Calculation S1. Mathematical solution to convert 2-dimensional (2D) observed velocities during swimming, jumping and prey capture to 3-dimensional (3D) velocities.

The velocity vector in $3 D$ can be written $\left(U^{*} X, U^{*} Y, U * Z\right)$ where U is the speed and (X, Y, Z) is a point on the unit sphere. The objective is to estimate the mean value of U , based on observations of the mean of the 2D-projection ($\mathrm{U}^{*} \mathrm{X}, \mathrm{U}^{*} \mathrm{Y}$). We assume isotropy, i.e. ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) is uniformly distributed on this sphere, independently of U. The speed of the 2D-projection is

$$
\begin{equation*}
V=U\left(X^{2}+Y^{2}\right)^{0.5} \tag{1}
\end{equation*}
$$

To find the relationship between the mean 3-dimensional speed, $\mathrm{E}(\mathrm{U})$, which we want to know, and the mean 2-dimensional speed, $\mathrm{E}(\mathrm{V})$, which we have observed, we use the fact that each of the co-ordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) is uniformly distributed between -1 and +1 . The length of the 2D projection, $\left(X^{2}+Y^{2}\right)^{0.5}$, can therefore be found as

$$
\begin{equation*}
E\left[\left(X^{2}+Y^{2}\right)^{0.5}\right]=E\left[\left(1-Z^{2}\right)^{0.5}\right]=\int_{-1}^{1} 0.5\left(1-Z^{2}\right)^{0.5} d Z=\pi / 4 \tag{2}
\end{equation*}
$$

so that

$$
\begin{equation*}
E(V)=E(U) \frac{\pi}{4} \tag{3}
\end{equation*}
$$

