first deleting any uncatalysed reaction and then replac-
ing each reaction r that is catalysed by (say) k ≥ 1 molecule types with k distinct copies of
this reaction r1, . . . , rk, each of which is catalysed by a different one of the k molecule types.
Thus each reaction r in R∗ is catalysed by exactly one molecule type, which we will denote
as x(r). For the associated catalysis set C∗ = {(x(r), r) : r ∈ R∗}, let f ′ be the rate function
induced by f (i.e. if r ∈ R is replaced by r1, . . . , rk ∈ R∗ then f ′(x(ri), ri) := f(x(r), r)). For
each ` ∈ L let:

R∗` = {r ∈ R∗ : f ′(x(r), r) ≥ `}.
In other words, R∗` is the set of catalyst-reaction pairs (x(r), r) where the rate of reaction r
when catalysed by the molecule type x(r) is at least ` (as specified by the rate function f).

Now, let R̃ be the maxRAF of R∗` for the largest value of ` ∈ L for which maxRAF(R∗`) is
nonempty. This set is well-defined, since R∗ = R∗` when ` = 0, and because R (and thereby

R∗) is assumed to have a RAF. Notice that R̃ can be efficiently determined, by starting at
` = M and decreasing ` through the (at most |L| ≤ |C|) possible values it can take until a
nonempty maxRAF first appears (alternatively, one could start at ` = 0 and increase ` until
the last value for which a nonempty maxRAF is present).

Claim: R̃ is a RAF that has the largest possible ϕ–value of any RAF for Q′, and R̃ contains
any other RAF for Q′ with this maximal ϕ–value.

To establish this claim, suppose that R̃ = maxRAF(R`) for ` = t and that maxRAF(R`) = ∅
for ` > t (i.e. t is the largest value of ` in L for which R` has a (nonempty) maxRAF). For each
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reaction r in R̃, we then have f ′(x(r), r) ≥ t, and for at least one reaction r in R̃, f ′(x(r), r) = t

(otherwise, a larger value of ` would support a maxRAF). It follows that ϕ(R̃) = t. Now if R′
is any other RAF for Q′, let t′ be the minimal value of f ′(x(r), r) over all choices of r ∈ R′.
Then t′ ≤ t otherwise, R` would have a nonempty maxRAF for a value ` = t′ that is greater
than t, contradicting the maximality of t. Thus R′ ⊆ R∗t and so

R′ = maxRAF(R′) ⊆ maxRAF(R∗t ) = R̃,
which shows that R̃ contains any other RAF with this maximal value.

This establishes the above Claim, and thereby Theorem 3 for Q′. However, the subset of

reactions of R whose copies are present in R̃ provides a RAF for Q that has the largest possible
ϕ–value (namely t) and which contains any other RAF for Q with this ϕ–value.

�

7. An example to show that the number of minimal closed RAFs in a
(general, nonelementary) CRS is not bounded polynomially in the size of

Q.

Consider the CRS Qk := (X,R, C, F ) where

X = {f, x, θ} ∪ {x1, x′1, . . . , xk, x′k} ∪ {θ1, . . . , θk}, F = {f},
and for [k] = {1, 2, . . . , k}, the reaction set is:

R = {rx, rθ} ∪ {ri : i ∈ [k]} ∪ {r′i, i ∈ [k]} ∪ {ri : i ∈ [k]} ∪ {r′i : i ∈ [k]},
where these reactions are described as follows (with catalysts indicated above the arrows):

rx : f
θ−→ x,

rθ : θ1 + θ2 + · · ·+ θk
θ−→ θ,

and for all i ∈ [k]:

ri : x
xi−→ xi, r

′
i : x

x′i−→ x′i,

ri : xi
θi−→ θi, r′i : x′i

θi−→ θi.

Thus, Qk has a food set of size 1, a reaction set of size 4k+2, and 3k+3 molecule types. Fig. 1
provides a graphical representation of Q3.

Proposition 1. The minimal closed RAFs of Qk coincide with the irrRAFs for Qk, and there
are 2k of them. More precisely, R′ is a minimal closed RAF of Qk if and only if R′ contains
rx and rθ and for each i ∈ [k], R′ contains either (i) ri and ri but neither r

′
i nor r

′
i, or (ii) r′i

and r′i but neither ri nor ri.

Proof. The ‘if’ direction in the second sentence is clear, since any such R′ is easily seen to be a
closed subRAF, as well as being an irrRAF, and thus is a minimal closed RAF. For the ‘only
if’ direction, a subset R′ of R is a RAF of Qk precisely if the following two properties hold: (a)
R′ contains rx and rθ, and (b) for each i, R′ contains either ri and ri or r′i and r′i (in order to
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Figure 1. The CRS Q3.

generate θi, which is required by rθ). Unless R′ satisfies the stronger condition (i) or (ii) (for
each i ∈ [k]) listed in the statement of Proposition 1, R′ is not minimal.

�
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