m is the distance in trait value
e between optimal value and pop mean
σ is the standard dev of trait value distributions in the pop
k is the steepness of the trait to condition function
s is the survival parameter
a is max female fecundity
g is the strength of sexual selection
t is the size of competing groups of males
r is the number of repeted fitness measures for each male
d is the resolution of the condition to fitness function for males, i.e. how many focal individuals did we consider to draw that curve.
$\mathrm{m}=0$;
$\sigma=1$;
$\mathrm{k}=5$;
$\mathrm{a}=50$;
g = 10;
$t=10$;
r = 25;
d $=10$;

Distribution of trait values, condition, condition after survival.

$$
\begin{aligned}
& f\left[z_{-}, m_{-}, \sigma_{-}\right]:=\frac{e^{\frac{-1}{2}\left(\frac{z-m}{\sigma}\right)^{2}}}{\sigma \sqrt{2 \pi}} \\
& \operatorname{cond}\left[z_{-}, k_{-}\right]:=e^{-(z)^{2} / k} \\
& \text { invcond1 }\left[c_{-}, k_{-}\right]:=-\sqrt{k} \sqrt{\log \left[\frac{1}{c}\right]} \\
& \text { invcond2[} \left.c_{-}, k_{-}\right]:=\sqrt{k} \sqrt{\log \left[\frac{1}{c}\right]} \\
& \text { fcond[c_, } \left.m_{-}, \sigma_{-}, k_{-}\right]:= \\
& (f[i n v c o n d 1[c, k], m, \sigma]+f[i n v c o n d 2[c, k], m, \sigma]) * \frac{\sqrt{k}}{2 c \sqrt{\log \left[\frac{1}{c}\right]}} \\
& \operatorname{surv}\left[c_{-}, s_{-}\right]:=c(s+1) /(s+c) \\
& \text { marginalsurv[} \left.c_{-}, m_{-}, \sigma_{-}, k_{-}, s_{-}\right]:=f \operatorname{cond}[c, m, \sigma, k] * \operatorname{surv}[c, s] \\
& \text { fcad[} \left.c_{-}, m_{-}, \sigma_{-}, k_{-}, s_{-}\right]:=\frac{\operatorname{marginalsurv}[c, m, \sigma, k, s]}{\text { NIntegrate[marginalsurv[cc,m, } \sigma, k, s],\{c c, 0,1\}]}
\end{aligned}
$$

Male female covariance in fitness

```
covarmf[res_, rep_, \(\left.g_{-}, t_{-}, m_{-}, s_{-}\right]:=\)
    Conditions = \{ \};
    Densities \(=\{ \}\);
    For [
        i \(=1\),
        is res - 1 ,
        i++,
        AppendTo[Conditions, (i+0.5)/res];
        AppendTo[Densities, NIntegrate[fcond[c,m, \(\sigma, k],\{c, i / r e s,(i+1) / r e s\}]\) ];
    ] ;
    fc = ProbabilityDistribution[fcond[c,m, \(\sigma, k],\{c, 0,1\}]\);
    malefit =
    Table[Mean[Table \(\left[\frac{\text { Conditions[[i] } \frac{\wedge}{\text { Conditions [ [i] }]^{\wedge} g+T o t a l[R a n d o m V a r i a t e[f c, ~ t-1] \wedge g] ~}}{\text { C }}\right.\)
        \(t\) * surv[Conditions[[i]], s], rep]], \{i, 1, res -1\}];
    femfit = Table[Conditions[[i]] *a*surv[Conditions[[i]], s], \{i, 1, res - 1\}];
    meanmalefitness = Densities.malefit;
    meanfemfitness = Densities.femfit;
    covar = Densities. ((malefit-meanmalefitness) * (femfit-meanfemfitness)) ;
    covarrelative = covar / (meanmalefitness * meanfemfitness) ;
    covarrelative)
```


Males variance in relative fitness

```
res = 50;
rep = 2;
g=1;
m=2;
t = 2;
```

```
varmales[res_, rep_, \(\left.g_{-}, t_{-}, m_{-}, s_{-}\right]:=(\)
Conditions = \{\};
Densities = \{\};
For
        \(i=1\),
        i \(\leq\) res -1 ,
        i++,
        AppendTo[Conditions, (i+0.5)/res];
        AppendTo[Densities, NIntegrate[fcond[c, m, \(\sigma, k\) ], \(\{c, i / r e s,(i+1) / r e s\}]\) ];
    ];
    fc = ProbabilityDistribution[fcond[c, m, \(\sigma, k],\{c, 0,1\}] ;\)
    malefit \(=\) Table[Mean[Table[(Conditions[[i]]^g /
    (Conditions[[i]]^g + Total[RandomVariate[fc, t-1]^g])) *
    \(t\) * surv[Conditions[[i]], s], rep]], \{i, 1, res-1\}];
```

meanmalefitness = Densities.malefit;
varmalefitness $=$ Densities. (malefit-meanmalefitness) ^2;
varmalerelative = varmalefitness /(meanmalefitness) ^2;
varmalerelative)

Females variance in relative fitness

```
varfem[res_, a_, b_, m_, s_] := (
    Conditions = {};
    Densities = {};
    For[
        i=1,
        i s res-1,
        i++,
        AppendTo[Conditions, (i + 0.5)/res];
        AppendTo[Densities, NIntegrate[fcond[c,m,\sigma,k],{c,i /res,(i+1)/res}]];
    ];
    femfit = Table[Conditions[[i]]^b *a* surv[Conditions[[i]], s], {i, 1, res - 1}];
    meanfemfitness = Densities.femfit;
    varfemfitness = Densities.(femfit-meanfemfitness)^2;
    varfemrelative = varfemfitness / (meanfemfitness)^2;
    varfemrelative)
```

