Supporting Information for "Analyzing Diffusion and

 Flow-driven Instability using Semidefinite Programming"Yutaka Hori, Hiroki Miyazako ${ }^{\dagger}$

Proof of Lemma 1

(\Rightarrow) Let $\lambda_{\zeta, i}(i=1,2, \cdots, n)$ denote the roots of the characteristic polynomial $\varphi(\zeta, s)=0$, and suppose $\operatorname{Re}\left[\lambda_{\zeta, i}\right]<0$ for all $\zeta \in \mathcal{Z}$, Solving equation (6), we have

$$
\begin{equation*}
\tilde{\boldsymbol{c}}(\zeta, t)=\sum_{i=1}^{n} h_{i} e^{\lambda_{\zeta, i} t} \boldsymbol{v}_{i}(\zeta, 0), \tag{A.1}
\end{equation*}
$$

where $\boldsymbol{v}_{i}(\zeta, 0)(i=1,2, \cdots, n)$ are eigenvectors of $A-\zeta^{2} D+j \zeta V$, and $h_{i}(i=1,2, \ldots, n)$ are constants determined from a given initial condition $\tilde{\boldsymbol{c}}(\zeta, 0)$. Since the roots of $\lim _{\zeta \rightarrow \infty} \varphi(\zeta, s)=$ 0 converge to those of $|s I+D|=0$, which are $-d_{i}<0(i=1,2, \cdots, n)$ due to the continuity of the polynomial roots, the asymptotes do not converge to the imaginary axis. Thus, there exists $\gamma>0$ such that $\max _{\zeta} \max _{i} \operatorname{Re}\left[\lambda_{\zeta, i}\right]<-\gamma$. Moreover, it follows that

$$
\begin{align*}
\int_{\Omega}\|\boldsymbol{c}(x, t)\| d x & =\int_{\Omega}\left\|\frac{1}{2 \pi} \sum_{\zeta \in \mathcal{Z}} \tilde{\boldsymbol{c}}(\zeta, t) e^{j \zeta x}\right\| d x \\
& =\int_{\Omega}\left\|\sum_{\zeta \in \mathcal{Z}} \frac{1}{2 \pi}\left(\sum_{i=1}^{n} h_{i} e^{\lambda_{\zeta, i} t} \boldsymbol{v}_{i}(\zeta, 0)\right) e^{j \zeta x}\right\| d x \tag{A.2}
\end{align*}
$$

[^0]\[

$$
\begin{aligned}
& \leq \frac{1}{2 \pi} e^{-\gamma t} \int_{\Omega}\left\|\sum_{\zeta \in \mathcal{Z}}\left(\sum_{i=1}^{n} h_{i} \boldsymbol{v}_{i}(\zeta, 0)\right) e^{j \zeta x}\right\| d x \\
& =\frac{1}{2 \pi} e^{-\gamma t} \int_{\Omega}\|\boldsymbol{c}(x, 0)\| d x
\end{aligned}
$$
\]

where the first equality is due to inverse Fourier transform. The right-hand side converges to zero as $t \rightarrow \infty$.
(\Leftarrow) We prove by contraposition. Suppose there exists $\zeta=\zeta_{0}$ such that a root of $\varphi\left(\zeta_{0}, s\right)=$ 0 does not lie in the left-half complex plane, that is, there exists $\hat{\lambda}$ such that $\varphi\left(\zeta_{0}, \hat{\lambda}\right)=0$ and $\operatorname{Re}[\hat{\lambda}] \geq 0$. Then, (A.2) can be bounded from below by

$$
\begin{align*}
\int_{\Omega}\left\|\frac{1}{2 \pi} \sum_{\zeta \in \mathcal{Z}} \tilde{\boldsymbol{c}}(\zeta, t) e^{j \zeta x}\right\| d x & =\int_{\Omega}\left\|\sum_{\zeta \in \mathcal{Z}} \frac{1}{2 \pi}\left(\sum_{i=1}^{n} h_{i} e^{\lambda_{\zeta, i} t} \boldsymbol{v}_{i}(\zeta, 0)\right) e^{j \zeta x}\right\| d x \\
& \geq \frac{1}{2 \pi} e^{\hat{\lambda} t}\left\|h_{i} \boldsymbol{v}_{i}\left(\zeta_{0}, 0\right)\right\| \tag{A.3}
\end{align*}
$$

Since the right-hand side does not converge to zero in the limit of $t \rightarrow \infty$ unless $h_{i} \boldsymbol{v}_{i}\left(\zeta_{0}, 0\right)=$ 0 , the system is not asymptotically stable.

