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Proof of Lemma 1

(⇒) Let λζ,i (i = 1, 2, · · · , n) denote the roots of the characteristic polynomial φ(ζ, s) = 0,

and suppose Re[λζ,i] < 0 for all ζ ∈ Z, Solving equation (6), we have

c̃(ζ, t) =
n∑

i=1

hie
λζ,itvi(ζ, 0), (A.1)

where vi(ζ, 0) (i = 1, 2, · · · , n) are eigenvectors of A−ζ2D+jζV , and hi (i = 1, 2, . . . , n) are

constants determined from a given initial condition c̃(ζ, 0). Since the roots of limζ→∞ φ(ζ, s) =

0 converge to those of |sI+D| = 0, which are −di < 0 (i = 1, 2, · · · , n) due to the continu-

ity of the polynomial roots, the asymptotes do not converge to the imaginary axis. Thus,

there exists γ > 0 such that maxζ maxiRe[λζ,i] < −γ. Moreover, it follows that

∫
Ω
∥c(x, t)∥dx =

∫
Ω

∥∥∥∥∥∥ 1

2π

∑
ζ∈Z

c̃(ζ, t)ejζx

∥∥∥∥∥∥ dx
=

∫
Ω

∥∥∥∥∥∥
∑
ζ∈Z

1

2π

(
n∑

i=1

hie
λζ,itvi(ζ, 0)

)
ejζx

∥∥∥∥∥∥ dx (A.2)
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≤ 1

2π
e−γt

∫
Ω

∥∥∥∥∥∥
∑
ζ∈Z

(
n∑

i=1

hivi(ζ, 0)

)
ejζx

∥∥∥∥∥∥ dx
=

1

2π
e−γt

∫
Ω
∥c(x, 0)∥dx,

where the first equality is due to inverse Fourier transform. The right-hand side converges

to zero as t → ∞.

(⇐) We prove by contraposition. Suppose there exists ζ = ζ0 such that a root of φ(ζ0, s) =

0 does not lie in the left-half complex plane, that is, there exists λ̂ such that φ(ζ0, λ̂) = 0

and Re[λ̂] ≥ 0. Then, (A.2) can be bounded from below by

∫
Ω

∥∥∥∥∥∥ 1

2π

∑
ζ∈Z

c̃(ζ, t)ejζx

∥∥∥∥∥∥ dx =

∫
Ω

∥∥∥∥∥∥
∑
ζ∈Z

1

2π

(
n∑

i=1

hie
λζ,itvi(ζ, 0)

)
ejζx

∥∥∥∥∥∥ dx
≥ 1

2π
eλ̂t∥hivi(ζ0, 0)∥. (A.3)

Since the right-hand side does not converge to zero in the limit of t → ∞ unless hivi(ζ0, 0) =

0, the system is not asymptotically stable. □

Proof of Proposition 1

(⇐) Suppose there exists Ni such that Mi + Ni ⪰ 0 and
∑

(j,k)∈Θℓ
ν
(i)
jk = 0 for ℓ =

2, 3, · · · 2ℓi + 2. It then follows that

zT
i (Mi +Ni)zi = zT

i Mizi + zT
i Nizi

= zT
i Mizi +

ℓi+1∑
j=1

ℓi+1∑
k=1

ν
(i)
jk z

jzk

= zT
i Mizi +

2ℓi+2∑
ℓ=2

 ∑
(j,k)∈Θℓ

ν
(i)
jk

 zℓ = zT
i Miz = ∆i(ζ). (A.4)

Thus, Mi +Ni ⪰ 0 implies ∆i(ζ) ≥ 0 for all ζ ∈ R.