Proof of Proposition 1

(\Leftarrow) Suppose there exists N_{i} such that $M_{i}+N_{i} \succeq 0$ and $\sum_{(j, k) \in \Theta_{\ell}} \nu_{j k}^{(i)}=0$ for $\ell=$ $2,3, \cdots 2 \ell_{i}+2$. It then follows that

$$
\begin{align*}
\boldsymbol{z}_{i}^{T}\left(M_{i}+N_{i}\right) \boldsymbol{z}_{i} & =\boldsymbol{z}_{i}^{T} M_{i} \boldsymbol{z}_{i}+\boldsymbol{z}_{i}^{T} N_{i} \boldsymbol{z}_{i} \\
& =\boldsymbol{z}_{i}^{T} M_{i} \boldsymbol{z}_{i}+\sum_{j=1}^{\ell_{i}+1} \sum_{k=1}^{\ell_{i}+1} \nu_{j k}^{(i)} z^{j} z^{k} \\
& =\boldsymbol{z}_{i}^{T} M_{i} \boldsymbol{z}_{i}+\sum_{\ell=2}^{2 \ell_{i}+2}\left(\sum_{(j, k) \in \Theta_{\ell}} \nu_{j k}^{(i)}\right) z^{\ell}=\boldsymbol{z}_{i}^{T} M_{i} \boldsymbol{z}=\Delta_{i}(\zeta) . \tag{A.4}
\end{align*}
$$

Thus, $M_{i}+N_{i} \succeq 0$ implies $\Delta_{i}(\zeta) \geq 0$ for all $\zeta \in \mathbb{R}$.
(\Rightarrow) The proof is based on the known result in algebra that $\Delta_{i}(\zeta)$ can be decomposed into sums of squares when $\Delta_{i}(\zeta) \geq 0$. Here we show the proof for self-completeness of the document.

Suppose $\Delta_{i}(\zeta) \geq 0$. It is obvious that $\operatorname{deg}\left(\Delta_{i}(\zeta)\right)$ is even and the leading coefficient is positive. Otherwise $\Delta_{i}(\zeta)<0$ as $\zeta \rightarrow \infty$ or $\zeta \rightarrow-\infty$. Moreover, all roots of $\Delta_{i}(\zeta)=0$ must be either pairs of complex conjugates and/or real numbers with even multiplicity because the sign of $\Delta_{i}(\zeta)$ alters at the real roots with odd multiplicity. Therefore, we can write

$$
\begin{align*}
\Delta_{i}(\zeta) & =\prod_{p}\left(\zeta-\left(\sigma_{p}+j \gamma_{p}\right)\right)\left(\zeta-\left(\sigma_{p}-j \gamma_{p}\right)\right) \prod_{q}\left(\zeta-\eta_{q}\right)^{2 r_{q}} \\
& =\prod_{p}\left(\left(\zeta-\sigma_{p}\right)^{2}+\gamma_{p}^{2}\right) \prod_{q}\left(\zeta-\eta_{q}\right)^{2 r_{q}} \tag{A.5}
\end{align*}
$$

where $\left\{\sigma_{p} \pm j \gamma_{p}\right\}_{p}$ and $\left\{\eta_{q}\right\}_{q}$ are the complex and real roots of $\Delta_{i}(\zeta)=0$, respectively. The right-hand side of (A.5) shows that $\Delta_{i}(\zeta)$ is the sums of squares. Thus, it is possible to write

$$
\begin{equation*}
\Delta_{i}(\zeta)=\sum_{j}\left(\boldsymbol{z}_{i}^{T} \boldsymbol{\phi}_{i j}\right)^{2}=\boldsymbol{z}_{i}^{T}\left(\sum_{j} \boldsymbol{\phi}_{i j} \boldsymbol{\phi}_{i j}^{T}\right) \boldsymbol{z}_{i}=\boldsymbol{z}_{i}^{T} \Phi_{i} \boldsymbol{z} \tag{A.6}
\end{equation*}
$$

where $\phi_{i j}:=\left[\phi_{i 0}, \phi_{i 1}, \phi_{i 2}, \cdots, \phi_{i \ell_{i}}\right]^{T} \in \mathbb{R}^{\ell_{i}+1}$ is the vector of the coefficients of the polynomials in the j-th square, and $\Phi_{i}:=\sum_{j} \phi_{i j} \phi_{i j}^{T}$. Since $\Delta_{i}(\zeta)$ is also represented by $\Delta_{i}(\zeta)=\boldsymbol{z}_{i}^{T} M_{i} \boldsymbol{z}_{i}$, there exists a matrix N_{i} satisfying $\boldsymbol{z}_{i}^{T} N_{i} \boldsymbol{z}_{i}=0$ and $\Phi_{i}=M_{i}+N_{i}$. Thus, it follows from the definition of Φ_{i} that $M_{i}+N_{i} \succeq 0$. Moreover, $\boldsymbol{z}_{i}^{T} N_{i} \boldsymbol{z}_{i}=0$ implies $\sum_{(j, k) \in \Theta_{\ell}} \nu_{j k}^{(i)}=0$ for $\ell=2,3, \cdots, 2 \ell_{i}+2$.

Proof of Proposition 2

We first show the equivalence of (i) and (iii).
Case of $\mathcal{I}=[\underline{\zeta}, \bar{\zeta}]$
Define $\tilde{\zeta}$ by

$$
\begin{equation*}
\tilde{\zeta}:=\frac{(\bar{\zeta}-\underline{\zeta}) \zeta+(\bar{\zeta}+\underline{\zeta})}{2} . \tag{A.7}
\end{equation*}
$$

By the change of variable, it follows that $\Delta_{i}(\tilde{\zeta})>0$ for all $\tilde{\zeta} \in \mathcal{I}$ is equivalent to $\Delta_{i}(\zeta)>0$ for all $\zeta \in[-1,1]$. According to Fekete (1935) (see Theorem 2.6 of [1] for example), $\Delta_{i}(\zeta)$ is non-negative for all $\zeta \in[-1,1]$ if and only if there exist non-negative polynomials $f(\zeta)$
and $g(\zeta)$ satisfying

$$
\begin{equation*}
\Delta_{i}(\zeta)=f(\zeta)+\left(1-\zeta^{2}\right) g(\zeta) . \tag{A.8}
\end{equation*}
$$

Since a univariate non-negative polynomial can always be decomposed into sums of squares (see the proof for Proposition 1), we can write $f(\zeta):=\boldsymbol{z}_{1}^{T} K_{i} \boldsymbol{z}_{1}$ and $g(\zeta):=\boldsymbol{z}_{2}^{T} L_{i} \boldsymbol{z}_{2}$ using positive semidefinite matrices K_{i} and L_{i}. The equality constraints are obtained by substituting these matrix representations into (A.8) and equating both sides of the equation.

Case of $\mathcal{I}=[\underline{\zeta}, \infty)$:
Let $\tilde{\zeta}:=\zeta+\underline{\zeta}$. Then, $\Delta_{i}(\tilde{\zeta}) \geq 0$ for $\tilde{\zeta} \in[\underline{\zeta}, \infty)$ is equivalent to $\Delta_{i}(\zeta) \geq 0$ for $\zeta \in[0, \infty)$. The latter condition is equivalent to the existence of non-negative functions $f(\zeta)$ and $g(\zeta)$ such that

$$
\begin{equation*}
\Delta_{i}(\zeta)=f(\zeta)+\zeta g(\zeta) \tag{A.9}
\end{equation*}
$$

(see Theorem 2.7 of [1]). This is equivalent to the existence of positive semidefinite matrices K_{i} and L_{i}, where $f(\zeta):=\boldsymbol{z}_{1}^{T} K_{i} \boldsymbol{z}_{1}$ and $g(\zeta):=\boldsymbol{z}_{2}^{T} L_{i} \boldsymbol{z}_{2}$. The proof is complete by substituting these into (A.9) and writing each entry of both sides of the equation.

Case of $\mathcal{I}=(-\infty, \bar{\zeta}]$:
Let $\tilde{\zeta}:=-\zeta+\bar{\zeta}$. Then, $\Delta_{i}(\tilde{\zeta}) \geq 0$ for $\tilde{\zeta} \in(-\infty, \bar{\zeta}]$ is equivalent to $\Delta_{i}(\zeta) \geq 0$ for $\zeta \in[0, \infty)$. The rest of the proof is the same as the case of $\mathcal{I}=[\underline{\zeta}, \infty)$.
(ii) \Leftrightarrow (iii): The results are obtained by changing the variable ζ in (A.8) and (A.9) with $\tilde{\zeta}$ defined above for each interval \mathcal{I}.

References

[1] Lasserre JB. Moments, Positive Polynomials and Their Applications. Imperial College Press; 2009.

[^0]: *Department of Applied Physics and Physico-Informatics, Keio University, 223-8522 Kanagawa, Japan.
 ${ }^{\dagger}$ Department of Information Physics and Computing, The University of Tokyo, Tokyo 113-8656, Japan. The authors contributed equally to this work. Correspondence should be addressed to Yutaka Hori (yhori@appi.keio.ac.jp).