(⇒) The proof is based on the known result in algebra that ∆i(ζ) can be decomposed

into sums of squares when ∆i(ζ) ≥ 0. Here we show the proof for self-completeness of the

document.
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Suppose ∆i(ζ) ≥ 0. It is obvious that deg(∆i(ζ)) is even and the leading coefficient is

positive. Otherwise ∆i(ζ) < 0 as ζ → ∞ or ζ → −∞. Moreover, all roots of ∆i(ζ) = 0

must be either pairs of complex conjugates and/or real numbers with even multiplicity

because the sign of ∆i(ζ) alters at the real roots with odd multiplicity. Therefore, we can

write

∆i(ζ) =
∏
p

(ζ − (σp + jγp)) (ζ − (σp − jγp))
∏
q

(ζ − ηq)
2rq

=
∏
p

(
(ζ − σp)

2 + γ2p
)∏

q

(ζ − ηq)
2rq , (A.5)

where {σp ± jγp}p and {ηq}q are the complex and real roots of ∆i(ζ) = 0, respectively.

The right-hand side of (A.5) shows that ∆i(ζ) is the sums of squares. Thus, it is possible

to write

∆i(ζ) =
∑
j

(zT
i ϕij)

2 = zT
i

∑
j

ϕijϕ
T
ij

 zi = zT
i Φiz, (A.6)

where ϕij := [ϕi0, ϕi1, ϕi2, · · · , ϕiℓi ]
T ∈ Rℓi+1 is the vector of the coefficients of the poly-

nomials in the j-th square, and Φi :=
∑

j ϕijϕ
T
ij . Since ∆i(ζ) is also represented by

∆i(ζ) = zT
i Mizi, there exists a matrix Ni satisfying zT

i Nizi = 0 and Φi = Mi+Ni. Thus,

it follows from the definition of Φi that Mi + Ni ⪰ 0. Moreover, zT
i Nizi = 0 implies∑

(j,k)∈Θℓ
ν
(i)
jk = 0 for ℓ = 2, 3, · · · , 2ℓi + 2. □

Proof of Proposition 2

We first show the equivalence of (i) and (iii).

Case of I = [ζ, ζ]

Define ζ̃ by

ζ̃ :=
(ζ − ζ)ζ + (ζ + ζ)

2
. (A.7)

By the change of variable, it follows that ∆i(ζ̃) > 0 for all ζ̃ ∈ I is equivalent to ∆i(ζ) > 0

for all ζ ∈ [−1, 1]. According to Fekete (1935) (see Theorem 2.6 of [1] for example), ∆i(ζ)

is non-negative for all ζ ∈ [−1, 1] if and only if there exist non-negative polynomials f(ζ)
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and g(ζ) satisfying

∆i(ζ) = f(ζ) + (1− ζ2)g(ζ). (A.8)

Since a univariate non-negative polynomial can always be decomposed into sums of squares

(see the proof for Proposition 1), we can write f(ζ) := zT
1 Kiz1 and g(ζ) := zT

2 Liz2

using positive semidefinite matrices Ki and Li. The equality constraints are obtained

by substituting these matrix representations into (A.8) and equating both sides of the

equation.

Case of I = [ζ,∞):

Let ζ̃ := ζ + ζ. Then, ∆i(ζ̃) ≥ 0 for ζ̃ ∈ [ζ,∞) is equivalent to ∆i(ζ) ≥ 0 for ζ ∈ [0,∞).

The latter condition is equivalent to the existence of non-negative functions f(ζ) and g(ζ)

such that

∆i(ζ) = f(ζ) + ζg(ζ) (A.9)

(see Theorem 2.7 of [1]). This is equivalent to the existence of positive semidefinite ma-

trices Ki and Li, where f(ζ) := zT
1 Kiz1 and g(ζ) := zT

2 Liz2. The proof is complete by

substituting these into (A.9) and writing each entry of both sides of the equation.

Case of I = (−∞, ζ]:

Let ζ̃ := −ζ+ζ. Then, ∆i(ζ̃) ≥ 0 for ζ̃ ∈ (−∞, ζ] is equivalent to ∆i(ζ) ≥ 0 for ζ ∈ [0,∞).

The rest of the proof is the same as the case of I = [ζ,∞).

(ii) ⇔ (iii): The results are obtained by changing the variable ζ in (A.8) and (A.9) with

ζ̃ defined above for each interval I.
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